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Executive Summary 

The current Tier 2 pass/fail process described for in situ contamination in the Alberta 
remediation guidelines involves a post-remediation eco-toxicological assessment to 
demonstrate minimal risk to ecological receptors exposed via the soil direct contact pathway.   
Tier 2 site-specific remedial objectives (SSROs) may be established to assist in site 
management, but are not accepted for regulatory closure unless supported by additional lines of 
evidence.  The objective of this project was to investigate the feasibility of four statistical 
approaches that might form the basis of an SSRO derivation procedure acceptable for 
regulatory closure.  The impetus for the project came from conducting a carefully designed and 
robust ecotoxicological assessment of a site where some soil samples failed to satisfy the Tier 2 
pass/fail criteria and some passed.  The assessment generated many toxicological data (36 
biological endpoints) that could be used to derive an SSRO.  The initial challenge was to 
develop an acceptable approach for the SSRO derivation.  A subsequent challenge was to 
determine if models describing the relationships among pedological characteristics, contaminant 
concentrations, and biological responses could be used successfully to predict “effects” in soil at 
other sites when the contaminant concentrations and pedological characteristics were known. 

Four approaches were investigated.  The defined GMR approach entailed calculating the 
geometric mean of the no-observable-adverse-effects concentration (NOAEC) and the lowest-
observable-adverse-effects concentration (LOAEC) for each biological response variable (i.e., 
measurement endpoint).  The distribution of the geometric means was used to determine 
threshold effect concentrations. The 25th percentile of the distribution of the ranked geometric 
means would provide fraction-specific remedial objectives for agricultural/residential land uses 
for these soils that would protect 75 % of the “species”, while the 50th percentile would provide 
the remedial objective for commercial/industrial land uses that would protect 50% of the 
“species”. Although there are different ways to generate the distributional data, one was 
selected in consideration of reliability, repeatability, uncertainty, and the degree of conservatism.   

The remedial objectives derived using a distribution of the bounded geometric means for soils 
contaminated with residual PHCs (F3) were lower than current Tier 1 standards for F3 in soil, 
despite several of these soils passing a Tier 2 Pass/Fail Assessment. Thus, this approach for 
developing Tier 2 SSROs was not pursued further because the degree of conservatism in the 
approach remained high. 

Some of the challenges to constructing an alternative Tier 2 process are due to the interactions 
between the physical and chemical characteristics of the site soils and the biological responses 
as well as among the site physical and chemical characteristics themselves.  Therefore, a 
second approach (e.g., data reduction and model averaging or DRAMA approach) involved the 
exploration and critical evaluation of the data using a series of established statistical procedures 
to assess the relative importance of potential explanatory variables as well as the interaction 
and potential redundancy between and among site physical and chemical characteristics.  The 
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latter was addressed through the creation of synthetic variables using ordination.  Correlations 
between site physical/chemical characteristics, synthetic variables, contaminants and toxicity 
tests responses were explored using a suite of ecotoxicologically plausible model structures.  
Due to the nature of the exposure data, mixed effects models were used to account for sub-
sample variation and the non-Gaussian distribution of many of the responses was addressed 
using generalized linear models. Rather than select a single “best” model, contributions from 
individual models were “averaged” to create a single model using model averaging. The 
advantages of this approach were that undue reliance was not placed on a single model and 
that the true model uncertainty was acknowledged rather than ignored.  For the DRAMA 
approach, the dataset was explored and redundancy as measured by covariation among the 
non-PHC variables was examined using principal components analysis of the correlation matrix. 
Some variables were excluded and some retained.  The matrix of retained explanatory variables 
was multiplied by the ordination eigenvectors to create site-specific scores for each principal 
component.  The scores were considered for use as synthetic explanatory variables in lieu of 
some directly measured explanatory variables.  The first, second and third principal components 
of the non–PHC variables measured consistently across three different studies comprising the 
preliminary dataset represented 85% of the total variability in the dataset.  The ordination 
suggests using only PC1 scores as a heuristic for soil particle size and concomitants such as 
nutrients with the additional individual variables pH, soil moisture and clay as potential 
explanatory variables in subsequent modeling.  Models were constructed for 17 toxicological 
endpoints.  Three sets of additive linear models allowed for site effects, site and variable 
interactions and soil physico-chemical variables only.  The model structures were driven by the 
following questions: 

1. What is the relative importance of contaminant and non-contaminant heuristics as 
descriptors of toxicity, i.e., the biological responses? 

2. In addition to the soil texture heuristic (PC1), clay, pH and moisture were flagged as major 
sources of variability in the studies examined.  Are these three variables important 
descriptors of toxicity? 

3. Does the relative importance of PHCs, clay and non-contaminant heuristics vary by study? 

The relative importance of variables was assessed using model averaged coefficients and p-
values for Wald tests of significance for each parameter within a model.  The relative 
importance of variables was also assessed by summing the AICc (second order Aikake’s 
Information Criterion for small sample sizes) weights for a model in which a parameter occurs.   

The parameters of the models were averaged by weighting the parameters of multiple models fit 
to the same data using the model-specific AICc rather than shrinkage estimators which include 
zeros for parameters in models where the parameter does not appear.  This latter procedure 
was avoided because the degree of shrinkage is a function of the model structures considered 
for model averaging.  Unconditional variance estimates were used in Wald tests (Ho: parameter 
= 0) of model averaged parameter estimates. A measure of relative variable importance was 
measured as the sum of AICc weights over all models including the explanatory variable. 
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Because the studies used for this feasibility assessment were conducted for other purposes, 
test species changed from study to study and the pedological variables that were measured 
were inconsistent among studies.  This reduced the number of pedological variables and test 
species that could be evaluated.  Generally, it was concluded that the dataset would benefit 
from improvement to the study and experimental design.   

A third approach, the Partial Least Squares (PLS) Regression approach, was investigated 
because it had been used previously with success to investigate large “noisy” datasets in order 
to identify and assess the existing signals.  Models predicting various ecotoxicological endpoints 
resulting from exposure of ecological receptors to contaminated soil were developed, by 
combining multiple predictors in the same model through the application of multivariate 
statistical methods. Since multivariate statistics consider many variables simultaneously, they 
can detect meaningful trends that might not be identified by traditional univariate analyses.  PLS 
regression is a multivariate statistical method that was used to model the relationship between 
multivariate predictor matrix (X) and a response matrix (Y), which could include either single or 
multiple responses. Analogous to simple linear regression models, PLS provides an 
assessment of the strength of the relationship between X and Y (i.e., the percent of variation in 
Y that can be explained in terms of the variation of X), and can also be used as a foundation for 
predicting the “Y values” of future unknown observations based on their known X data (which 
can be measured). By using soil physico-chemical properties, non-exhaustive chemical 
extraction results, and measured bioaccumulation values in the X matrix and either individual 
toxicity endpoints or a matrix of multiple toxicological endpoints as the Y matrix, a multivariate 
model was constructed that is capable of predicting the relative toxicity of various soils to key 
ecological receptors based on purely physico-chemical measurements. The SSROs for a site 
could be derived then based on the distribution of the predicted relative toxicities. 

The matrix analyses comprising data from only one site with PHC- and metals-contamination 
used pedological characteristics as the ‘X’ matrix of multiple predictors and each of the 
biological responses (endpoints) as a separate ‘Y’ matrix.  PLS models were cross validated 
using leave-one-class-out cross validation (LOCOCV) and the number of components that 
maximized the internally cross-validated R2Y value (reported as Q2Y) was selected as the 
number of components for each final PLS model.  For each PLS model, the explained variation 
of X and Y (R2X and R2Y) were reported to indicate how well the model fit the training data and 
Q2Y was reported as a preliminary measure of the predictive ability of the model. In addition, the 
significance of each PLS model was estimated through response permutation testing.  
Statistical significance was assessed at α ≤ 0.05.  

Significant models were created for several endpoints; however, for a number of models the 
significance of the model was generally fairly low.  That said, it was clear that the non-
contaminant variables were either more, or as, important as explanatory variables as the 
contaminant variables and that PHCs were important explanatory variables in all of these 
models which corroborated the results of the DRAMA and SEM approach. 
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The results of the PLS approach demonstrated that it was possible to link multivariate soil 
properties to certain ecotoxicity endpoints.  However, the analyses also highlighted that the 
predictive power of these models is likely to be inadequate for soils with soil properties that vary 
substantially from the soils used to build the initial model. The small sample size might be 
responsible.  Predictive power of the models might be improved by increasing the number of 
site soils in the model-building exercise and model averaging might strengthen the cross-site 
predictive applicabilities.  

Structural Equation Modeling (SEM) was the fourth approach investigated as a potential 
alternative Tier 2 process.  Data for multiple species and endpoints from toxicity tests were 
incorporated into a single analysis through use of a latent variable and subsequent EC/IC25 and 
EC/IC50 values were estimated; models were developed for predicting toxicological responses 
that incorporated both contaminant levels and environmental covariates.  The focus of this 
investigation was the relationships among endpoint responses, as represented by an 
“aggregate response” latent variable; and, constructing structural models to describe the causal 
relationships among the non-contaminant and contaminant variables in the model.  Upon 
construction of the models, based on these relationships, covariate models were derived in 
order to predict “effects” or “impacts” to ecological receptors for sites for which toxicity data were 
either minimal or lacking.  Cross-site models were investigated with the intent to implement 
them as predictive tools. 

SEM has two components, the measurement model and the structural model. The structural 
model consists of the paths between variables, while the measurement model consists of a 
latent variable and its associated observed indicator variable(s).  Latent variable modeling has 
two major advantages: 1) it can be used to estimate the general species response across a 
range of toxicant concentrations; and 2) it allows estimates of measurement error to be 
incorporated into the model and measurement error is implicitly included as imperfect 
correlations among the indicator variables. Measurement error is rarely explicitly considered, yet 
is nearly always present to some extent in data. In the model fitting process unacknowledged 
measurement error can cause problems in the estimation of path coefficients. For example, if 
measurement error is present in an explanatory variable, the residual error variance will contain 
both prediction error and measurement error, and as a result the true strength of the relationship 
between the response and explanatory variables will be underestimated. This underestimation 
of the true strength of the relationship can cause a downward bias in both the unstandardized 
and standardized estimates of path coefficients in the structural model.  The structural (path) 
model describes the causal relationships among the variables in a model. The structural model 
consists of either the paths between latent variables or, in an observed variable model, direct 
relationships among observed variables.  

The utility of the SEM approach showed promise; most of the challenges encountered were 
related to the size of the preliminary dataset.  This was not surprising given the “data hungry” 
nature of the approach.  The major outcome of this investigation was the prospective use of 
confirmatory factor analysis to aggregate multiple endpoints into a single latent variable that 
could then be incorporated into standard non-linear modeling procedures to estimate IC25 
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values. This provides a direct solution to the problem of reconciling divergent ICp estimates 
from individual endpoints. In particular, the confirmatory factor analysis was uniquely able to 
identify endpoints that may not be responding in the same manner as the majority (variables 
with weak and/or non-significant loadings on the latent variable). With this approach the 
toxicologist can determine with confidence whether all of the endpoints are providing equivalent 
information and, if so, develop a single IC25 estimate from the latent variable using standard 
procedures.  The overall goal of this project was to develop analytical methods that could 
incorporate environmental covariates into analyses of toxicological responses and to develop 
cross-site predictive models that could be used to estimate provisional remediation targets 
based on readily measured environmental variables. Models were constructed that linked an 
aggregate species response variable based on two earthworm endpoints, two collembolan 
endpoints, and four northern wheatgrass endpoints to toxicant concentrations and measures of 
soil quality.  These cross-site models are promising, but not ready for implementation in a 
predictive mode. The models successfully explained the aggregate species responses (R2 > 
0.7), but failed many tests of model adequacy (significant χ2, low CFI etc.). A small sample size 
relative to the complexity of the models was a major impediment to the implementation of these 
models. 

Recommendations to improve the validity of three of the Tier 2 alternative approaches were 
made.  Recommendations for standardization of the choice of toxicity endpoints and 
environmental co-variates were made that would improve the utility of these data for these types 
of assessments.  Modifications were recommended to optimize sampling designs to improve the 
utility of the predictive models. 
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1.0 Introduction 

1.1 BACKGROUND 

In Canada, soils contaminated with petroleum hydrocarbons are managed on the basis of four 
hydrocarbon fractions (Canadian Council of Ministers of the Environment [CCME], 2006). Tier 1 
Canada-wide soil standards for each fraction protect ecological receptors exposed via the direct 
contact exposure pathway. If these standards are exceeded by fraction-specific concentrations 
in soil, then the proponent has the option to conduct a Tier 2 assessment to demonstrate that 1) 
the exposure pathway can be excluded; 2) PHC residuals are stable and represent minimal risk 
to soil organisms; or 3) data generated can be used to derive site-specific remedial objectives 
(SSRO) (Alberta Environment, 2010). In practice and in Alberta, Tier 2 ecotoxicological 
assessments are conducted primarily to demonstrate that PHC residuals are stable and 
represent minimal risk to soil organisms. The data from the toxicity assessment must satisfy 
criteria established for different land-use classes. This is called the Tier 2 Pass/Fail approach 
(Alberta Environment, 2007). If a site passes, then no further remediation or action is required.  

However, if the site soils fail to satisfy the criteria, the proponent must select management 
alternatives to mitigate risk or conduct an risk assessment using weight of evidence.  
Alternatively, the data generated from the Tier 2 ecotoxicity assessment can be used to derive 
site-specific remedial objectives (SSROs) to guide future remediation. The current challenge 
facing regulators, assessors, and managers alike is the lack of a framework or process for the 
derivation of these Tier 2 SSROs. 

Currently, there is a provision in the draft Alberta Tier 2 guidance document for development of 
a Tier 2 site-specific remedial objective(s) (SSROs) for PHCs in soil to guide remediation; 
however, to our knowledge and in practice, only the pass/fail approach applied to remediated 
PHC-contaminated soils has been used to date. The current pass/fail process involves a post-
remediation eco-toxicity assessment to demonstrate minimal risk to ecological receptors via the 
soil contact exposure pathway for in situ contamination. Although there is a provision in the 
guidelines for deriving SSROs at Tier 2, there is no process for deriving these clean-up values. 

Depending on the size and complexity of a site, members of the oil and gas industry can pay up 
to $160K for an eco-toxicity assessment of a remediated site with PHC contamination. Should 
the eco-toxicity assessment indicate that the soils on the site do not satisfy the "pass/fail" 
criteria (Alberta Environment, 2007) further remedial activities are required for those soils with 
the hope that they will then pass a second eco-toxicity assessment. Alternatively, a proponent 
might elect to conduct a risk assessment and assess the relative risk of exposure to PHCs in 
soil for ecological receptors and develop risk-based remedial objectives (Tier 3). 
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A typical Tier 2 eco-toxicity assessment of remediated PHC-contaminated site soils generates 
between 11 (minimum requirement) and 36 endpoints, depending primarily on the number of 
species and site soil samples tested, from which an assessment can be made. Should the 
results of the assessment fail to satisfy the Tier 2 pass critieria; there remains in hand a 
sufficient amount of information and data from which we believe a remedial objective can be 
derived. 

The aim of this project was to investigate different potential methods for developing Tier 2 site-
specific remedial objectives. These Tier 2 SSROs would serve as clean-up values that provide 
the same level of protection as the Tier 1 standards, but they would be derived on a site-specific 
basis.  Site-specific conditions and weathering and aging processes influence the bioavailability 
of the PHCs in soil to ecological receptors. Conceivably, the site-specific remedial objectives at 
Tier 2, where there is historical contamination of site soils, would be less stringent, providing 
relief from forced clean up to the Tier 1 standards.  It is important to note that Tier 1 standards 
initially were never intended to serve as clean-up standards. The Tier 2 SSRO derivation 
process under development should overcome some of the current limitations inherent in the 
current Tier 2 pass/fail approach and reduce remedial costs. If accepted and effective, the 
process could impact the current regulatory remediation guidelines. 

1.2 OBJECTIVE(S) 

The specific objectives of this research project are to: 1) investigate three or four different 
approaches that could be used to develop a site-specific remedial objective for lands 
contaminated with petroleum hydrocarbons; and 2) develop the framework for using data 
generated from a Tier 2 ecotoxicological assessment to derive the SSRO(s). 

The project will address, in part, policy data gaps associated with lack of closure mechanism for 
risk-managed sites. In addition, it will address risk assessment cost reduction and mitigate 
remediation costs.  More specifically, the result should be the development of a practical and 
pragmatic approach to using site-specific data for deriving Tier 2 SSROs that are demonstrably 
as protective of ecological receptors exposed to PHCs in soil via the direct contact exposure 
pathway as the Tier 1 standards. 

