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CHAPTER 1: A BRIEF INTRODUCTION TO ALBERTA BOREAL DEER 

Introduction  

White-tailed deer are an evolutionary success story. Since the last glaciation, white-tailed deer (WTD; Odocoileus 

virginianus) have thrived in North American forested landscapes, spread mainly across the eastern side of the continent 

(Heffelfinger 2011). In the centuries following European colonization, when most North American mammal species suffered 

range contractions, WTD ranges were the only ungulate species to gain ground: an estimated 6% range increase across the 

continent (Laliberte and Ripple 2004). Population increases in white-tailed deer were a pervasive wildlife management 

problem throughout the later 20
th

 century (Heffelfinger 2011) and remain so in the 21
st

. The impacts of deer expansion are 

profound and widespread, affecting forest structure, forestry yield, community composition, biodiversity, ecosystem 

dynamics, and predator-prey dynamics (Côté et al. 2004). Research into the impacts of WTD on forest ecosystems is 

abundant. Research into the factors that facilitate WTD expansion has focused mostly on population biology (DeYoung 

2011), deer movement (Beier and McCullough 1990), and predator-prey dynamics (Ballard et al. 2001). The effects of the 

changing landscape on white-tailed deer was recognized by Leopold (1987) early on, though landscape-scale studies of the 

effects of landscape change on deer distribution has been limited. Moreover, these effects are typically region-specific, and 

little is known about white-tailed deer as they expand into northern boreal regions, with some exceptions (Patterson and 

Power 2002, Latham et al. 2011, Latham et al. 2013, Dawe et al. 2014). Understanding white-tailed deer distribution in the 

boreal forest was our primary goal, and we strove to meet these goals through a series of population and landscape 

“natural experiments” (Diamond 1983, Turner 1989). Each chapter in this report highlights a different examination of white-

tailed deer distribution and abundance, and the implications for boreal deer expansion. These experiments are rooted in 

three main aspects of WTD biology: foraging ecology, movement ecology, and energetics. 

Movement ecology 

White-tailed deer movements vary markedly across their continental range, among terrain and habitats, and 

within age-sex classes (Sabine et al. 2002, Stewart et al. 2011, Massé and Côté 2013). White-tailed deer home range sizes 

vary markedly among regions, and within seasons (Stewart et al. 2011). Sub adults disperse from natal areas, but adult 

dispersal – typically an important driving factor in range expansion – is relatively rare, and typically short, although adult 

female dispersal frequency and distance varies geographically (Stewart et al. 2011). 

In this highly adaptable species, general patterns are not always discernable, or at least do not typically hold over 

their whole range. In northern regions with consistently deep snow cover, adults are typically “obligatory migrants”, moving 

from summer to winter ranges where the effects of a severe winter are ameliorated (Sabine et al. 2002). In northern 

regions with little snow, deer are “conditional migrators”, moving when conditions compel them to do so. Within these 

classifications there is considerable annual and individual variability; some individuals may shift habitat selection but do not 

necessarily migrate (Sabine et al. 2002, Stewart et al. 2011).  A deer’s ability to move through a landscape is clearly a key 

factor in their persistence in northerly regions. Landscape alteration that enhances movement – creating roads and other 
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linear features – may encourage deer population increases and expansion, with some interacting effect of winter severity, 

and likely energetic condition.  

Energetics and foraging 

Like all mammals, white-tailed deer must balance energy obtained from forage with the metabolic demands of 

foraging, predation avoidance, gestation, lactation, growth, and homoeothermic (Parker et al. 2009, Hewitt 2011). White-

tailed deer are ruminants and as such rely heavily on abundant nutritious forage (Ditchkoff 2011). Their diets are diverse, 

and the impacts of browsing by overabundant white-tailed deer have been extensively studied across the continent (Côté 

et al. 2004). Forage availability, and hence consumption, varies seasonally. In the summer, WTD primarily eat leaves and 

stems of deciduous woody plants, forbs, grasses, and some mast where available in the summer season, and are restricted 

to low-quality browse in the winter (Moen 1978, Hewitt 2011). The deciduous and mixed-transitional forests of eastern 

North America provide an abundance of WTD forage, which has sustained this species through evolutionary time 

(Heffelfinger 2011). Agricultural land covering much of the contemporary land base, as well as plants used in supplemental 

feeding, provides additional forage (Chapman et al. 2009, 2010). In the boreal forest, available browse has typically been 

viewed as limiting white-tailed deer populations to some degree (Patterson and Power 2002), but how browse has been 

contributing to deer expansion throughout the boreal forest remains unknown.  