1.3 SCOPE OF REPORT 

Section 1.0 of this report provides the background information and rationale for the project as 
well as the aims and objectives of the project. Four potential approaches were investigated for 
the derivation of Tier 2 SSROs; a general description of each of these approaches is provided in 
Section 2.0. Section 3.0 provides the methodology and detailed description of the GeoMean 
Response (GMR) approach with a case study provided as an example. The subsequent 
chapters (Sections 4.0, 5.0 and 6.0) provide detailed descriptions of each of the other three 
approaches (DRAMA – Data Reduction and Model Averaging; PLS – Partial Least Squares 
Regression; and SEM – Structural Equation Modeling, respectively) including the methodology 
that was used to develop each approach, investigations into the utility of the method or process, 



CAPP 09-913-50  
ALTERNATIVE PROCESS FOR DEVELOPING TIER 2 SSROS 
Introduction  
September 9, 2013 

cm v:\01221\active\122160069\reports\final_20130909\rpt_122160069_alt-process-tier-2-ssro_fnl-rpt_9sept2013.docx 1.3  

conclusions and recommendations. Section 7.0 summarizes the findings to date and the 
recommendations for future investigations in year 2 of this project. The references (Section 8.0) 
are followed by appendices. The appendices comprise the detailed reports for three of the 
statistical approaches that were investigated for developing Tier 2 SSROs. 
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2.0 Overview of Approaches Investigated for the Derivation of Tier 2 
SSROs 

2.1 GMR APPROACH: DISTRIBUTION OF THE GEOMETRIC MEANS OF THE 
NOAECS1 AND LOAECS2 

An alternative process for deriving SSROs is necessary in order to accurately assess sites that 
fail to satisfy the criteria for Alberta Environment’s Tier 2 pass/fail approach. One of the possible 
alternative approaches for deriving soil clean-up criteria is the use of species sensitivity 
distributions (SSDs) generated with data derived from the “failed” Tier 2 pass/fail ecotoxicity 
assessment. Because site soil contamination levels and toxicity test results are often not 
amenable to regression analyses, we determined the endpoint-specific and species-specific 
NOAECs* and LOAECs† for the site soils using the toxicity data generated from the Tier 2 
ecotoxicity assessment. The geometric mean of these responses (GMR) was then calculated for 
each bounded NOAEC-LOAEC combination for each endpoint and each species. The 
geometric means were ranked and the distribution of the ranks plotted to generate a sensitivity 
distribution. The NOAEC/LOAECs are derived from statistical comparison to a reference control 
site soil. The 25th percentile of the distribution of the ranked geometric means would provide 
fraction-specific remedial objectives for agricultural/residential land uses for these soils, while 
the 50th percentile would provide the remedial objective for commercial/industrial land uses. 
Although there are different ways to generate the distributional data, one was selected in 
consideration of reliability, repeatability, uncertainty, and the degree of conservatism. The 
methods and procedures for implementing this approach are outlined in detail in Section 3.0; a 
summary with recommendations was included. 

2.2 DRAMA APPROACH: DATA REDUCTION AND MODEL AVERAGING 

A second alternative process is also proposed for soils where no clear monotonic exposure 
concentration-response relationship is observed for the biological responses to PHCs in soil. A 
lack of monotonic response to the contaminant(s) of concern (COCs) is often due to the 
influence of confounding factors such as soil texture, organic carbon, organic matter content, 
cation exchange capacity, etc. As a suite, these non-contaminant variables generally co-occur 
across sample locations at a given site, and again, as a suite will induce “noise” or variability in 
the “signal” (biological responses). The influence of this non-contaminant signal can in many 
cases be filtered using a combination of multivariate data exploration, reduction and regression 
methodologies, thus improving the clarity of the biological response signal to the point where an 
exposure concentration-response relationship is observed (Renoux et al., 2012). 

The statistical nature of the soil toxicity test response variables almost always precludes the 
defensible use of typical linear regression methodologies under the assumptions of normality 

                                                
* No observable adverse effect concentration(s) 
† Lowest observable adverse effect concentration(s) 
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and homogeneity of variance. If challenged, these methodologies and any conclusions based 
thereon will fail. Thus, alternative regression models (generalized linear models) that defensibly 
address these issues were used to model the relationships between putative COCs and the 
biological responses after suitable filtering (i.e., data reduction). 

Ordination analysis was used to explore potential explanatory variables for each of the 
biological responses (e.g. each measurement endpoint). Correlations within the different 
classes of analytes (e.g. chemical and non-contaminant and physical pedological variables, 
PAHs, PHCs) were examined. Rank-based Spearman correlations were used to obviate the 
assumption of bivariate normality implicit to the Pearson product-moment correlation. Finally, a 
modeling approach described below was used to distinguish between the strong non-
contaminant structure in the data set and an exposure-concentration response with 
contaminants. The methods and procedures employed sought a balance between the purpose 
of the data modeling (i.e., to test whether the toxicological responses were associated with 
petroleum hydrocarbons) and challenges inherent to the available data. These included the ratio 
of putative explanatory variables relative to the number of experimental units; the co-linearity of 
the soil quality parameters, the distribution of the biological response variation within and among 
soils, and the presence of non-contaminant structure that clearly identifies the differences in soil 
samples on the basis of physico-chemical characteristics. Reduction of data dimensionality was 
undertaken through the creation of heuristic synthetic variables using ordination procedures. 
Further reduction was achieved by examining rank correlation between members of a class of 
analytes (e.g. physico-chemical non-contaminant and pedological variables). The models for 
hypothesis testing of the reduced data set were mixed-effects models for those responses 
approximately normally or transformably normally distributed and generalized linear models for 
non-normal responses. Because the purpose of the models was to test whether the toxicological 
responses were associated with petroleum hydrocarbons, models were built according to the 
following principles: 

• Marginally useful predictors might be retained; 

• Variables that exhibit undue influence might be preferentially selected for manual exclusion; 

• Known toxicological modifying variables might be retained if only marginally significant; and 

• Model distributional assumptions were emphasized. 

Rather than identifying a single “best model”, model averaging procedures were applied in 
recognition of the contributions from individual models and to address model uncertainty.  Given 
a pre-defined unacceptable biological effect level, fitted models that meet to-be-defined criteria 
for adequacy can be used to estimate SSROs at sites for which chemistry data but no biological 
data are available. These predictions may be used to delineate areas requiring remediation / 
cleanup. Statistical techniques could also be used to ensure a specified level of confidence that 
the excluded areas achieve the SSROs, but this is envisioned as beyond scope of this initiative. 
Should the results of this project require validation or verification, such an initiative would be 
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invaluable. The methods and procedures are summarized in Section 4.0 and detailed in the 
report of Appendix A. 

2.3 PLS APPROACH: PARTIAL LEAST SQUARE REGRESSION 

Models predicting various ecotoxicological endpoints resulting from exposure of ecological 
receptors to contaminated soil were developed, by combining multiple predictors in the same 
model through the application of multivariate statistical methods. Since multivariate statistics 
consider many variables simultaneously, they can detect meaningful trends that may not be 
identified by traditional univariate analyses. The objective of this investigation was to develop 
such a model or models using partial least squares (PLS) regression procedures. PLS is a 
multivariate statistical method that can be used to model the relationship between multivariate 
predictor matrix (X) and a response matrix (Y), which could include either single or multiple 
responses. Analogous to simple linear regression models, PLS provides an assessment of the 
strength of the relationship between X and Y (i.e., the percent of variation in Y that can be 
explained in terms of the variation of X), and can also be used as a foundation for predicting the 
“Y values” of future unknown observations based on their known X data (which can be 
measured). By using soil physico-chemical properties, non-exhaustive chemical extraction 
results, and measured bioaccumulation values in the X matrix and either individual toxicity 
endpoints or a matrix of multiple toxicity results as the Y matrix, a multivariate model could be 
constructed that is capable of predicting the relative toxicity of various soils to key ecological 
receptors based on purely physico-chemical measurements. SSROs can be derived then based 
on the distribution of the predicted relative toxicities. The methods and procedures are 
summarized in Section 5.0 and detailed in the report of Appendix B. 

2.4 SEM APPROACH: STRUCTURAL EQUATION MODELING 

Structural Equation Modeling (SEM) is a potential solution for many of the problems 
encountered in the analysis of site-specific toxicological data. The inter-correlated 
environmental variables that are problematic in the current methods used to develop SSROs 
are readily incorporated into a SEM framework (Grace, 2006; Kline, 2011; Lamb et al., 2011). 
Further, SEM provides a natural way to incorporate data for multiple species and endpoints from 
toxicity tests into a single analysis through use of a latent variable (a general concept that is 
indirectly measured through observation of correlated variables). In toxicity testing, the multiple 
species and endpoints are effectively indirect measures of the formally unmeasured concept 
“toxicity” and hence ideal for analysis as a latent variable. Finally, SEM can incorporate 
measurement error (Grace, 2006; Kline, 2011; Lamb et al., 2011) and thus account for 
variability in replicate toxicity tests with the same soils. 

The application of SEM to a range of toxicological datasets was investigated to determine how 
SEM can be used to aggregate multiple species endpoints into a single synthetic variable that 
can then be used in standard nonlinear regression modeling to estimate IC25* and IC50* values; 

                                                
* Inhibitory concentration affecting emergence, growth, or reproduction by 25 percent 
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and, to develop models of toxicological responses that incorporate both contaminant levels and 
environmental covariates. This second approach is a critical step toward the development of 
effective cross-site predictive models of toxicological responses. 

Structural equation models have two components, the measurement model and the structural 
model. The structural model consists of the paths between variables, while the measurement 
model consists of a latent variable and its associated observed indicator variables. A latent 
variable represents a concept or quantity that has not been measured directly, but is rather 
indicated indirectly through one or more observed variables presumed to be highly correlated 
with the latent variable. The focus of this investigation was the relationships among endpoint 
responses as represented by an “aggregate response” latent variable with its associated 
measurement error and the structural model, which describes the causal relationships among 
the variables in the model. Upon construction of the models, based on these relationships, 
covariate models were derived in order to predict “effects” or “impacts” to ecological receptors 
for sites for which toxicity data were either minimal or lacking. Cross-site models were 
investigated with the intent to implement them as predictive models. The methods and 
procedures are summarized in Section 6.0 and detailed in the report of Appendix C. 

 

                                                                                                                                                       
* Inhibitory concentration affecting emergence, growth, or reproduction by 50 percent 
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3.0 GMR Approach: Distribution of the Geometric Means of the 
NOAECs and LOAECs 

3.1 RATIONALE 

Often for Tier 2 pass/fail assessments, the results of an ecotoxicity assessment do not 
monotonically correspond to the contaminant levels in the soils. In other words, the intensity of 
effects does not increase with increasing concentration. For one such site, a Tier 2 Pass/Fail 
assessment revealed high variability in the pass/fail results. Additionally, the soils that failed to 
satisfy the Tier 2 criteria included those with F3 concentrations below the Tier 1 soil standards 
for commercial/industrial land uses (Table 3.1). The site soils were surface soil samples 
collected as composite samples from the site and were considered to be representative of the 
potential hydrocarbon contamination across the site. An alternative approach using species 
sensitivity distributions of the NOAECs and LOAECs was used to derive soil remediation criteria 
for this site for F3, and the NOEC/LOECs were derived from statistical comparison with the 
Control results. 

Table 3.1: CCME reference method Hexane:Acetone extracted PHC concentrations at test 
setup reported as mean mg/kg dry weight in soil ± one standard deviation of the 
mean (n=3) and Tier 2 Pass/Fail Assessment results. 

Guideline Values F1 
(mg/kg) 

F2 
(mg/kg) 

F3 
(mg/kg) 

F4 
(mg/kg) -- 

Com/Ind Fine surface 
soil (AENV, 2010) 320 260 2500 6600 -- 

Res/Ag Fine surface 
soil (AENV, 2010) 210 150 1300 5600 -- 

Soil Type -- -- -- -- Tier 2 Pass / Fail 
Result 

Soil 1-1 14 ± 6 283 ± 23 1967 ± 306 1020 ± 164 
Fail Soil 1-2 <10 220 ± 44 1500 ± 436 780 ± 192 

Soil 1-3 245 ± 332 283 ± 90 1933 ± 551 893 ± 240 
Soil 2-1 317 ± 38 2233 ± 513 2233 ± 551 340 ± 123 

Pass Soil 2-2 237 ± 23 2067 ± 451 2100 ± 500 310 ± 130 
Soil 2-3 273 ± 42 2733 ± 153 2933 ± 115 567 ± 196 
Soil 3-1 <10 207 ± 12 917 ± 59 447 ± 67 

Pass Soil 3-2 <10 513 ± 51 1367 ± 115 527 ± 124 
Soil 3-3 <10 160 ± 46 717 ± 190 360 ± 92 
 

The derivation process followed the precedent set by the 2006 Canadian Council of Ministers of 
the Environment (CCME, 2006) protocol, which used rank species sensitivity analysis. The 
approach used here was a modified version of the CCME approach for deriving the Tier 1 
standards for PHCs in surface soils. For the current CCME guidelines, EC/IC25s (effect or 
inhibitory concentration either affecting 25% of the test species or resulting in an inhibitory effect 
of 25% relative to the control) for the various species were used to generate species-sensitivity 
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distributions (SSDs), from which the direct soil contact values for ecological receptors were 
derived for the different land-use classifications. For this analysis, the geometric mean was 
calculated and used to combine redundant endpoints (single endpoint wet and dry weights). 
Regression procedures were applied to the ranks, and the 25th percentile was used to derive 
soil contact values for agricultural/residential land-use areas; the 50th percentile was used for 
commercial/industrial land-use areas. In order to meet the Weight of Evidence method outlined 
by the CCME, a dataset is required to have ≥10 data points and ≥2 plant and 2 invertebrate 
taxa, and ≥3 studies. 

The present approach modified the CCME precedent such that data from ecotoxicological 
assessments with site soils could be used to construct a SSD that would result in applicable 
remedial objectives for a site. Contaminated site soils are generally not amenable to the 
regression analysis required for E/IC25 calculation as tests with site soils frequently have PHC 
exposure concentrations in a narrow range, elicit a narrow range of toxicological responses (i.e., 
effects), and a wide range of physical-chemical characteristics. It was hypothesized that, by 
determining the NOAECs and LOAECs for contaminant(s) of concern in these soils (F3) and 
then calculating the geometric mean of the paired NOAECs and LOAECs, a SSRO could be 
derived from an SSD constructed from the distribution of the geometric mean values for each 
endpoint. The SSRO would retain a degree of conservatisms yet reflect the reduced risk 
(represented by the site soils passing the Tier 2 Pass/Fail Assessment) of these residual PHCs 
in the site soils. 

3.2 MATERIALS AND METHODS 

Data from a Tier 2 ecotoxicity assessment with 4 plant and 2 invertebrate species, and 8 site 
soil samples and 3 reference control soils failed to satisfy the Tier 2 pass/fail criteria. This data 
set was used to assess the efficacy of the GMR approach. NOAEC/LOAECs for each endpoint 
and F3 were determined for all site soils and endpoints relative to the control test results; the 
geometric mean of both the NOAECs and the LOAECs was determined for each toxicity test 
endpoint using a database comprised of the results for all tested site soils. Then, the geometric 
means for each geomean-NOAEC combination for all soils and geomean-LOAEC combination 
for all soils were determined and plotted by rank sensitivity. The 25th percentile (1153 mg 
F3/kg) and 50th percentile (1405 mg F3/kg) were determined; the 25th percentile provides the 
remedial objective for agricultural/residential land uses for F3 for these soils, while the 50th 
percentile provides the remedial objective for commercial/industrial land uses. 

3.3 RESULTS AND DISCUSSION 

The species sensitivity distribution of the geometric means is presented in Figure 3.1. 
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Figure 3.1: F3 Geomean of the NOEC/LOECs for all site soils and endpoints relative to the Control. 

The 25th percentile (1,153 mg F3/kg) and 50th percentile (1,405 mg F3/kg) were determined; the 
25th percentile provides the remedial objective for agricultural/residential land uses for F3 for 
these soils, while the 50th percentile provides the remedial objective for commercial/industrial 
land uses.  The Tier 1 standard for residential/agricultural lands is represented by the vertical 
red line and that for commercial/industrial is represented by the vertical blue line.  

The potential Tier 2 SSROs for this site using this statistical approach would be 1,153 mg/kg for 
agricultural and residential areas and 1,405 mg/kg in soil for commercial and industrial areas. 
These soil standards are more restrictive than current Tier 1 CWS for PHC fractions in soil 
based on the ecotoxicological data for soil receptors exposed to F3 in soil (Table 3.1). 

3.4 CONCLUSIONS 

The remedial objectives derived using a species sensitivity distribution of toxicity test data for 
soils contaminated with residual PHCs (F3) were lower than current Tier 1 standards for F3 in 
soil, despite several of these soils passing a Tier 2 Pass/Fail Assessment. Thus, this approach 
for developing Tier 2 SSROs was not pursued further because the degree of conservatism in 
the approach remained high. 
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4.0 DRAMA Approach: Data Reduction and Modeling Averaging 

4.1 RATIONALE 

Ecotoxicological assessment of a site may be used to generate site-specific remedial objectives 
(SSROs). However the current challenge facing regulators, assessors, and managers alike is 
the lack of a framework or process for the derivation of these Tier II SSROs.  Some of the 
challenges to constructing a process are due to the interactions between site physical and 
chemical characteristics and toxicity test responses as well as among the site physical and 
chemical characteristics themselves. 

The DRAMA approach in this chapter explores and critically evaluates the data using 
established statistical procedures to assess the relative importance of potential explanatory 
variables as well as the interaction and potential redundancy between and among site physical 
and chemical characteristics.  The latter is addressed through the creation of synthetic variables 
using ordination (Legendre and Legendre, 1998; King and Jackson, 1999).  Correlations 
between site physical/chemical characteristics, synthetic variables, contaminants and toxicity 
tests responses were explored using a suite of ecotoxicologically plausible model structures.  
Due to the nature of the test exposures available, mixed effects models were used to account 
for sub-sample variation (Pinheiro and Bates, 2000) and the non-Gaussian distribution of many 
of the responses was addressed using generalized linear models (McCullagh and Nelder, 
1989). Rather than select a single “best” model, contributions from individual models are 
“averaged” to create a single model using model averaging (Burnham and Anderson, 2002; 
Claeskens and Hjort, 2008). The advantages of doing so are that undue reliance is not placed 
on a single model and that the true model uncertainty is acknowledged rather than ignored. 
Chatfield (1995) comments on the failure of confidence intervals to achieve nominal coverage 
when standard errors are estimated conditionally upon a model that is assumed correct. Bailer 
et al. (2005) discuss the importance of acknowledging model uncertainty in the context of risk 
assessment. 

4.2 MATERIALS AND METHODS 

4.2.1 Available Data and Data Manipulation 

Ecotoxicity assessments were conducted at three sites contaminated with PHCs.  The studies 
are described in detail in Appendix C. Soils in Study 3 were also contaminated with metals. 
Alberta Environment (2007) Tier 2 pass/fail criteria were used to focus remediation efforts 
(Studies 1 and 3) or to determine if environmental risks to ecological receptors were acceptable 
(Study 2).  The suite of toxicity tests and chemical measurements were not consistent among 
studies.  Thus, only the consistently measured toxicity test data were used herein.  These 
include tests with a plant (Elymus lanceolatus), an earthworm (Eisenia andrei), and a springtail 
(Folsomia candida) species. 
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E. lanceolatus toxicity tests were conducted following Environment Canada methods (EC, 
2005b).  Twenty eight (28) distinct soil samples with five seeds per exposure container were 
used for a total of 140 emergence, shoot dry mass and length, root dry mass and length 
observations. E. andrei toxicity tests were conducted following Environment Canada methods 
(EC, 2004). Twenty six (26) distinct soil samples with either 10 or 5 organisms per exposure 
container were used for a total of 230 survival and progeny observations.  As not all E. andrei 
survived, only 130 wet /dry mass observations were available.  F. candida toxicity tests were 
conducted following Environment Canada methods (EC, 2007). Twenty eight (28) distinct soil 
samples with either 3 or 5 organisms per exposure container were used for a total of 126 
survival and progeny observations.  Each toxicity test was conducted on a subsample of soil 
collected from a location with a single vector of explanatory variable measurements.  Each 
response within a location represents a subsample and not a replicate.  The failure to 
acknowledge subsampling will result in statistical tests that are artificially more powerful than 
they should be.  Thus, variation among responses within locations is modelled as a random 
variable. 

The soil variables consistently measured across the three studies are soil moisture, pH, 
conductivity, water holding capacity, total N, total C, inorganic carbon, organic carbon, P, 
organic matter, gravel, sand, very fine sand, fine sand, medium sand, coarse sand, very coarse 
sand, silt, clay and texture.  Each of the three studies is a distinct entity.  Of interest is whether 
the toxicity of total PHCs can be explained across studies.  Thus, “study” was included as a 
potential explanatory variable.  Because there may be variations in how a particular 
independent variable is correlated with a response, interaction terms between “study” and 
selected variables were examined.  Some explanatory variables were measured in soil 
subsamples but these were distributed inconsistently across studies.  Because these 
subsamples were not paired with a specific toxicity test replicate, only a measure of central 
tendency is appropriate to represent these subsamples.  Additionally some measurements 
reflect an analytical laboratory duplicate measurement that cannot be linked to one of the 
subsamples and thus cannot be used as a quality assurance measurement. These laboratory 
duplicate measurements were deleted from the dataset for future analyses. 

The consistently measured contaminant variables were petroleum hydrocarbon fractions (PHC) 
(F1 <C10, F2:C10-C15, F3:C16-C33, F4:C34-C50).  Alberta  Environment (2007) states that 
PHC concentration must be expressed as either the single dominant fraction consistently 
detected above Tier 1 guidelines or the cumulative value of all individual fractions that are 
frequently detected above their respective Tier 1 values (e.g. F2+F3+F4).  Because no single 
fraction was dominant among the three studies, the sum of F2 through F4 PHC fractions was 
used. 

4.2.2 Data Analyses 

Redundancy as measured by covariation among the non-PHC variables consistently measured 
across the three studies listed above was examined using principal components analysis of the 
correlation matrix (Legendre and Legendre, 1998). The categorical variable “texture”, and 
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“organic carbon” and “organic matter content” were excluded, the latter two because the 
analytical methods used also include PHCs.  The matrix of retained explanatory variables was 
multiplied by the ordination eigenvectors to create site-specific scores for each principal 
component.  The scores were considered for use as synthetic explanatory variables in lieu of 
some directly measured explanatory variables.  See Legendre and Legendre (1998) and King 
and Jackson (1999) for details. 

Toxicity test responses were modelled using generalized linear mixed effects models as 
described in Pinheiro and Bates (2000).  The distribution families used included Poisson, 
Gaussian and binomial.  Rather than searching for a single “best fitting” model using one or 
more statistical criterion, an information theoretic approach, model averaging (Burnham and 
Anderson, 2002; Claeskens and Hjort, 2008) was used. Model averaging addresses the 
uncertainty implicit in model selection (Wang et al., 2009). 

Model averaging involved weighting the parameters of multiple models fit to the same data.  
Weights were chosen using an information theoretic approach such as the AICc (second order 
Akaike Information Criterion for small sample sizes) (Sugiura, 1978).  Parameters were 
averaged across the suite of models in which the parameter appears using AICc weights rather 
than shrinkage estimators which include zeros for parameters in models where the parameter 
does not appear.  This latter procedure was avoided because the degree of shrinkage is a 
function of the model structures considered for model averaging.  Unconditional variance 
estimates following Buckland et al. (1997) and Burnham and Anderson (2002) were used in 
Wald tests (Ho: parameter = 0) of model averaged parameter estimates. A measure of relative 
variable importance was measured as the sum of AICc weights over all models including the 
explanatory variable following Burnham and Anderson (2002).  

When model averaging is being considered, the suite of candidate models must be carefully 
selected (Burnham and Anderson, 2002).  Guthery et al. (2005) are particularly vehement on 
this point.  The suite of models considered herein included linear and additive models with a 
random effect to appropriately address the within-sample variation.  Explanatory variables 
included pH, clay, soil moisture the first principal component following ordination of the non-
PHC variables consistently measured over all three studies, the categorical variable “study” 
which indicates each of the studies, interactions between study and other explanatory variables.  
The model structures were driven by the following questions: 

4. What is the relative importance of contaminant and non-contaminant heuristics as 
descriptors of toxicity i.e. the biological responses? 

5. In addition to the soil texture heuristic (PC1), clay, pH and moisture were flagged as major 
sources of variability in the three studies examined.  Are these three variables important 
descriptors of toxicity? 

6. Does the relative importance of PHCs, clay and non-contaminant heuristics vary by study? 

The model suite incorporating these questions is presented below in Table 4.1. 
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Table 4.1: Suite of Linear Models Considered for Model Averaging 
Model # Model Form Model Comment 
Study Effects and Interactions with Studies 

1 Sj1 + Sj*(PHC + PC1 + pH + C2 + M3)4 Global model includes study, interactions between 
study and all 5 putative explanatory variables. 

2 Sj + Sj*(PC1 + pH + C + M) 

As above with subsets of 4 putative explanatory 
variables. 

3 Sj + Sj*(PHC + pH + C + M) 
4 Sj + Sj*(PHC + PC1 + C + M) 
5 Sj + Sj*(PHC + PC1 + pH + M) 
6 Sj + Sj*(PHC + PC1 + pH + C) 
Study Effects Without Interactions 

7 Sj + PHC + PC1 + pH + C + M Study and all 5 putative explanatory variables 
without any interactions. 

8 Sj + PC1 + pH + C + M 

As above with subsets of 4 putative explanatory 
variables. 

9 Sj + PHC + pH + C + M 
10 Sj + PHC + PC1 + C + M 
11 Sj + PHC + PC1 + pH + M 
12 Sj + PHC + PC1 + pH + C 
No Study Effects 
13 PC1 + pH + C + M 

No study effects and all combinations of 4 putative 
explanatory variables. 

14 PHC + pH + C + M 
15 PHC + PC1 + C + M 
16 PHC + PC1 + pH + M 
17 PHC + PC1 + pH + C 
1 - Sj – study, categorical variable, j = 1… 3 
2 - Clay 
3 - moisture  
4 - Main effects corresponding to interaction terms always included. 
 
Finally it is critical to note that model averaging does not imply that the model-averaged 
estimates describe the data “well”; they are simply the estimates “best” supported by the data. 
The ability of the most heavily weighted models to describe the data was examined using 
traditional goodness of fit techniques that are not presented due to the very large number of 
models used (n = 132). Pseudo coefficients of determination (R2 values) estimated following 
Magee (1990) are presented. Statistical analyses were conducted using R (R Development 
Core Team, 2012). Specific libraries containing specialized programming were used. These 
libraries were: 

• MuMIn (Barton, 2012) 

• AICcmodavg (Mazerolle, 2012) 

• nlme (Pinheiro et al., 2010) 

• lme4 (Bates et al., 2011) 

Statistical assumptions for fitted models were assessed either formally or by visually examining 
diagnostic graphics.  No egregious violations were noted. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Data Exploration and Reduction 

The following data reduction exercise used the non-PHC variables consistently measured 
across the three studies listed above, with the exclusion of the categorical variable texture and 
organic carbon and organic matter as the analytical methods used also include PHC 
concentrations in their measures.  A principal components analysis of the correlation matrix is 
presented below in Figure 4.1. 

The first principal component (PC1) describes 50% of total variability in the non-PHC variables 
in studies 1 through 3.  Figure 4.1 describes a contrast between coarse soils (very fine sand 
and coarser) and fine soils with higher nutrient concentrations.  Examination of raw data in the 
context of soil sample scores shows that PC1 is a heuristic for soil particle size with scores 
increasing from finely textured nutrient rich soils to coarser nutrient poor soils. 

The second principal component (PC2, Figure 4.2) describes an additional 25% of total 
variability in the non-PHC variables in studies 1 through 3.  Figure 4.2 describes a contrast 
between clay and coarser sands.  Examination of raw data in the context of soil sample scores 
shows that PC2 separates stations with low clay content and relatively large percentages of 
coarse sand and paradoxically, relatively large concentrations of P and soil moisture, from other 
stations.  It is not clear how this principal component should be interpreted. 
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Figure 4.1: Loadings Plot for First Principal Component using Consistently Measured Non-PHC Variables. 
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Figure 4.2: Loadings Plot for Second Principal Component, using Consistently Measured Non-PHC 

Variables 
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The third principal component (Figure 4.3) describing an additional 11% of total variability 
separates stations with extreme values of high clay content and low pH (study 3, station C5 and 
to a lesser extent C1 from the same study). 

 
Figure 4.3: Loadings Plot for Third Principal Component using Consistently Measured Non-PHC Variables 
 

The first, second and third principal components of the non–PHC variables measured 
consistently across the three studies represent 85% of the total variability in the dataset.  The 
ordination suggests using PC1 scores as a heuristic for soil particle size and concomitants such 
as nutrients with the additional individual variables pH, soil moisture and clay as potential 
explanatory variables in subsequent modelling. 
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4.3.2 Model Averaging 

Although general structural model forms are presented in Table 4.1, vagaries of the biological 
responses precluded modeling random effects in some instances. Also, the response 
distribution used necessarily varies across models. Details of the response-specific models 
used are presented in Table 4.2, below. 

Table 4.2: Details of Measurement Response - Specific Models Used 
Measurement Endpoint Modeling Comments 
Elymus lanceolatus 
emergence 

Logistic models with random effect for sub-samples were used. The limited number of 
seeds (5) per exposure container limits the range to 20% increments.  

Elymus lanceolatus root and 
shoot dry mass and length Gaussian models with random effect for sub-samples were used. 

Eisenia andrei survival Only one study with less than 50% survival and 16/26 soils with complete survival.  No 
modeling was conducted. 

Eisenia andrei progeny 
9 / 26 soil samples with no progeny results in no within-soil variability.  Thus random 
effects within soils were not estimated.  The within-soil counts were aggregated using 
medians and the subsequent data were modeled using Poisson regression.  

Eisenia andrei progeny wet / 
dry mass 

Due to mortality, the progeny wet and dry mass data are sparse.  Only one 
observation was available for plot 4-2, Study 3 and was deleted. One negative wet 
mass was deleted.  Due to this weak data structure some of the more complicated 
models presented in Table 4.1 failed to converge.  These models were omitted from 
the model averaging procedure. Gaussian models with random effect for sub-samples 
were used.  

Folsomia candida survival Logistic models with random effect for sub-samples were used. 
Folsomia candida progeny Large progeny numbers induced a Gaussian distribution. Gaussian models with 

random effect for sub-samples were used. 
 
Summary criteria for response–specific models such that sum of AICc weights (wi) is > 0.95 are 
presented Table 4.3. 

Table 4.3: Summary of the Model Averaging Results 

Response Model Degrees of 
Freedom 

Log 
Likelihood AICc wi Pseudo R2 

Elymus lanceolatus 

Shoot Dry Mass 
2 17 -204.752 448.520 0.947 0.840 
1 20 -203.613 454.285 0.053 0.843 

Shoot Length 6 17 -553.625 1146.266 1.000 0.865 

Root Dry Mass 
1 20 -118.216 283.492 0.924 0.744 
4 17 -124.738 288.493 0.076 0.719 

Root Length 

4 17 -630.086 1299.189 0.261 0.702 
15 7 -642.218 1299.284 0.249 0.645 
16 7 -642.403 1299.654 0.207 0.644 
10 9 -640.982 1301.348 0.089 0.652 
13 7 -643.742 1302.333 0.054 0.638 
11 9 -641.494 1302.372 0.053 0.649 
7 10 -640.730 1303.165 0.036 0.653 
9 9 -641.982 1303.349 0.033 0.647 
1 20 -628.717 1304.492 0.018 0.708 
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Table 4.3: Summary of the Model Averaging Results 

Response Model Degrees of 
Freedom 

Log 
Likelihood AICc wi Pseudo R2 

Emergence 
13 6 -18.142 48.916 0.883 0.941 
8 8 -17.934 52.968 0.117 0.941 

Eisenia andrei 

Progeny 

16 5 -48.528 110.057 0.433 <0.010 
14 5 -48.714 110.428 0.359 <0.010 
11 7 -45.803 111.828 0.179 <0.010 
9 7 -47.614 115.450 0.029 <0.010 

Wet Mass 

13 7 -450.491 916.102 0.153 0.036 
15 7 -450.537 916.194 0.146 0.035 
17 7 -450.605 916.330 0.136 0.034 
16 7 -450.660 916.440 0.129 0.033 
8 9 -448.498 916.832 0.106 0.071 
10 9 -448.505 916.848 0.105 0.070 
12 9 -448.535 916.907 0.102 0.070 
14 7 -451.553 918.226 0.053 0.017 
11 9 -449.622 919.081 0.034 0.051 
7 10 -448.414 919.097 0.034 0.072 

Dry Mass 

10 9 -256.573 532.946 0.214 0.187 
12 9 -256.650 533.100 0.198 0.186 
8 9 -256.716 533.232 0.186 0.185 
15 7 -259.901 534.900 0.081 0.136 
16 7 -259.987 535.073 0.074 0.135 
13 7 -260.008 535.114 0.073 0.134 
7 10 -256.539 535.299 0.066 0.187 
11 9 -257.898 535.595 0.057 0.167 
17 7 -260.356 535.811 0.051 0.129 

Folsomia candida 

Survival 

17 6 -161.480 335.667 0.408 0.964 
15 6 -161.597 335.901 0.363 0.964 
16 6 -162.938 338.581 0.095 0.964 
10 8 -161.348 339.926 0.048 0.965 
12 8 -161.563 340.357 0.039 0.964 
11 8 -162.052 341.335 0.024 0.964 
9 8 -162.117 341.465 0.022 0.964 

Progeny 

6 17 -881.163 1801.992 0.488 0.715 
3 17 -881.673 1803.013 0.293 0.713 
2 17 -882.428 1804.523 0.138 0.709 
5 17 -882.957 1805.581 0.081 0.707 

 
The results for E. andrei (Table 4.3) illustrate the fallacy in relying on AICc weights that, by 
definition, range from 0 to 1 and correspond to models that are not useful descriptors of the 
data.  The E. andrei responses were not predictable given the explanatory variables considered 
and are not further discussed. 
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The results in Table 4.3 also show that, for some of the responses, the AICc criterion heavily 
weights one or two models.  Burnham and Anderson (2002) suggest that, unless wi  ≥ 0.9, 
alternative explanations offered by the data analyses should be considered.  In the table above 
the only single model interpretation is for Elymus lanceolatus shoot length. 

Models 2, 8 and 13 that do not include a PHC variable are heavily supported by E. lanceolatus 
shoot dry mass and emergence results.  No obvious patterns in importance of study or 
interactions with study are apparent.  

The relative importance of variables was assessed using model averaged coefficients and p-
values for Wald tests of significance for each parameter within a model.  P-values are colour 
coded according to generally accepted (but arbitrary) ranges.  These are: dark green, p-value ≤ 
0.01; light green, 0.01 ≤ p-value < 0.05; and yellow, p-value ≥ 0.05 (Table 4.4). 
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Table 4.4: Wald Tests of Significance for Model Averaged Parameters 

 E. lanceolatus F. candida 

 Shoot Dry Mass Shoot Length Root Dry Mass Root Length Emergence Survival Progeny 
Variable Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) 
Intercept -4.024E+01 0.001 -5.208E+02 0.001 -3.213E+00 0.696 3.620E+02 0.202 1.223E+00 0.495 6.272E-01 0.897 -1.293E+04 <0.001 
S2 5.108E+01 0.007 1.069E+03 <0.001 -6.381E+00 0.594 -3.457E+02 0.434 -2.162E-01 0.752 4.601E-02 0.992 2.084E+04 <0.001 
S3 3.280E+01 0.018 6.371E+02 <0.001 8.264E+00 0.372 -2.314E+02 0.493 -6.628E-02 0.923 -7.779E-01 0.864 1.228E+04 0.002 
PC1 1.922E+00 0.015 1.291E+01 0.125 -6.911E-02 0.878 -1.705E+01 0.388 -7.043E-02 0.096 -3.244E-01 0.020 -1.860E+02 0.299 
PHC -3.393E-05 0.865 -3.637E-03 0.044 -3.447E-04 0.002 -5.148E-03 0.458 -1.339E-05 0.479 -7.794E-05 0.008 -5.070E-02 0.233 
pH 3.146E+00 0.123 7.214E+01 0.000 1.673E+00 0.199 -7.016E+00 0.803 -1.188E-01 0.569 4.126E-01 0.546 1.777E+03 0.000 
C 5.183E-01 0.028 1.597E+00 0.589 -2.225E-01 0.124 -6.790E+00 0.470 -3.317E-03 0.707 -4.584E-02 0.150 2.547E+01 0.672 
M 2.981E-01 0.155 9.759E-01 0.792 -6.172E-02 0.693 -3.911E+00 0.381 -1.974E-02 0.039 1.711E-02 0.696 -3.157E+00 0.962 
PC1:S2 -2.749E+00 0.001 -3.018E+01 0.001 -1.944E-01 0.697 2.002E+01 0.448 -3.197E-01 0.472 3.558E-01 0.771 2.185E+02 0.276 
PC1:S3 -2.761E+00 0.001 -1.789E+01 0.052 -5.664E-01 0.253 1.180E+01 0.651 -5.861E-01 0.171 5.561E-01 0.646 2.045E+02 0.317 
pH:S2 -5.293E-01 0.855 -1.216E+02 <0.001 2.070E+00 0.277 8.625E+01 0.405 -8.224E-01 0.580 -4.854E+00 0.316 -2.596E+03 0.001 
pH:S3 -8.288E-01 0.692 -6.533E+01 0.001 -1.465E+00 0.274 -2.503E+01 0.762 -8.957E-01 0.407 -5.633E+00 0.072 -1.634E+03 0.001 
C:S2 -8.630E-01 <0.001 -3.331E+00 0.270 4.003E-02 0.791 1.541E+01 0.055 -5.844E-02 0.646 -6.064E-02 0.869 -1.184E+01 0.851 
C:S3 -4.869E-01 0.041 -2.733E+00 0.359 2.147E-01 0.142 1.487E+01 0.057 -8.892E-02 0.470 -1.236E-01 0.727 -6.827E+00 0.912 
M:S2 -1.009E+00 0.002 -2.606E+00 0.670 -3.640E-01 0.128 8.231E+00 0.404 -5.060E-02 0.754 -3.073E-01 0.592 -2.393E+01 0.830 
M:S3 -4.152E-01 0.051 -7.537E-01 0.842 -6.452E-02 0.683 4.766E+00 0.453 -4.726E-02 0.662 -9.979E-02 0.798 -6.535E+00 0.923 
PHC:S2 1.814E-04 0.535 -1.730E-03 0.499 2.516E-04 0.115 4.242E-03 0.573 8.057E-05 0.817 -2.058E-04 0.621 9.178E-02 0.123 
PHC:S3 4.969E-06 0.980 2.097E-03 0.251 3.648E-04 0.001 1.518E-02 0.005 5.981E-05 0.811 -1.184E-04 0.656 4.645E-02 0.281 
 
Dark green, p-value ≤ 0.01; light green, 0.01 ≤ p-value < 0.05; and yellow, p-value ≥ 0.05 
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The presence of significant interactions between study and at least one biological response for 
every explanatory variable illustrates that the effects of the variables examined differ among 
sites precluding simple summary statements.  Total PHC concentrations were significantly 
correlated with at least one toxicity test metric for each species studied, but not all metrics.  Of 
the four explanatory variables examined, PC1 and total PHCs were most frequently significantly 
correlated with at least one toxicity test metric.  Examination of raw data in the context of soil 
sample scores showed that the large positive scores represent the coarse grained soils low in 
nutrient soils whereas the large negative first principal component scores represent the soils 
with fine-grain textures that are higher in nutrients.  Thus, the two statistically significant 
negative interaction coefficients show that as soils become coarser and poorer in nutrients, E. 
lanceolatus shoot length and dry mass are adversely affected.  As only the main effect of PC1 is 
statistically significant for E. lanceolatus emergence and F. candida survival, the negative main 
effects show that increasing coarseness and decreasing nutrients is negatively correlated with 
these two metrics.  This observation may reflect either a soil texture/nutrient effect or increased 
bioavailability of hydrocarbons.  The interpretation of total PHC coefficients is less consistent 
because E. lanceolatus shoot length and emergence and F. candida survival were adversely 
affected whereas E. lanceolatus root dry mass was positively correlated with total PHCs in at 
least Study 3. These model-averaged results using data from three studies show that the 
observed responses are partially or primarily driven by edaphic variables. 

The relative importance of variables was also assessed by summing the AICc weights for a 
model in which a parameter occurs.  Note that this approach is only valid if each variable 
appears the same number of times across the suite of models being compared.  Examination of 
the main effects in Table 4.1 shows that each parameter appears 14 times. 

The results in Table 4.5 show the relative importance of a variable as a correlate of a biological 
response over the suite of 17 models assessed.  For example the importance of PC1 as a 
correlate of E. lanceolatus shoot dry mass was 1 whereas the relative importance of total PHCs 
was only 0.055.  The relative importance may be averaged over the biological responses 
conducted over three sites to assess the relative importance of the explanatory variables on a 
broader geographic scale.  In this ranking, the edaphic variables clay, pH, moisture, and the soil 
texture/nutrient heuristic PC1 are relatively more important than total PHCs in describing the 
biological responses. 

PHC toxicity can be affected by bioavailability (Wong et al., 1999; Semple et al., 2003 and 
Paton et al., 2005).  The synthetic variable PC1, clay, pH and soil moisture were assessed as a 
correlates of cyclodextrin-extracted hydrocarbon fractions (2, 3 and 4, and their sum) that were 
measured in Study 3 using Spearman rank correlations.  The null hypothesis tested was that the 
Spearman rank correlation is 0 for each of the comparisons against the alternative hypothesis 
that correlations were greater than 0.  The only null hypothesis rejected was for the synthetic 
variable PC1 (Spearman rank correlation = 0.643; p-value < 0.0001) suggesting that PC1 may 
be a heuristic for bioavailability. 
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Table 4.5: Relative Importance of Explanatory Variables 

Variable 
E. lanceolatus F. candida 

Mean Shoot Dry 
Mass 

Shoot 
Length 

Root Dry 
Mass 

Root 
Length Emergence Survival Progeny 

Study 1.000 1.000 1.000 0.499 0.117 0.147 1.000 0.680 
Clay 1.000 0.999 1.000 0.750 1.000 0.884 0.920 0.936 
pH 1.000 0.997 0.927 0.427 1.000 0.601 1.000 0.850 
Moisture 1.000 0.027 1.000 0.982 1.000 0.566 0.517 0.727 
PC1 0.999 1.000 0.978 0.964 1.000 0.965 0.710 0.945 
PHC 0.055 1.000 0.987 0.929 0.000 0.998 0.864 0.690 
 
Model averaging has been criticized as being a glorified sensitivity analysis or a data mining 
exercise rather than a thoughtful consideration of hypotheses (Guthery et al., 2007).  This 
criticism is not relevant herein as the model structures were constructed to assess plausible 
specific hypotheses regarding practical application of soil toxicity tests in ecotoxicity 
assessments.  One advantage of model averaging is that the bias in standard errors conditional 
upon a model that is assumed correct leads to overstated achieved levels of significance in 
hypothesis testing is obviated (Chatfield, 1995).  Bailer et al. (2005) emphasize the desirability 
of acknowledging model uncertainty in risk assessment. Model averaged estimates directly 
include this model uncertainty in the estimated parameter standard errors (Buckland et al., 
1997; Burnham and Anderson, 2002) that are used to test hypotheses to achieve the stated 
levels of significance. A less obvious advantage is that the uncertainty in model selection is 
acknowledged through the inclusion of model terms that may not appear in a single “best” fitting 
model which can have important practical consequences. 

In a Tier II risk assessment or site remediation context, the implications between using a single 
“best” fitting model or an average of plausible models weighted by the support the data gives to 
each model can affect management decisions regarding, for example, which site rehabilitation 
option occurs, if any, or the applicability of estimated remediation objectives.  Consider for 
example, the two models with the highest data support for northern wheatgrass emergence or 
root length.  The two “best” fitting models for each measurement endpoint vary only with respect 
to inclusion of terms that allow the response to vary by study or not.  The single “best” fitting root 
length model suggests that effects of root lengths vary by site whereas the single “best” fitting 
emergence model for the same species suggests that there is no effect of site on emergence.  
Under the assumption that each “best” fitting model represent the two models are mutually 
implausible. The typical data analyst uses only coefficients of determination to choose among 
models. The wheatgrass emergence coefficients of determination are identical to the third 
decimal and so it is not clear which single model should be chosen.  A more sophisticated data 
analyst might invoke the principle of parsimony to choose the model with fewer degrees of 
freedom.  Again for the northern wheatgrass emergence results, there is little difference in the 
degrees of freedom among the two most heavily weighted models which precludes an obvious 
“choice”.  In this case there is a degree of subjectivity among model choices.  The subjectivity 
may have important implications as it affects applicability of the model should remediation 
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targets based on wheatgrass emergence (after adjustment for the PC1 synthetic variable, clay 
and moisture) be the same for all three sites or should they vary.   

Rather than making subjective or less than obvious decisions regarding model applicability and 
by extension remediation objectives, model averaging allows the data to “speak” by providing a 
measure of support for each ecotoxicologically plausible model.  The degree of support for each 
model allows for an objective synthesis of models.  In the case of the wheatgrass emergence 
and root length data examined, model averaging reconciles the contradicting interpretations 
following the choice of single best fitting models for each measurement endpoint. 

The study also illustrates the importance of non-contaminant soil quality variables such as the 
PC1 heuristic for grain size and specific edaphic variables relative to PHCs  with respect to 
explaining the biological test variability.  None of data supported only PHCs as a correlate of 
biological test responses and northern wheatgrass emergence over three studies was best 
described by non-contaminant variables.  Using model averaging and the suite of candidate 
models the average relative importance of the putative explanatory variables is considered.  
Although the average importance of PHC as an explanatory variable was higher than the effect 
of study, the most important variable overall was the PC1 grain size heuristic followed by clay.  
The “importance” of non-contaminant variables may be due to induced effects on bioavailability, 
if cyclodextrin-extracted fractions measure bioavailability. 

The model averaging and individual model results suggest that non-contaminant variables be 
considered in the estimation of Tier II SSROs.  The finding corroborates Efroymson et al. (2004) 
who state “Existing toxicity data are not sufficient to establish broadly applicable TPH ecotoxicity 
screening benchmarks with much confidence, even for specific mixtures”.  The detailed report 
for the ERM approach by Zajdlik et al. 2013 is provided as a draft in Appendix A. 
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5.0 PLS Approach: Partial Least Squares Regression 

5.1 RATIONALE 

PLS is a multivariate statistical method that can be applied to model the relationship between a 
multivariate predictor matrix (X) and a response matrix (Y). Analogous to simple linear 
regression models, PLS provides an assessment of the strength of the relationship between X 
and Y (i.e., the percent of variation in Y that can be explained in terms of the variation of X), and 
can also be used as a foundation for predicting the ‘Y-values’ of future unknown observations 
based on their known X-data (which can be measured). 

The purpose of this initiative was to determine whether PLS modeling could be applied to 
predict individual traditional toxicological endpoints from multivariate soil property information 
(including physical properties and contaminant concentrations).  Therefore, a preliminary 
examination of a dataset (Study 3 – description is provided in Appendix C) was selected to 
provide an initial indication of the utility of this approach.  Study 3 was selected because 
contaminant concentrations and organism responses were generally highest in this study which 
should provide more information for model development. 

5.2 MATERIALS AND METHODS 

One of the first steps in determining how this technique could be applied was to examine a 
dataset for which the parameter data were complete (Study 3). The earthworm (Eisentia andrei) 
endpoints were selected as a starting point because contaminant concentrations and organism 
responses were generally complete for this study. The results for this preliminary assessment 
were summarized in the interim draft report (November 11, 2012).  The analyses of the results 
for the toxicity tests with red clover, barley, northern wheatgrass and the soil arthropod, Folsomi 
candida, have now been completed and summarized in the corresponding subsection 5.3 
below. 

Study 3 comprises data and information relating to an ecotoxicity assessment completed as part 
of a field study to support a Tier 2 assessment of soils from a site. The main objective was to 
determine if the site soil samples would satisfy the Tier 2 pass/fail criteria in order to focus 
remediation efforts on the areas of greatest concern and to exclude from further consideration 
areas with soils that were not hazardous. The site soils were contaminated with petroleum 
hydrocarbons, and metals, including boron, copper, lead, and zinc. After initial (Phase 1) testing, 
two issues critical to the ecotoxicity assessment were identified. Characterization of the site 
soils and the reference control soils suggested that the control, which was from a small 
agricultural hay field/ungrazed tame pasture mix, was not representative of the majority of the 
upland areas nor representative of previous, future or adjacent land uses (upland forest and/or 
tame pasture).  Secondly, some of the petroleum hydrocarbon (PHC) contaminated site soils 
that did not satisfy the Tier 2 pass/fail criteria were co-contaminated with concentrations of 
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metals (lead, zinc, boron, and copper). Therefore, a Phase 2 toxicity assessment with the 
reference control soil from Phase 1 ecotoxicity testing and two new reference control soils, as 
well as a PHC and metals contaminated site soil from Phase 1 testing, and the same 
contaminated site soil mock-thermally desorbed of PHCs, was conducted with a reduced 
species battery comprised of one plant, one earthworm, and one soil arthropod species to 
assess the test organism performance in these soils. Seven soil samples with F3 contamination 
ranging between 3650 and 33900 mg kg-1 and one control sample were collected with three to 
five replicates of each species endpoint per sample. Additional soil samples were collected from 
this site, but did not include species endpoint data suitable for inclusion in the cross-site 
analysis. 

PLS regressions, using the NIPALS PLS algorithm (Vendeginste et al., 1998), were constructed 
using a matrix of measured soil characteristics as the ‘X’ matrix of multiple predictors and each 
of the ecotoxicity test endpoints as a separate ‘Y’ (response) matrix. 

PLS models were cross validated using leave-one-class-out cross validation (LOCOCV) and the 
number of components that maximized the internally cross-validated R2Y value (reported as 
Q2Y) was selected as the number of components for each final PLS model. For each PLS 
model, the explained variation of X and Y (R2X and R2Y) were reported to indicate how well the 
model fit the training data (Eriksson et al., 2006) and Q2Y was reported as a preliminary 
measure of the predictive ability of the model (Varmuza and Filzmoser, 2009; Hawkins et al., 
2003; Cramer, 1993). In addition, the significance of each PLS model was estimated through 
response permutation testing (Eriksson et al., 2006). 

Statistical significance was assessed at α ≤ 0.05. Means were reported as the mean value ± 
standard error. Multivariate statistics (PCA and PLS) and permutation tests were performed in R 
(R Development Core Team, 2009) using the Chemometrics package (Filzmoser and Varmuza, 
2010). 

5.3 RESULTS AND DISCUSSION 

5.3.1 PLS Predictions of the Number of Earthworm Progeny Produced 

An initial data analysis using the complete dataset (all soils) of Study 3 indicated that no 
statistically significant model could be constructed between the soil properties and number of 
earthworm progeny produced (p=0.61 for ‘best’ model based on ‘leave one class out cross-
validation’ (LOCOCV) and permutation testing). However, a review of the cross-validated model 
predictions showed that only the values from soil 4-3 were poorly predicted (Figure 5.1) when 
soil 4-3 was left out of the model development. A close examination of the physical and 
chemical properties of soil 4-3 revealed that the profile of PHC contamination in soil 4-3 differed 
dramatically from that for the other soils. Specifically, the proportion of total contamination from 
F1 and F2 were several orders-of-magnitude higher for soil 4-3. Negative values are possible 
with any regression model; the fact that values are negative tells us that 1) the model fits poorly 
(seems to be the case with low R-square); 2) there is insufficient data support for one set of 
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variables (F1 and F2 fractions are higher for this location and study 3 soils were co-
contaminated with metals); 3) a model or procedure exists that lacks robustness; 4) there are 
missing important variables; or 5) some combination of all of the above.   

 
Figure 5.1: Actual number of progeny produced plotted against predictions for each class based on ‘leave 

one class out’ cross validation. 
Error bars represent standard error of the mean. Labels indicate the soil treatment represented. 

It appears that in the absence of other soils with similar characteristics in the model, it was not 
possible to accurately predict the number of earthworm progeny that would be produced in soil 
4-3 using the results from the other soils. Therefore, construction of the model was completed 
with soil 4-3 excluded. In this case, it was possible to construct a statistically significant model 
(p<0.0025, based on LOCOCV and permutation testing) with a reasonably high goodness of fit 
(indicated by Q2Y=0.42). The LOCOCV cross-validated predictions for this model are shown in 
Figure 5.2. 
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Figure 5.2: Actual number of progeny produced plotted against predictions for each class based on ‘leave 

one class out’ cross validation. 
Error bars represent standard error of the mean. Labels indicate the soil treatment represented. 

Since cross-validation and permutation testing suggested that exclusion of soil 4-3 for the 
progeny production endpoint allowed for the construction of a meaningful model, aspects of this 
model were then explored further. Specifically, variable importance in projection (VIP) values 
were calculated in order to determine which variables contributed most to the predictive model. 
Variables with top 20 VIP values are shown in Table 5.1. 

 
Table 5.1: VIP values for PLS model predicting earthworm number of progeny using 'Study 3' 

results with soil 4-3 excluded. 
Variable VIP 
Total Carbon 1.52 
Total Nitrogen 1.49 
Soil Moisture 1.37 
Total Xylenes 1.33 
Salt Magnesium 1.32 
Sodium Adsorption Ratio 1.30 
Salt Chloride 1.26 
Total PHC 1.24 
Hydrometer Silt 1.24 
Salt Calcium 1.23 
CCME Coarse 1.23 
Ammonia 1.23 
Total Sulphur 1.23 
F4G 1.19 
Toluene 1.17 
F4 1.17 
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Table 5.1: VIP values for PLS model predicting earthworm number of progeny using 'Study 3' 
results with soil 4-3 excluded. 

Variable VIP 
Arsenic 1.13 
Hydrometer Clay 1.12 
pH 1.09 
Salt Sodium 1.09 
Bold values denote values associated with soil contaminants  
VIP – variable importance in projection 
 
It is interesting to note that of the top 20 VIP variables in the model, the majority of them are 
physical properties of the soil rather than contaminant values which are in bold.  This is the 
same conclusion reported for the DRAMA approach. 

5.3.2 PLS Predictions of the Dry Mass of Earthworm Progeny 

The same analysis was repeated using dry mass of earthworm progeny as the predicted 
variable. As above, soil 4-3 was identified as an outlier, and the analysis was repeated with soil 
4-3 results excluded. This model was less significant and had a lower ‘goodness of fit’ in 
comparison to the above model (Q2Y=0.25, p=0.03, see LOCOCV predictions in Figure 5.3). 

 
Figure 5.3: Actual progeny dry mass produced plotted against predictions for each class based on ‘leave 

one class out’ cross validation. 
Error bars represent standard error of the mean. Labels indicate the soil treatment represented. 

VIP values for the progeny dry mass model are provided in Table 5.2. Once again, the majority 
of the most important predictive variables appear to be soil physical properties. The contaminant 
values are highlighted in bold script. 
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Table 5.2: VIP values for PLS model predicting earthworm progeny dry mass using 'Study 3' 
results with soil 4-3 excluded. 

Variable VIP 
Conductivity 1.48 
Salt Calcium 1.42 
Total Nitrogen 1.42 
Soil Moisture 1.41 
Electrical Conductivity 1.41 
Salt Sulphate 1.40 
Total Sulphur 1.39 
Gravel 1.31 
F1 1.23 
Elemental Sulphur 1.21 
Salt Magnesium 1.19 
Hydrometer Sand 1.14 
Hydrometer Clay 1.11 
F4 1.09 
Hydrometer Silt 1.09 
Cyclodextrin Fraction 2 1.08 
F4G 1.08 
F3 1.07 
Nickel 1.06 
Clay 1.06 
Bold values denote values associated with soil contaminants 
VIP – variable importance in projection 
 

5.3.3 PLS Prediction of Organism Responses 

Following the initial ‘proof of concept’ presented above for the earthworm toxicity test results, 
PLS regressions were also used to determine the strength of the relationships between 
multivariate soil property information and the remaining soil ecotoxicity endpoints (earthworm, 
collembola, and plant endpoints) using the results from Study 3 only. Model parameters for each 
of the fitted models are presented in Table 5.3. Graphs of the ‘actual vs. predicted’ results for 
the cross-validated models are presented in Table 5.4 (earthworm), Table 5.5 (collembola), and 
Table 5.6 (plants). 
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Table 5.3: Parameters of fitted PLS models using multivariate soil property information* 

Y-variable No. of 
components Q2Y R2X R2Y P Sign. Diff. 

EARTHWORM ENDPOINTS 
Number of progeny produced 1 <0 53.8 49.4 0.61  
Dry  mass of progeny (mg) 1 <0 53.9 46.04 0.61  
Collembola endpoints       
Adult Survival (%)  1 36.7 57.0 60.3 0.0075 ** 
Number of progeny produced 1 32.4 56.9 39.7 0.005 ** 
PLANT ENDPOINTS 
BA_emergence 1 <0 14.5 28.5 0.36  
BA_root dry mass 1 <0 53.4 48.6 0.085  
BA_root length 1 27.8 53.0 63.3 0.01 * 
BA_shoot dry mass 1 26.5 52.3 68.0 0.01 * 
BA_shoot length 10 24.5 100 93.84 0.01 * 
NWG_emergence 1 <0 53.9 33.2 0.055  
NWG_root dry mass 1 7.26 53.5 57.1 0.0275 * 
NWG_root length 1 26.0 53.9 54.6 0.0125 * 
NWG_shoot dry mass 1 56.7 53.9 61.9 0.0025 ** 
NWG_shoot length 1 48.6 52.2 66.5 0.0025 ** 
RC_emergence 1 <0 52.5 60.9 0.48  
RC_root dry mass 1 79.7 54.2 85.0 <0.0025 ** 
RC_root length 3 80.5 81.0 90.1 <0.0025 ** 
RC_shoot dry mass 1 76.0 54.1 86.3 0.005 ** 
RC_shoot length 1 66.2 53.7 85.5 0.0025 ** 
* Including physical properties and contaminant concentrations as the ‘X’ matrix, and individual traditional ecotoxicity responses 
(from earthworm, collembola, or plant toxicity tests) as the ‘Y’ (response) matrix. Asterisks indicate the statistical significance of 
models (based on 400-fold permutation testing; * p < 0.05, ** p < 0.01).  Highlighted values indicate significant differences at p≤0.05. 
 
BA – barley; NWG – northern wheatgrass; RC – red clover 
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Table 5.4: Average predictions of y-values (𝒚�𝒊) for earthworm endpoints* 

Y-variable Cross-validated predictions No. of 
Components Q2Y R2X R2Y P 

EARTHWORM ENDPOINTS 
Number of progeny 
produced 

 

1 <0 53.8 49.4 0.61 

* Given the multivariate soil property profile for soil by the PLS model derived during the leave one class out cross-validation 
(LOCOCV) procedure with soil i omitted for PLS models with optimized number of components. Error bars represent the standard 
error of the mean of the observed data. Model characteristics from Table 5.3 are also provided for information purposes. 
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Table 5.4: Average predictions of y-values (𝒚�𝒊) for earthworm endpoints* 

Y-variable Cross-validated predictions No. of 
Components Q2Y R2X R2Y P 

Dry mass of progeny 
(mg) 

 

1 <0 53.9 46.04 0.61 

* Given the multivariate soil property profile for soil by the PLS model derived during the leave one class out cross-validation 
(LOCOCV) procedure with soil i omitted for PLS models with optimized number of components. Error bars represent the standard 
error of the mean of the observed data. Model characteristics from Table 5.3 are also provided for information purposes. 
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Table 5.5: Average predictions of y-values (𝒚�𝒊) for springtail endpoints* 

Y-variable Cross-validated predictions No. of 
components Q2Y R2X R2Y P 

COLLEMBOLA ENDPOINTS 
Adult Survival (%) 

 

1 36.7 57.0 60.3 0.0075 

Number of progeny 
produced 

 

1 32.4 56.9 39.7 0.005 

* Given the multivariate soil property profile for soil by the PLS model derived during the leave one class out cross-validation 
(LOCOCV) procedure with soil i omitted for PLS models with optimized number of components. Error bars represent the standard 
error of the mean of the observed data. Model characteristics from Table 5.3 are also provided for information purposes. 
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Table 5.6: Average predictions of y-values (𝒚�𝒊) for plant endpoints** 

Y-variable Cross-validated predictions No. of 
components Q2Y R2X R2Y P 

PLANT ENDPOINTS 
BA_emergence 

 

1 <0 14.5 28.5 0.36 

BA_root dry mass 

 

1 <0 53.4 48.6 0.085 

BA_root length 

 

1 27.8 53.0 63.3 0.01 

                                                
* Given the multivariate soil property profile for soil by the PLS model derived during the leave one class out cross-
validation (LOCOCV) procedure with soil i omitted for PLS models with optimized number of components. Error bars 
represent the standard error of the mean of the observed data. Model characteristics from Table 5.3 are also 
provided for information purposes. 
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Table 5.6: Average predictions of y-values (𝒚�𝒊) for plant endpoints** 

Y-variable Cross-validated predictions No. of 
components Q2Y R2X R2Y P 

BA_shoot dry mass 

 

1 26.5 52.3 68.0 0.01 

BA_shoot length 

 

10 24.5 100 93.84 0.01 

NWG_emergence 

 

1 <0 53.9 33.2 0.055 
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Table 5.6: Average predictions of y-values (𝒚�𝒊) for plant endpoints** 

Y-variable Cross-validated predictions No. of 
components Q2Y R2X R2Y P 

NWG_root dry mass 

 

1 7.26 53.5 57.1 0.0275 

NWG_root length 

 

1 26.0 53.9 54.6 0.0125 

NWG_shoot dry mass 

 

1 56.7 53.9 61.9 0.0025 
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Table 5.6: Average predictions of y-values (𝒚�𝒊) for plant endpoints** 

Y-variable Cross-validated predictions No. of 
components Q2Y R2X R2Y P 

NWG_shoot length 

 

1 48.6 52.2 66.5 0.0025 

RC_emergence 

 

1 <0 52.5 60.9 0.48 

RC_root dry mass 

 

1 79.7 54.2 85.0 <0.0025 

C1

2-1
2-23-13-2

4-1

4-2

4-3
0

50

100

150

200

0 100 200

Pr
ed

ic
te

d 
y-

va
lu

e

Actual y-value

C1

2-1
2-23-1 3-2

4-1

4-2

4-3

0

50

100

150

200

0 100 200

Pr
ed

ic
te

d 
y-

va
lu

e

Actual y-value

C1

2-1
2-23-13-2

4-1

4-2

4-3-1

0

1

2

3

4

0 1 2 3 4

Pr
ed

ic
te

d 
y-

va
lu

e

Actual y-value



CAPP 09-913-50  
ALTERNATIVE PROCESS FOR DEVELOPING TIER 2 SSROS 
PLS Approach: Partial Least Squares Regression  
September 9, 2013 

cm v:\01221\active\122160069\reports\final_20130909\rpt_122160069_alt-process-tier-2-ssro_fnl-rpt_9sept2013.docx 5.15  

Table 5.6: Average predictions of y-values (𝒚�𝒊) for plant endpoints** 

Y-variable Cross-validated predictions No. of 
components Q2Y R2X R2Y P 

RC_root length 
 
 

 

3 80.5 81.0 90.1 <0.0025 

RC_shoot dry mass 

 

1 76.0 54.1 86.3 0.005 

RC_shoot length 

 

1 66.2 53.7 85.5 0.0025 

* Given the multivariate soil property profile for soil by the PLS model derived during the leave one class out cross-validation 
(LOCOCV) procedure with soil i omitted for PLS models with optimized number of components. Error bars represent the standard 
error of the mean of the observed data. Model characteristics from Table 5.3 are also provided for information purposes. 
 
BA – Barley; NWG – Northern Wheatgrass; RC – Red Clover 
 
Significant models were created for several endpoints; however, for a number of models the 
significance of the model appears to reflect mainly a discrimination between soil 4-3 and the 
other soils (e.g., see the ‘actual vs. predicted’ graphs for Collembola number of progeny). Also, 
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the Q2Y value, which provides a measure of the “goodness of prediction” for the model (similar 
to R2 in a univariate scenario) is generally fairly low, even for the significant models. 

The best models (relatively high Q2Y values, significant p-values, and best ‘actual vs. predicted’ 
figures) are for the red clover root dry mass, shoot dry mass, and shoot length. Therefore, the 
top 20 VIP values, which indicate the variables that contribute most strongly to these models, for 
each of these endpoints are provided in Table 5.7, Table 5.8 and Table 5.9. Again, of the top 
20 most important variables in these models, several of them are non-contaminant properties. It 
is interesting to note that elemental sulphur is the most important soil variable for all three of 
these endpoints. However, as was noted previously for the earthworm endpoints, measures of 
soil PHC contamination are also important in all three models. 

 
Table 5.7: Top 20 VIP values for PLS model predicting RC root dry 

mass using 'Study 3' results (full dataset) 
Variable VIP 
Elemental_Sulphur 1.39 
Molybdenum 1.39 
Chromium 1.35 
Total_PHC 1.35 
Salt_Chloride 1.34 
Boron_Saturated_Paste 1.34 
F3 1.34 
Salt_Sodium 1.34 
FineSand 1.33 
Boron_Hot_Water_Soluble 1.33 
F4 1.33 
Total_Sulphur 1.32 
Cyclodextrin_Fraction_2_ 1.31 
OrgCarbon 1.31 
F2 1.30 
Salt_Potassium 1.30 
F4G 1.29 
Total_Carbon 1.29 
Tin 1.24 
Saturation 1.24 
Highlighted values are the potential contaminants of concern 
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Table 5.8: Top 20 VIP values for PLS model predicting RC shoot dry 

mass using 'Study 3' results (full dataset) 
Variable VIP 
Elemental_Sulphur 1.37 
Molybdenum 1.35 
F3 1.35 
Boron_Saturated_Paste 1.34 
Total_Sulphur 1.33 
Salt_Sodium 1.33 
F4 1.32 
Salt_Potassium 1.32 
Boron_Hot_Water_Soluble 1.32 
Salt_Chloride 1.31 
Total_PHC 1.31 
FineSand 1.30 
F2 1.29 
Cyclodextrin_Fraction_2_ 1.29 
Chromium 1.28 
F4G 1.27 
OrgCarbon 1.27 
Total_Carbon 1.26 
Salt_Magnesium 1.26 
Saturation 1.23 
Highlighted values are the potential contaminants of concern 
 
Table 5.9: Top 20 VIP values for PLS model predicting RC shoot 

length using 'Study 3' results (full dataset) 
Variable VIP 
Elemental_Sulphur 1.41 
F3 1.39 
Boron_Saturated_Paste 1.38 
Salt_Sodium 1.37 
Total_Sulphur 1.36 
F2 1.36 
Salt_Chloride 1.35 
Molybdenum 1.35 
Cyclodextrin_Fraction_2_ 1.35 
Total_PHC 1.34 
F4 1.34 
Salt_Potassium 1.34 
Salt_Magnesium 1.30 
FineSand 1.29 
Boron_Hot_Water_Soluble 1.29 
Saturation 1.29 
Total_Xylenes 1.28 
F1 1.28 
F4G 1.28 
Organic Carbon 1.27 
Highlighted values are the potential contaminants of concern 
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5.4 CONCLUSIONS 

This preliminary analysis to investigate the use of PLS approach for SSRO development has 
demonstrated that it is possible to link multivariate soil properties to certain ecotoxicity 
endpoints.  However, the analyses also highlights at this time that the predictive power of these 
models is likely to be inadequate for soils with soil properties that vary substantially from the 
soils used to build the initial model. This could be a function of the small sample size that might 
be overcome by increasing the number of site soils in the model building exercise and an 
opportunity to establish model selection criteria.  Therefore, there are two possible avenues 
going forward: 1) further analysis using additional data for a variety of soil types; and/or 2) 
further assessment of the ability of the “better” models (e.g. red clover root dry mass, red clover 
shoot dry mass, and red clover shoot length) to predict toxicity endpoints in new soil samples.  
Alternatively, a model averaging approach might be investigated to improve the utility and 
application of the models to other soil types.  The draft report provided by Dr. Melissa Whitfield-
Aslund is available in Appendix B. 
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6.0 SEM Approach: Structural Equation Modeling 

6.1 INTRODUCTION AND RATIONALE 

Structural equation modeling (SEM) is a very different statistical approach from the analysis of 
variance and regression statistics familiar to most scientists. SEM is derived from the methods 
of path analysis developed by Sewall Wright in the 1920s (Wright, 1921). Modern SEM has 
been widely used in the social and behavioural sciences. Recently, thanks in large measure to 
the advocacy of ecologists (Shipley 2000; Pugesek et al., 2003; Grace and Bollen, 2005; Grace, 
2006; Grace, 2008; Grace et al., 2010; Lamb et al., 2011; Grace et al., 2012), SEM has become 
commonly applied in the natural sciences. 

Structural Equation Modeling (SEM) is a potential solution for many of the problems 
encountered in the analysis of field toxicological data. The inter-correlated environmental 
variables that are so problematic in the current methods used to develop SSROs are readily 
incorporated in a SEM framework (Grace 2006, Kline 2011, Lamb et al. 2011). Further, SEM 
provides a natural way to incorporate data for multiple species and endpoints from toxicity tests 
into a single analysis through use of a latent variable (a general concept that is indirectly 
measured through observation of correlated variables). In toxicity testing, the multiple species 
and endpoints are effectively indirect measures of the formally unmeasured concept “toxicity” 
and hence ideal for analysis as a latent variable. Finally, SEM can incorporate measurement 
error (Grace 2006, Kline 2011, Lamb et al. 2011) and thus account for variability in replicate 
toxicity tests on the same samples.  

SEMs have two components, the measurement model and the structural model. The structural 
model consists of the paths between variables, while the measurement model consists of a 
latent variable and its associated observed indicator variable(s). 

A latent variable represents a concept or quantity that has not been measured directly, but is 
rather indicated indirectly through one or more observed variables (e.g., measured value) 
presumed to be highly correlated with the latent variable (Figure 6.1). Toxicity is a classic 
example of a general concept measured in practice by proxy variables (e.g., calculated EC/ICp). 
A latent variable can be used to estimate the general (unmeasured) species response across a 
range of toxicant concentrations as indicated by four observed variables (Figure 6.1). This 
latent variable model lets the toxicologist make a clear distinction between the measured proxy 
and the concept of interest. 

Latent variable modeling has a second advantage in that it allows estimates of measurement 
error to be incorporated into the model. In the case of multiple indicator latent variables such as 
the example shown in Figure 6.1, measurement error is implicitly included as imperfect 
correlations among the indicator variables. In the case of single indicator latents, the modeler 
can explicitly state the measurement error by setting the error variance of the observed variable. 
Measurement error is rarely explicitly considered, yet is nearly always present to some extent in 
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data. In the model fitting process unacknowledged measurement error can cause problems in 
the estimation of path coefficients. For example, if measurement error is present in an 
explanatory variable, the residual error variance will contain both prediction error and 
measurement error, and as a result the true strength of the relationship between the response 
and explanatory variables will be underestimated. This underestimation of the true strength of 
the relationship can cause a downward bias in both the unstandardized and standardized 
estimates of path coefficients in the structural model. 

 
Figure 6.1: An example of a latent variable with multiple indicators. 

Note: Observed variables are conventionally indicated by rectangles while the unmeasured 
latent variable is indicated by an ellipse. The arrow extends from the latent variable to the 
observed variable to indicate that the observed variable is conceptually viewed as having been 
caused by the latent variable and unmeasured error δ. In this case two invertebrate species’ 
responses to a concentration gradient have been measured using four endpoint indicators. The 
path from earthworm survival is set to 1 indicating that the latent variable is scaled in units of % 
earthworm survival. Latent variables can alternatively be scaled by setting their variance to 
equal 1 which scales the latent in units of standard deviation. 

The structural (path) model describes the causal relationships among the variables in a model. 
The structural model consists of either the paths between latent variables or, in an observed 
variable model, direct relationships among observed variables. Exogenous variables are ones 
that are causes of other variables in the model, while endogenous variables are caused by at 
least one other variable. In conventional SEM symbolism a single headed arrows indicates a 
causal relationship such that a change in the variable at the tail of the arrow results in a 
predictable change in the variable at the head. A double-headed arrow indicates an unresolved 
relationship between two variables; typically such a variable is used when the two variables are 
linked by a causal agent not represented by a variable in the model. As described in Appendix 
C, establishing the initial structural model is a key step in the fitting of a structural equation 
model. 

Testing a theory-based structural model against data allows powerful tests of causality 
otherwise unavailable with observational (non-experimental) data (Shipley, 2000). The 
underpinning principle that correlation, linked a priori to knowledge of the causal relationships 
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among variables, could be applied to interpret the strength and relative importance of those 
causal relationships. 

In an SEM study the initial path model represents a causal hypothesis in the form of a set of 
paths representing causal relationships among the variables in the model. The initial path model 
implies that a pattern to the variances and covariances between variables then can be tested 
against the actual variances and covariances in the observed data. The development of the 
initial model is a crucial step in SEM. This model is typically formulated by the researcher based 
on past experience or theoretical knowledge. An initial model with adequate fit to the data 
represents a powerful confirmatory test of the knowledge and theory used to construct the 
model. In cases where the initial model does not adequately fit the data, SEM can be used in an 
exploratory mode where modification indices suggest new paths that could be added to the 
model to improve fit. This exploratory or “data snooping” mode can be nearly as useful as a 
confirmatory test, since the addition of paths to a model has, in some cases, revealed novel 
biological hypotheses. 

The measurement model specifies how a latent (unobserved) variable is related to one or more 
observed variables (Figure 6.1). A latent variable represents a concept or quantity that has not 
been measured directly, but is rather indicated indirectly through one or more observed 
variables presumed to be causally linked to the latent variable. Paths are directed from the 
latent variable to the observed variable(s) as the observed variables are assumed to be caused 
by the latent variable. The observed indicators of a latent variable must represent a logically and 
causally coherent quantity (Table 6.1). For example, four different endpoint measurements 
made on test species X are reasonable indicators of (i.e., are caused by) the latent concept “test 
species X performance”, but a highly correlated variable such as soil fertility might not be a 
reasonable indicator. Highly correlated variables that are not reasonable indicators of a 
particular latent, likely represent additional independent variables that should be connected 
through the structural model. 

Multiple indicators should generally be used to specify latent variables. Two indicator latents can 
be used, if necessary, but can lead to model fitting issues. Three or more observed indicator 
variables are preferred as this ensures both the generality of the latent concept and clearly 
separates the measurement error inherent in any single variable from the general concept of 
interest. In cases where the concept of interest is tightly linked to the observed variable (i.e. 
contamination level as indicated by toxin concentration) a single indicator latent can be used. 
Measurement error can be specified for a latent variable with a single indicator by fixing the 
error variance δ associated with the observed variable. The error variance is calculated as: 
δx=(1- λ2x) × VARx; where δx is the error variance for observed variable x; λ2x is the reliability 
or the average correlation between repeated measures of x; and VARx is the variance of the 
observations of x used in the model. Data from pilot studies or replicate measures can be used 
to estimate the average correlation between values of x. 
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Model identification must be considered in the development of the initial model. The sample size 
is defined by the number of experimental units as this is the number of independent 
observations used in the calculation of the variance-covariance matrix (Table 6.1). Successfully 
fitting a model requires that the number of estimated parameters be, at a minimum, equal to the 
number of knowns (t-rule). In practice, the fit of a model can only be evaluated if the number of 
knowns is greater than the number of parameters to be estimated. The number of elements in 
the variance covariance matrix is calculated as n(n+1)/2 where n is the number of observed 
variables. Satisfying the t-rule is a minimum condition for model identification; however, 
additional rules must be satisfied in models that contain latent variables (Bollen, 1989; Shipley, 
2000; Grace, 2006; Kline, 2011). These additional rules are described in more detail in 
Appendix C. 

The number of individual samples remains important in an SEM, even though it does not impact 
the number of elements in the variance co-variance matrix. Small sample sizes may lead to bias 
or inaccuracy in the variance-covariance matrix, and hence, both unreliable parameter 
estimates and tests of model fit (Shipley, 2000; Kline, 2011). Recommendations for sufficient 
sample size vary widely (Grace, 2006; Kline, 2011). A small sample size relative to the number 
of variables may lead to a covariance matrix that is not positive definite and hence difficulties in 
model fitting (Wothke, 1993). Monte-Carlo simulations can be used to estimate minimum 
sample sizes (Muthén and Muthén, 2002), and bootstrap methods for evaluating model fit can 
be applied when samples sizes are low (Grace, 2006). 

Model fitting is typically carried out using maximum likelihood methods, a family of methods 
where starting parameter estimates are iteratively improved to increase the fit between model 
and data (Bollen, 1989; Kline, 2011). There are alternative likelihood-based fitting methods 
(Muthén and Muthén, 2010; Bollen,1989). In cases where sample size is small or where 
distributional assumptions may be violated, bootstrapping may be an effective technique 
(Grace, 2006; Kline, 2011). Bootstrapping works by randomly resampling a data set with 
replacement, a large number of times; the model is then fit to each randomized dataset and the 
distributions of parameter standard errors are used to produce robust standard error estimates 
(Rodgers, 1999; Kline, 2011). Alternatively, a modified maximum likelihood estimator such as 
the MLM estimator (maximum likelihood estimates of parameters with standard errors and 
mean-adjusted χ2) that is robust to distributional problems may be used (Satorra and Bentler, 
1994; Muthén and Muthén, 2010). 
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Table 6.1: Example Variance – Covariance Matrix 
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EA_PR 2.152                
EA_PR_DM 1.487 1.135               
FC_SURV 1.151 0.824 1.109              
FC_PROG 3.505 2.497 2.914 8.755             
BA_SH_L 1.882 1.332 1.750 4.695 4.195            
BA_RO_L 2.197 1.554 1.933 5.320 4.078 4.187           
BA_SH_M 1.887 1.333 1.639 4.495 3.556 3.611 3.130          
BA_RO_M 1.608 1.148 1.410 3.874 2.901 3.019 2.601 2.207         
NWG_SH_L 2.330 1.645 2.078 5.676 4.068 4.344 3.719 3.181 4.730        
NWG_RO_L 2.266 1.590 1.935 5.416 3.698 3.990 3.413 2.921 4.328 4.000       
NWG_SH_M 1.545 1.102 1.196 3.449 2.105 2.338 1.999 1.715 2.516 2.368 1.503      
NWG_RO_M 0.950 0.661 0.697 2.094 1.221 1.369 1.170 1.003 1.468 1.400 0.886 0.547     
ALF_SH_L 1.996 1.417 1.713 4.769 3.254 3.512 3.002 2.572 3.807 3.511 2.081 1.222 3.094    
ALF_RO_L 2.567 1.815 2.140 5.988 3.981 4.325 3.696 3.167 4.679 4.333 2.600 1.530 3.817 4.736   
ALF_SH_M 1.702 1.204 1.324 3.817 2.321 2.577 2.198 1.883 2.768 2.602 1.623 0.967 2.295 2.869 1.794  
ALF_RO_M 1.265 0.885 0.941 2.784 1.599 1.796 1.531 1.314 1.923 1.826 1.160 0.700 1.608 2.029 1.288 0.957 
NOTE:  
All variables were ln+1 transformed prior to calculating this matrix 
ABBREVIATIONS: 
AGG. RESP. = Aggregate Response; EA = Eisenia andrei; PR = progreny production; FC = Folsomia candida; DM = dry mass; SURV = survival; BA = barley;  SH = shoot; L = 
length; M = mass; RO = root;  Alf = alfalfa; NWG = northern wheatgrass 
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Structural equation model fit is evaluated by comparing the model-implied variance-covariance 
matrix to the observed variance-covariance matrix. The most common test of model fit is a χ2 
test with a null hypothesis of adequate fit and an alternative hypothesis of inadequate fit. The 
degrees of freedom for the χ2 test are the number of elements in the variance-covariance matrix 
minus the number of parameters fit in the model. A satisfactory model should have a non-
significant χ2 test, indicating that no important paths have been omitted from the model. The χ2 
test is the most common measure of model fit, but there are a wide range of alternatives 
available, particularly for models containing large numbers of variables (Bollen and Long, 1993; 
Schermelleh-Engel et al., 2003; Kline, 2011). Table 6.2 shows several alternative fit indices 
including the Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), 
Standardized Root Mean Square Residual (SRMR) and Akaike’s information criterion (AIC). 
When fitting a model, one should report both the χ2 test results and several of the approximate 
fit indices. In cases where the χ2 is significant but the other fit indices indicate reasonable model 
fit, the reasons for poor model fit should be carefully assessed and the rationale provided for 
any changes in model specification made to improve fit. 

Table 6.2: Commonly Used Structural Equation Model Fit Indices1 

Fit Index Criteria for 
Good Fit Description 

χ2 p≥0.05 Test for discrepancies between the observed and model-implied 
covariance matrices. Non-significant tests indicate an adequate 
model. 

Comparative Fit Index (CFI) ≥0.90  Measures the relative improvement in model fit over a baseline 
model. Ranges from 0 to 1 with 1 indicating perfect fit. 

Root Mean Square Error of 
Approximation (RMSEA) 

≤0.05 Measures “badness of fit” where 0 is the best fit.  

Standardized Root Mean Square 
Residual (SRMR) 

≤0.08 Mean absolute correlation residual, or an estimate of the mean 
differences between observed and predicted correlations. 

1 See Kline (2011) for detailed descriptions 
 
Once overall model fit has been evaluated, it is necessary to examine the strength of individual 
paths within the model. The χ2 test is effective at detecting important missing paths, but a non-
significant p-value does not indicate that all of the paths included in the model are important. 
Unstandardized path coefficients are divided by their standard error to produce a t-statistic 
(referred to a Critical Ratio (CR) statistic in some software) to test whether a particular path 
coefficient is significantly different from zero. In cases where a path is not significantly different 
from zero, a decision must be made to retain or remove those paths. Removing a non-
significant structural path that had a strong theoretical justification for inclusion in the initial 
model is a statement by the researcher that the path is now (theoretically) expected to be 
unimportant (Grace, 2006). Alternately, one should accept that the (retained) non-significant 
path is simply non-significant in the context of that particular study. Exploration of why the 
context of a particular study may lead to a non-significant expected path may be a fruitful 
research direction. Non-significant paths in the measurement model linking a latent variable and 
an observed indicator variable, however, are an indication that the latent concept is not a stable 
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one. In that case, it may be best to reconsider the number and nature of the latent variables 
included in the model. 

Composite variables (Grace and Bollen, 2008) are an important advanced structural equation 
modeling technique. SEMs are currently very limited in their ability to incorporate non-linear 
relationships (Grace, 2006; Grace and Bollen, 2008), though recent advances may change this 
(Grace et al., 2012). Composite variables differ from latent variables in that latent variables 
represent unobserved variables that are causes of their indicators, while composites are a 
summary with zero variance representing the collective influence of other variables. Composites 
have a variety of uses (Grace, 2006), but the most important for the purposes of this project is 
the ability to model non-linear relationships. Many non-linear relationships can be linearized to 
some degree through transformation and then directly entered into a standard SEM; however, 
this is not possible with hump-shaped and other curvilinear relationships that are best described 
by polynomials. Composite variables provide a method for incorporating polynomial 
relationships into an SEM with the composite variable typically indicated by a variable and the 
squared variable. The framework and rationale for the SEM approach (Subsection 6.1) is 
described in greater detail in Appendix C. The subsections that follow in this section will detail 
the material and methods used to apply the SEM approach to existing toxicological data and 
develop model(s) to describe the relationship between exposure concentrations, pedological 
properties and biological responses. Greater detail for all aspects of this approach can be found 
in Appendix C. 

6.2 MATERIALS AND METHODS 

The utility of structural equation modeling for assessing toxicological response data was 
examined in a three stage approach. First, a confirmatory factor analysis (CFA) was conducted 
with the goal of a) combining multiple endpoint measures within each test species into a series 
of species level latent variables, and b) combining those species level latent variables into a 
single second order latent variable representing cross species responses. Second, we contrast 
the second order latent variable approach with a confirmatory factor analysis where all of the 
species endpoints were used as direct indicators of a single aggregate species response latent. 
Third, we developed structural equation models to link species responses to the experimentally 
manipulated contaminant levels. In all cases, we caution that the models are fit here to small 
sample sizes relative to the complexity of the models; therefore, interpretation of the model 
results was done with caution. 

6.2.1 Confirmatory Factor Analysis and Aggregation of Multiple Endpoints 

The methods used for this stage are described in detail in Appendix C. To summarize, a 
conceptual model was constructed using the results of a toxicity assessment of aged and 
weathered F2 in coarse- and fine-textured soils (spiked multi-concentration tests with two soil 
types). A confirmatory factor analysis (CFA) was conducted with the goal of a) combining 
multiple endpoint measures taken within each test species into a series of species level latent 
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variables, and b) combining those species level latent variables into a single second order latent 
variable representing cross-species responses. 

The first step in the development of a Structural Equation Model is the development of the 
measurement model used to estimate latent variables. This process is often referred to as 
“confirmatory factor analysis”. Typically, a number of latent variables with separate indicators 
would be specified; the curved arrows among the latent variables indicate that they are 
expected to co-vary, but their relationships are not as of yet subject to direct analysis. The 
measurement model would then be fit and modified if necessary. 

The covariance matrix used in this analysis is shown in Table 6.1 In this case all endpoint 
variables were transformed using the natural-logarithm +1. Inspection of these data indicated 
non-linear relationships among the endpoint variables that were linearized by the log+1 
transformation. In addition, the transformations served to bring the variances of each variable 
into a similar range. In cases where transformation is not required or where transformation 
results in very large or small variances, it may be necessary to achieve model convergence to 
re-scale variables by multiplying or dividing by factors of 10. 

Three alternative models (Model A, B, and C) could be used to combine multiple endpoints into 
a single latent variable representing species responses to hydrocarbon contamination (Figure 
6.2). The use of the different models with their corresponding strengths and weaknesses are 
discussed in detail in the report comprising Appendix C. Model C was selected as the most 
appropriate model for the following reasons: it described the data well; the model fit was better 
than the alternative models (Table 6.3); and, the model had no variables with negative residual 
variance (Table 6.4). 
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Figure 6.2: Initial measurement models for Study 4. 

BA is Barley, Alf is Alfalfa, NWG is Northern Wheatgrass, EA is Eisenia andrei, FC is Folsomia 
candida, and No. is number. 
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Table 6.3: Measurement Model Results for Study 4 
Model Descriptor Model A Model B Model C 
No. of model parameters 59 56 68 
Deg. Freedom 93 96 84 
χ2 433.22;  p<0.0001 477.58; p<0.0001 245.35; p<0.0001 
CFI 0.832 0.812 0.921 
RMSEA 0.328; 95% CI 0.297-0.360 0.342; 95% CI 0.312-0.373 0.238; 95% CI 0.203-0.273 
SRMR 0.047 0.046 0.033 
AIC* 362.24 410.31 175.83 
* note that AIC (Akaike’s Information Criterion) is an appropriate method for model comparison in this case since all three models 
contained the same observed variables; CFI – comparative fit index; RMSEA – root mean square error of approximation; SRMR – 
standardized root mean square residual 
 
 

Table 6.4: Full results for Model C including unstandardized path coefficients (col. 2), 
standard error of the unstandardized coefficients (col. 3), ratio of the 
unstandardized estimate and standard error (col. 4), test of path significance (col. 
5), and standardized path coefficient estimates (col. 6) for Model C 

Path Unstd. Est. Std Err Est. / Std Err P-Value Std. Est. 
AGG. RESP.  BY EA_PR 1.165 0.089 13.137 <0.001 0.806 
AGG. RESP.  BY EA_PR_DM 0.824 0.068 12.057 <0.001 0.786 
AGG. RESP.  BY FC_SURV 0.968 0.072 13.420 <0.001 0.933 
AGG. RESP.  BY FC_PR 2.720 0.155 17.542 <0.001 0.933 
AGG. RESP.  BY BA_SH_L 1.801 0.289 6.241 <0.001 0.893 
AGG. RESP.  BY BA_RO_L 1.959 0.213 9.176 <0.001 0.972 
AGG. RESP.  BY BA_SH_M 1.674 0.196 8.533 <0.001 0.961 
AGG. RESP.  BY BA_RO_M 1.434 0.144 9.967 <0.001 0.980 
AGG. RESP.  BY NWG_SH_L 2.116 0.200 10.592 <0.001 0.987 
AGG. RESP.  BY NWG_RO_L 1.963 0.172 11.428 <0.001 0.996 
AGG. RESP.  BY NWG_SH_M 1.183 0.087 13.641 <0.001 0.980 
AGG. RESP.  BY NWG_RO_M 0.698 0.049 14.333 <0.001 0.958 
AGG. RESP.  BY ALF_SH_L 1.727 0.151 11.46 <0.001 0.997 
AGG. RESP.  BY ALF_RO_L 2.14 0.178 12.024 <0.001 0.998 
AGG. RESP.  BY ALF_SH_M 1.3 0.092 14.133 <0.001 0.985 
AGG. RESP.  BY ALF_RO_M 0.917 0.061 14.995 <0.001 0.951 
EA_PR  WITH EA_PR_DM 0.483 0.033 14.584 <0.001 0.870 
FC_SURV WITH FC_PR 0.196 0.043 4.542 <0.001 0.500 
BA_SH_L WITH BA_RO_L 0.431 0.129 3.349 0.001 0.992 
BA_SH_L WITH BA_SH_M 0.437 0.132 3.301 0.001 0.990 
BA_SH_L WITH BA_RO_M 0.233 0.062 3.753 <0.001 0.878 
BA_RO_L WITH BA_SH_M 0.225 0.07 3.221 0.001 0.974 
BA_RO_L WITH BA_RO_M 0.122 0.033 3.679 <0.001 0.874 
BA_SH_M WITH BA_RO_M 0.123 0.034 3.652 <0.001 0.871 
NWG_SH_L WITH NWG_RO_L 0.049 0.002 26.026 <0.001 0.829 
NWG_SH_L WITH NWG_SH_M -0.061 0.003 23.102 <0.001 -0.737 
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Table 6.4: Full results for Model C including unstandardized path coefficients (col. 2), 
standard error of the unstandardized coefficients (col. 3), ratio of the 
unstandardized estimate and standard error (col. 4), test of path significance (col. 
5), and standardized path coefficient estimates (col. 6) for Model C 

Path Unstd. Est. Std Err Est. / Std Err P-Value Std. Est. 
NWG_SH_L WITH NWG_RO_M -0.051 0.002 22.796 <0.001 -0.727 
NWG_RO_L WITH NWG_SH_M -0.023 0.002 10.209 <0.001 -0.545 
NWG_RO_L WITH NWG_RO_M -0.011 0.002 5.065 <0.001 -0.302 
NWG_SH_M WITH NWG_RO_M 0.035 0.003 11.962 <0.001 0.682 
ALF_SH_L WITH ALF_RO_L 0.008 0.002 5.114 <0.001 0.465 
ALF_SH_L WITH ALF_SH_M -0.019 0.001 14.447 <0.001 -0.621 
ALF_SH_L WITH ALF_RO_M -0.023 0.002 9.372 <0.001 -0.553 
ALF_RO_L WITH ALF_SH_M 0.001 0.002 0.490 0.624 0.043 
ALF_RO_L WITH ALF_RO_M 0.007 0.004 1.716 0.086 0.178 
ALF_SH_M WITH ALF_RO_M 0.058 0.004 13.918 <0.001 0.868 
ABBREVIATIONS: 
AGG. RESP. = Aggregate Response; EA = Eisenia andrei; PR = progreny production; FC = Folsomia candida; DM = dry mass; 
SURV = survival; BA = barley;  SH = shoot; L = length; M = mass; RO = root;  Alf = alfalfa; NWG = northern wheatgrass 
 
 

We contrasted the second order latent variable approach with a confirmatory factor analysis 
where all of the species endpoints (Table 6.4) were used as direct indicators of a single 
aggregate species response latent. Structural equation models were used to link species 
responses to the experimentally manipulated contaminant levels. In all cases, the models were 
fitted here to small sample sizes relative to the complexity of the models; therefore, 
interpretation of the model results was done with caution. 

In all cases, the lethal/sublethal endpoint paradox was addressed by setting reproduction values 
to zero in treatments where all organisms died. Models A and B used first-order latent variables 
to combine individual species endpoints into species-specific responses, and a second-order 
latent variable to combine the first order latent variables together into an aggregate cross-
species response. In model A, root and shoot measurements were assumed to contribute 
together to a single response for each plant species; undirected correlations were included 
between the two shoot measurements and the two root measurements for each species 
because those measurements were made on the same plant parts. In Model B, the root and 
shoot responses for each species are modeled separately to account for the hypothesis that 
roots and shoots may respond differently to toxicant exposure. Model C combined all of the 
individual endpoints, regardless of species, directly into a single aggregate cross-species 
response. Model C included undirected correlations between measures made on a particular 
endpoint for a species, because all of those measures were for the same individual organism. 

Even though model C was clearly the better model, there were indicators that the overall fit was 
poor (e.g. significant chi-square test, CFI value less than 0.95, and RMSEA value with 
confidence limits greater than 0.10) and not the result of important missing paths. More than 
likely, the significant chi-square test resulted from “noisy” data rather than poor overall model fit 
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which was attributable to the large number of observed variables in the model relative to the 
sample size. The chi-square test is sensitive to the number of elements in the variance-
covariance matrix; the increased test power associated with a large matrix can result in 
significant tests that detect biologically insignificant lack of fit (Grace, 2006). This problem with 
the chi-square tests led to the development of alternative methods of assessing model fit (Table 
6.3). Inspection of the standardized and unstandardized path coefficients and R2 values 
indicated that the model combined the multiple endpoints into a single variable in an acceptable 
manner. The path coefficients for all of the endpoints are highly significant (Table 6.4). The R2 
values for the observed variables ranged from a low of 0.617 to a high of 0.997, with only five of 
the 16 observed variables having an R2 less than 0.9. Finally, plots of the raw endpoint data 
against the aggregate species response variable demonstrated that the aggregate response 
variable captures the overall responses of all of the endpoints (Figure 3; Appendix C). Given 
the low sample size (35) relative to the number of model parameters (68), the modeling results 
must be considered preliminary. Therefore, model C was retained as the measurement model 
aggregating the endpoint measures into a single composite endpoint. 

6.2.2 Estimation of IC25 and IC50 Values from a Latent Variable 

The estimated values for the aggregate species response developed in model C above was 
used to estimate IC25 and IC50 values. Standard non-linear regression procedures were 
applied to the data to describe (Stephenson et al., 2000, Environment Canada, 2005) the 
relationship between the aggregate species response variable predicted in Model C and both 
spiked F2 concentrations and observed F2 and F3 concentrations. Two models (logistic and 
exponential) were fit to these data using the “drm” function in the “drc” library in the R 2.14 
package (Ritz and Streibig, 2005; R Development Core Team, 2011) and used to estimate the 
IC25 and IC50 values using the “drc” library function ED. 

A logistic model fit better than an exponential model for both the spiked data (logistic AIC = -
48.27; exponential AIC = -9.19) and the observed contaminant concentration (logistic AIC = -
74.6; exponential AIC = -68.92) (Figure 6.3). The lower AIC values for the models with 
observed concentration as an explanatory variable indicate that observed concentrations were a 
better predictor of toxicity in this case. Estimated IC25 and IC50 values for each model are 
listed in Table 6.5. 
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Figure 6.3: Logistic (panels a and b) and exponential (panels c and d) models showing the relationship 

between aggregate species responses and spiked (a and b) and observed (c and d) contaminant 
levels. 
Dotted lines show IC25 and dashed lines IC50 values 

 
Table 6.5: Estimated IC25 and IC50 values and 95% confidence intervals (CI) for the four 

nonlinear models fit. 
Model IC25 95% CI IC50 95% CI 
Spiked Sample Logistic 5978 ± 374 5214, 6741 8377 ± 291 7783, 8971 
Spiked Sample Exponential 3205 ± 312 2569, 3841 7723 ± 751 6190, 9255 
Observed Logistic 993 ± 49  894,1093 1736 ± 67 1600, 872 
Observed Exponential 746 ± 36 673, 819 1798 ± 86 1622,1973 
Note: Values are estimates ± 1 standard error 



CAPP 09-913-50  
ALTERNATIVE PROCESS FOR DEVELOPING TIER 2 SSROS 
SEM Approach: Structural Equation Modeling  
September 9, 2013 

6.14  cm v:\01221\active\122160069\reports\final_20130909\rpt_122160069_alt-process-tier-2-ssro_fnl-rpt_9sept2013.docx 

A species sensitivity distribution (SSD) was developed based on the 16 individual species 
endpoints used in measurement model C for comparison with the results above. IC25 values 
from this analysis were used to develop a species sensitivity distribution for these species. A 
standard non-linear regression analysis (Stephenson et al., 2000; Environment Canada, 2005) 
was used to describe the relationship between the individual endpoints and the observed F2 
and F3 concentrations. The observed F2 and F3 concentrations in the analysis above indicated 
a much stronger relationship between that variable and species responses than the individual 
nominal values. Two models (logistic and exponential) were fit to these data using the “drm” 
function in the “drc” library in the R 2.14 package (Ritz and Streibig, 2005; R Development Core 
Team, 2011). The best model for each endpoint (Table 6; Appendix C) was used to estimate 
the IC25 and IC50 values for each endpoint using the “drm” function (Table 7; Appendix C). All 
acronyms refer to the function names called in the r-scripts. 

The estimated IC25 was selected from the best model for each endpoint (Table 7; Appendix 
C), and a species sensitivity distribution was calculated using the “fitdist” function from the 
“fitdistrplus” library in the R 2.14 package (Delignette-Muller et al., 2010; R Development Core 
Team, 2011). The cumulative distribution was modeled using log-normal, exponential, and 
gamma distributions resulting in AIC values of 218.05, 225.07, and 222.05, respectively. The 
log-normal distribution (mean= 5.74 ±0.63 SD) had the lower AIC value. The empirical and fitted 
cumulative distribution functions are shown in Figure 6.4. This curve suggests target 
contaminant (F2 + F3) concentrations (20th percentile of the cumulative distribution) of 184 
mg/kg, values that are somewhat lower than those suggested by the IC25 values for the logistic 
(95% CI 758 – 958 mg/kg) and exponential (95% CI 522 – 635 mg/kg) generated using the 
aggregate species response models above. 
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Figure 6.4: Cumulative distribution of IC25 values against contaminant concentration. 

The dashed line is the fitted lognormal distribution, and the dotted and dashed vertical lines 
indicate concentrations at the 20th and 50th percentiles of the cumulative lognormal 
distribution. 

6.2.3 Structural Equation Modeling 

Two structural equation models were fit to the measurement data used for Model C. These 
models included hydrocarbon contamination as predictors of the aggregate species response 
(Figure 6.4). The fit of both models was relatively poor which was attributable to the small 
sample size. Nevertheless, both models demonstrated a strong, non-linear relationship between 
contaminant levels and the aggregate species response with R2 values of 0.568 and 0.895, 
respectively, for Model D and E (Figure 6.5; Table 8, Appendix C). Because of the apparent 
non-linearity, the relationships between the aggregate species response and both spiked 
contaminant levels (F2 and F3 concentrations) were modeled as quadratic functions using 
composite variables (Tables 11, 12 and Figure 8; Appendix C). Although, the R2 values 
increased, the fit of the models was not improved.  These structural equation models were of 
low utility relative to the direct non-linear modeling of the aggregate response variable 
demonstrated in the previous section.  In particular, the opaque relationship between 
contaminant concentration and the aggregate response in the SEM relative to non-linear 
regression suggests that confirmatory factor analysis followed by regression is preferable to 
SEM in this case. 
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Figure 6.5: Initial structural equation models with hydrocarbon contamination as predictors of the 

aggregate species response. 
 

6.2.4 Modeling of Toxicological Data – Cross Site Field Data 

As in the modeling of the spiked sample data, confirmatory factor analyses were conducted to 
combine multiple endpoints into aggregate latent variables. A series of structural equation 
models were developed to link measures of both contaminant levels and background 
environmental conditions to species responses. These models were applied to data for three 
combined studies with the goal of developing a general predictive model capable of predicting 
toxicological responses using commonly measured soil characteristics. In all cases, the models 
were fitted to small sample sizes relative to the complexity of the models; therefore, caution is 
required in interpreting the model results. 

Confirmatory factor analysis was conducted using three possible measurement models (Models 
H, I, and J; Table 13, Appendix C), two with second order latent variables representing toxicity, 
and one model with a first order latent toxicity variable (Figure 9; Appendix C). All of the 
measurement models had adequate or nearly adequate fit (Table 13; Appendix C). The relative 
strengths and weaknesses of each model are discussed in detail in Appendix C. The most 
appropriate model was the first order latent variable model combining all endpoints into a single 
toxicity latent (e.g. Model J, Figure 6.6, shown below) which incorporated both toxicant 

BA Root  Biomass

BA Root Length

BA Shoot Biomass

BA Shoot Height

NWG Root  Biomass

NWG Shoot Biomass

NWG Root Length

NWG Shoot Height

Alf Root  Biomass

Alf Shoot Biomass

Alf Root Length

Alf Shoot Height

FC Progeny No.

FC Survival

EA Progeny Biomass

EA Progeny No.

Aggregate  Response

Spiked F2 
Concentration.

BA Root  Biomass

BA Root Length

BA Shoot Biomass

BA Shoot Height

NWG Root  Biomass

NWG Shoot Biomass

NWG Root Length

NWG Shoot Height

Alf Root  Biomass

Alf Shoot Biomass

Alf Root Length

Alf Shoot Height

FC Progeny No.

FC Survival

EA Progeny Biomass

EA Progeny No.

Aggregate  Response

Observed F2 + F3 
Concentration.

Hydrocarbon
Contamination

Model D Model E



CAPP 09-913-50  
ALTERNATIVE PROCESS FOR DEVELOPING TIER 2 SSROS 
SEM Approach: Structural Equation Modeling  
September 9, 2013 

cm v:\01221\active\122160069\reports\final_20130909\rpt_122160069_alt-process-tier-2-ssro_fnl-rpt_9sept2013.docx 6.17  

concentrations and environmental covariates as the basis for predictive modeling. Because the 
model did not describe the northern wheatgrass data well, Model K was constructed to obviate 
problems associated with negative residual variances. 

 
Figure 6.6: Confirmatory factor analysis Model J for the cross-site data. 
 
Standardized and unstandardized path coefficients for Models J and K are shown in Table 6.6 
and the relationships between the aggregate response variable and individual species 
endpoints are depicted in Figure 10 (Appendix C). 

As with the spiked sample data, a standard non-linear regression analysis (Stephenson et al., 
2000; Environment Canada, 2005a) of the relationship between the aggregate species 
response variable predicted in the structural equation model (Model K, Table 13, Appendix C; 
Table 6.6) and the summed concentrations of the F2, F3, and F4 fractions was conducted. Five 
analytical regression models (logistic, hormesis, exponential, Weibull, Gompertz) were fit to 
these data using the “drm” function in the “drc” library in the R 2.14 package (Ritz and Streibig, 
2005; R Development Core Team, 2011). 

The hormesis model had the best fit (Table 15 and Figure 11; Appendix C); however, the fit of 
these models is not ideal. This is likely the result of varying responses to environmental 
covariates. Estimated IC25 and IC50 values were not calculated because the poor fit of the 
models resulted in failure of the “ED” function in the “drc” library. 

Table 6.6: Measurement model results for the combined site data 
 Model H Model I Model J Model K 
Number of model parameters 29 28 32 38 
Degrees of Freedom 15 16 12 16 
χ2 24.18; p=0.0620 32.11; p=0.0097 22.07; p=0.0368 32.11; p=0.0097 
CFI 0.978 0.962 0.976 0.962 
RMSEA 0.073 0.093 0.085 0.093 
SRMR 0.044 0.072 0.040 0.072 
AIC 1167.15 1176.87 1167.98 1176.87 
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Table 6.6: Measurement model results for the combined site data 
 Model H Model I Model J Model K 
CFI = comparative fit index; RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual; 
AIC = Akaike’s Information Criteria 

6.2.5 Models Incorporating Contaminant Levels and Multiple Environmental Predictors 

Cross-site measurement models were developed and the measurement models incorporated 
into structural models containing predictor variables including toxicant concentrations and 
associated environmental conditions. Because the analyses were limited to the variables 
measured in common across all three sites, potentially important variables measured at only 
one site have been ignored. 

Several models with different constructs were investigated and found wanting (Model L, M, N; 
see Tables 16 and 19, Appendix C for discussion of their strengths and limitations). Most of the 
structure of the models was similar to that shown in Figure 6.7. All of the models investigated 
had limitations for various reasons. One of the factors greatly influencing the application of the 
models was three outlying data points. When these were removed, the fit was substantially 
improved (e.g., Model N versus Model M; Table 6.7), and resulted in a much higher R2 value 
(e.g., for the species aggregate response R2 = 951). Despite the improved fit, none of the paths 
from the species endpoints to the aggregate response variable were significant (Table 6.8). 
Similarly, none of the structural paths from the predictor variables to the aggregate species 
response were significant (Table 6.9). Clearly estimation of the species responses in Models L 
and M were substantially driven by those data points with the highest contamination level and 
hence the strongest responses. The sensitivity of these models to a small number of data points 
highlights the necessity for much larger cross-site data sets to achieve the goal of successful 
cross-site predictive modeling. 

 
Figure 6.7: Model L - a structural equation model relating species responses to environmental covariates. 

The hexagon around hydrocarbon contamination indicates that that variable is a composite 
incorporating nonlinear biological responses. 
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Table 6.7: Results of a cross site models incorporating environmental covariates with (Model 

M) and without (Model N) three multivariate outlying data points. 
 Model M Model N 
Number of model parameters 52 53 
Degrees of Freedom 62 61 
χ2 599.16;  p<0.0001 477.35;  p<0.0001 
CFI 0.731 0.765 
RMSEA 0.273 0.246 
SRMR 0.194 0.147 
AIC 3106.86 2749.75 
CFI = comparative fit index; RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual 
 
 

Table 6.8: Measurement model paths (paths between latent and composite variables and their 
indicators) for Model N 

Path Unstd. Est. Std Err Est. / Std Err P-Value Std. Est. 
AGG. RESP. BY EA_PR 0.177 0.159 1.112 0.266 0.703 
AGG. RESP. BY EA_PR_DM 0.110 0.098 1.116 0.264 0.690 
AGG. RESP. BY FC_SURV 0.044 0.042 1.050 0.294 0.280 
AGG. RESP. BY FC_PROG 0.071 0.067 1.056 0.291 0.308 
AGG. RESP. BY NWG_SH_L 0.058 0.052 1.116 0.264 0.885 
AGG. RESP. BY NWG_RO_L 0.028 0.025 1.146 0.252 0.448 
AGG. RESP. BY NWG_SH_M 0.075 0.067 1.118 0.264 0.732 
AGG. RESP. BY NWG_RO_M 0.041 0.036 1.129 0.259 0.465 
Texture BY Fines 1 0 n/a n/a 0.948 
Soil Carbon BY Total_C 1 0 n/a n/a 0.948 
Soil Nitrogen BY Total_N 1 0 n/a n/a 0.948 
Organic Content BY OrgCont 1 0 n/a n/a 0.948 
Contam ON F3 1 0 n/a n/a 3.097 
Contam ON F32 -0.068 0.037 1.859 0.063 -2.224 
EA_PR  WITH EA_PR_DM 0.189 0.055 3.430 0.001 0.452 
FC_SURV WITH FC_PROG 0.521 0.287 1.811 0.070 0.777 
NWG_SH_L WITH NWG_RO_L -0.014 0.003 4.206 <0.001 -0.390 
NWG_SH_L WITH NWG_SH_M 0.032 0.005 6.369 <0.001 0.741 
NWG_SH_L WITH NWG_RO_M 0 0.005 0.042 0.966 -0.004 
NWG_RO_L WITH NWG_SH_M -0.027 0.006 4.512 <0.001 -0.340 
NWG_RO_L WITH NWG_RO_M 0.056 0.006 8.683 <0.001 0.635 
NWG_SH_M WITH NWG_RO_M -0.001 0.012 0.114 0.909 -0.013 
NOTE: Single indicator latents and the first variable in a composite variable have unstandardized estimates that are set to one as a 
requirement of the model fitting process. 
ABBREVIATIONS: AGG. RESP. = Aggregate Response; EA = Eisenia andrei; PR = earthworm progreny production; PROG = 
collembolan progeny production; FC = Folsomia candida; DM = dry mass; SURV = survival; BA = barley; SH = shoot; L = length; M 
= mass; RO = root;  Alf = alfalfa; NWG = northern wheatgrass 
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Table 6.9: Structural model paths in Model N 
Path Unstd. Est. Std Err Est. / Std Err P-Value Std. Est. 
AGG. RESP. ON Contam 0.977 1.317 0.741 0.459 0.178 
AGG. RESP. ON Texture 2.421 2.312 1.047 0.295 0.689 
AGG. RESP. ON Soil Carbon -7.266 6.324 1.149 0.251 -1.030 
AGG. RESP. ON Soil Nitrogen 9.746 9.406 1.036 0.300 2.244 
AGG. RESP. ON Organic Content -4.220 4.727 0.893 0.372 -0.938 
Soil Carbon ON Organic Content 0.678 0.008 86.817 <0.001 1.063 
Soil Nitrogen ON Organic Content 0.981 0.033 29.831 <0.001 0.947 
 

6.3 CONCLUSIONS 

6.3.1 Utility of SEM for Toxicological Data 

This section of the report has tried to demonstrate the potential utility of the SEM approach. The 
major outcome of this investigation was the prospective use of confirmatory factor analysis to 
aggregate multiple endpoints into a single latent variable that can then be incorporated into 
standard non-linear modeling procedures to estimate IC25 values. This provides a direct 
solution to the problem of reconciling divergent ICp estimates from individual endpoints. In 
particular, the confirmatory factor analysis is uniquely able to identify endpoints that may not be 
responding in the same manner as the majority (variables with weak and/or nonsignificant 
loadings on the latent variable). With this approach the toxicologist can determine with 
confidence whether all of the endpoints are providing equivalent information and, if so, develop 
a single IC25 estimate from the latent variable using standard procedures. 

The overall goal of this project was to develop analytical methods that could incorporate 
environmental covariates into analyses of toxicological responses and to develop cross-site 
predictive models that could be used to estimate provisional remediation targets based on 
readily measured environmental variables. Models L through N (Subsection 6.03.4 and 
Appendix C) linked an aggregate species response variable based on two earthworm 
endpoints, two collembolan endpoints, and four northern wheatgrass endpoints to toxicant 
concentrations and measures of soil quality. 

These cross-site models are promising, but not ready for implementation in a predictive mode. 
The models successfully explained the aggregate species responses (R2 > 0.7), but failed many 
tests of model adequacy (significant χ2, low CFI etc.). A small sample size relative to the 
complexity of the models is a major impediment to the implementation of these models. 

Second, these models were applied to minimal cross-site data (e.g. those collected from three 
sites). Clearly, the dataset was constrained by too few data and data that were inconsistent in 
terms of the parameters measured. Data from a much larger number of sites (likely 20+) are 
required for a scope of inference sufficiently wide for valid cross-site predictive modeling. Also, 
the non-linear contaminant-aggregate-species relationships are a second important constraint. 
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Non-linear relationships are expected in toxicological data (Stephenson et al., 2000; 
Environment Canada, 2005a), but difficult to handle in an SEM framework. Composite variables 
(Grace and Bollen, 2008) provide a workaround, but do not fully fully capture the potential range 
of nonlinear relationships that could reasonably occur. Recent advances in “3rd generation 
SEM” (Grace et al., 2012) may provide an effective tool for non-linear SEM, but await 
widespread implementation and acceptance 

. 
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7.0 Recommendations 

7.1 GMR APPROACH 

We could see no advantage to pursuing this approach for deriving SSROs.  The alternative 
approaches proved more interesting and advantageous. 

7.2 DRAMA APPROACH 

This approach had major advantages in that the model averaging removes the dependence on 
selecting the “best” fitting model and address the associated uncertainty therein.  This approach 
allows for an objective synthesis of the models and in the process reconciled contradicting 
interpretations.  The DRAMA approach illustrated the importance of non-contaminant soil quality 
variables (e.g., specific edaphic variables) relative to contaminant variables (e.g., PHC 
concentrations) with respect to the explaining the variability in the biological response data.  The 
relative “importance” of the non-contaminant variables as explanatory variables might be due to 
the influence they play on contaminant bioavailability.  This approach should be pursued and 
further developed using a much larger data set and the resulting predictive models developed 
from the exercise should be verified via designing of a field study to assess the validity of those 
predictions.  The fact that “study” explained less of the variability in the response data than 
PHCs suggests that the resultant models can be applied effectively across sites. 

7.3 PLS APPROACH 

The PLS approach was applied to a single study so the results of this analysis should be 
considered preliminary. Despite that caveat, the approach demonstrated that it is possible to link 
multivariate soil properties to specific ecotoxicological responses.  Although the analyses 
suggests that the predictive power of these models might be inadequate for soils with properties 
that vary substantially from those soils from which the initial model(s) was(were) constructed, 
this could be a function of the small dataset examined. We recommend that the approach, be 
further developed with a much larger data set and the resulting models assessed through field 
studies designed to test the predictions from the PLS models.  The PLS approach requires the 
development of model selection criteria in order to identify and apply the most appropriate 
model(s) for predicting the biological responses expected in light of the existing contaminant 
levels and pedologic characteristics.  We also recommend that the accuracy or veracity of the 
predictions be tested through a field study. 

7.4 SEM APPROACH 

From a toxicological perspective, structural equation modeling was the most comprehensive 
and novel approach assessed in this project.  Although a relatively complex approach fraught 
with constraints and limitations with respect to data quantity and quality, we have identified 
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further steps required for continued development of this approach.  Further steps (Phase 2) in 
the development of cross-site predictive models should include: 

1. Collation of a much larger dataset for evaluation of the cross-site application - a sufficient 
database will include standard environmental covariates (e.g., texture, organic matter etc.) 
with a range wide enough to encompass expected soil conditions at any site within the 
geographic region of interest. 

2. Development of SEM models similar to those presented in this report in consideration of the 
full database. 

3. Validation of the model predictive power by fitting the models to subsets of data and 
comparing predicted versus actual results. 

4. Testing and validation of “3rd generation SEM” models using the same data. 

A primary barrier in the development of the models in this report was the sampling design for 
the toxicological dataset that was used. The following modifications (Subsection 7.5) are 
recommended; these recommendations should improve the statistical value of toxicological 
data, particularly for cross site comparison for any statistical approach used to examine 
ecotoxicological data relative to pedological characteristics and contamination profiles. 

7.5 RECOMMENDED MODIFICATIONS FOR DATA COLLECTION 

7.5.1 Choice of Endpoints and Environmental Covariates 

There is extensive literature on the selection of species endpoints in toxicological testing. While 
there are often important reasons for the selection of particular species, lack of standardization 
severely hampers cross-site analysis. In this report (Section 6.0) models A-G utilized 16 
endpoints collected on 5 separate taxa; however, models H-N utilized only 8 endpoints from 3 
separate taxa. Additional endpoints were available in each of the three studies aggregated for 
models H-N, but could not be used because they were not available from all three studies. This 
problem is likely to be exacerbated as larger numbers of studies are combined. We recommend 
that a core list of “default” species be agreed to and tested in all studies. Additional species 
should be added according to the needs of individual studies. Similarly, a core list of 
environmental covariates including soil texture, organic matter content, total nitrogen, and total 
carbon, should be measured in all cases. 

7.5.2 Sampling Design 

The current sampling designs rely on a small number of field-collected samples and emphasize 
repeated testing of replicates within those samples. Such a design is not optimal statistically, as 
it limits the range of environmental covariates, and results in datasets with limited numbers of 
independent samples. In cases where the number of field-collected samples is severely limited 
such as in this report, it may be necessary to treat replicates as individual samples to achieve 
sufficient sample sizes for modeling. The preferred way to deal with replicate subsamples is to 
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take their mean and thus treat each field-collected soil as an independent sample. This 
approach, however, requires larger sample sizes than the 8 to 12 independent soil samples 
available in each of the studies included in this report. 

Optimal sampling designs will achieve greater statistical power without substantially increasing 
the costs of sampling. We suggest that a shift in emphasis from multiple endpoint replicates 
within each soil sample to a smaller number of replicates across a larger number of soil 
samples. This, combined with a set of common endpoints as suggested in the section above, 
would allow greater statistical power for similar effort in the laboratory. Specifically, we 
recommend: 

• A maximum of three endpoint replicates within a given soil sample. Using a mean of 3 
replicates in further analysis will reduce the potential impact of an outlier in one of the 
replicates. Given that 5 to 10 replicates are frequently used, this should allow at least twice 
as many soil samples to be analyzed, providing a corresponding increase in statistical 
power.  Note that the cost of biologivcal testing is reduced but the analytical costs increase 
because more soil samples are chemically analyzed. 

• Validation of the choice of three replicates as a standard should be done. Specifically, for 
each standard endpoint the expected range in variance from three replicates should be 
determined so that practitioners can evaluate whether their sample of three can be 
considered representative.  Laboratory replicates provide information on quality assurance 
but multiple site soil samples provide information regarding the site, the distribution 
(magnitude and extent) and effects of the contamination; therefore, it behooves a proponent 
to collect and analyze more soil samples from the field (true replication) than to increase the 
number of laboratory replicates (pseudo-replication). 

 

7.6 RECOMMENDATIONS FOR FUTURE WORK 

We recommend that development of the SEM and the DRAMA approaches continue with a 
much larger dataset, as the preliminary analyses conducted for this project has clearly 
demonstrated the utility of these approaches.  Cross-site application was attempted to 
determine the feasibility of taking these approaches and both appear promising.  With models 
constructed from a much larger database, the adequacy of those models will improve and, as a 
result, the predictions should prove more useful. Again, once the approach has been further 
developed and the models developed become robust, then the predictions should be assessed 
through the implementation of a field study that is designed to test these predictions.  Further, 
the recommendations for modifications to the sampling design would be beneficial regardless of 
the statistical approach taken and therefore they apply equally to the other approaches as well.  
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