The cold temperatures and deep snow historically characteristic of the boreal regions of North America placed high 

metabolic demands on deer, limiting foraging movements and stressing homoeothermic maintenance. In mature boreal 

forest – where early seral vegetation is naturally restricted to burns and forest canopy caps (Fisher and Wilkinson 2005) - 

these metabolic demands may be greater than the energy gained from available forage; ergo WTD distribution and 

abundance have historically been limited in the boreal forest (Heffelfinger 2011, Hewitt 2011, Dawe et al. 2014). Forage is 

especially important in winter, when WTD are energetically stressed and enter “controlled starvation” (Hewitt 2011). With 

ongoing climate change, winters globally have become less severe (Karl and Trenberth 2003), and evidence suggests this is 

true of boreal regions as well, with less snow and less extreme temperatures (Dawe 2011). Concurrent with this, white-

tailed deer forage has become more abundant as forestry, mining, and oil and gas activity replaces old and mature forest 

stands with early-successional stands (e.g. Fisher and Wilkinson (2005)). A profound change in the amount of early seral 

vegetation on the boreal landscape, in addition to warmer and drier winters, may have increased boreal WTD populations 

in the region and may be driving WTD expansion. However, the landscape-scale contributions of habitat alteration and 

winter severity remain unknown.  

Demography 

 Like any animal, white-tailed deer are strongly affected by demographic processes. This research was never 

intended to study WTD demography in the boreal forest, but a few salient points of white-tailed deer population dynamics 

are warranted, as these provide important context for our study of distribution, habitat selection, and density. 
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 As WTD are remarkably flexible in their habitat associations – flexibility that facilitated their distribution across the 

continent – so too is their population structure highly adaptable to different environments (DeYoung 2011). The seminal 

work of McCullough (1979) and subsequent research suggests WTD sometimes display density dependence, and sometimes 

do not. Rapid population increases following forest disturbance are characteristic of WTD and fawning rates are highly 

variable, depending on environmental conditions (DeYoung 2011). Survivorship is age-specific. The great risk of mortality 

comes in the first year of life (Lesage et al. 2001), decreasing markedly for 1-2 year-olds, remaining low and constant for 2-

10 year olds, then increasing again (Delgiudice et al. 2006). However, mortality is also highly variable within and among 

populations, and depends largely on environmental factors (Delgiudice et al. 1990b, Delgiudice et al. 2002, Delgiudice et al. 

2006). In particular, mortality increases markedly with winter severity – especially snow depth, a primary correlate of body 

condition (Garroway and Broders 2005). However, the effect of snow depth and winter severity is mediated by physiological 

condition – a function of nutrition, itself a function of available browse (Delgiudice et al. 2002, Parker et al. 2009). 

Moreover, winter severity affects males and females differently (Lesage et al. 2001), especially adult females with gestating 

young (Pekins et al. 1998). Finally, there appears to be a time lag – a year or more – between the period when forage is 

limiting and when that limitation incurs sufficient metabolic costs to succumb to severe winters, or to impact recruitment 

(Fryxell et al. 1991).  

Predators are also obviously a primary source of mortality, with survival rates varying among landscapes as 

predators vary (Delgiudice et al. 2006, Turner et al. 2011). Predator mortality has a greater impact on old does than other 

age-sex classes, but there is a confounding effect of environment: does suffering from extreme weather are more likely 

predated (Delgiudice et al. 2006). Despite chronic and periodically acute mortality, Delgiudice et al. (2006) found that high 

survival rates of prime age deer, high pregnancy rates, and periodic twinning rates, often offset mortality and provide for 

population stability. In summary, responses of white-tailed deer to a novel boreal environment with variable winter 

severity, marked anthropogenic change, and a diverse suite of predators, are exceedingly challenging to predict. 

Research motivation 

White-tailed deer expansion is a pan-continental phenomenon (Laliberte and Ripple 2004). In each biome and 

region, WTD impact local flora, fauna, and ecological processes (Côté et al. 2004). Those impacts can be mitigated through 

wildlife and landscape management, but doing so effectively requires information on deer distribution, density, and 

movement – as well as the factors facilitating that expansion. This was our primary motivation. 

In the boreal forest, WTD management takes on a more urgent tone than in our jurisdictions, and provided our 

secondary motivation. Alberta’s woodland caribou populations are declining (Hervieux et al. 2013), and wolf predation is 

considered a primary cause (Wittmer et al. 2005). Predation increases where seismic line density is high (Boutin et al. 2012, 

McKenzie et al. 2012), so mitigation and reclamation of linear features is being undertaken to reduce predators' use of 

lines. However, these activities may not be effective alone. High densities of wolf alternate prey such as WTD may increase 

wolf abundance and caribou predation rates (e.g. Seip (1992)), potentially amplifying the effect of seismic line density. 

Elevated wolf densities have changed wolf-caribou dynamics (Latham et al. 2011, Latham et al. 2013) by increasing 

predation, and caribou mortality. Moreover, WTD management requires information on habitat selection and population 
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densities. However, although there are modelled large-scale predictions of white-tailed deer expansion in Alberta (Dawe et 

al. 2014), we have limited data on deer habitat selection in Alberta’s boreal forest, or how they respond to the various kinds 

of anthropogenic disturbance occurring in this unique region. Moreover, density within the expansion zone is unknown, as 

aerial surveys of white-tailed deer are encumbered by dense conifer cover and differential sightability among habitats. 

Ground-based survey methods might provide a better method for estimated deer abundance, while simultaneously 

allowing an examination of the factors affecting WTD distribution in the boreal forest. We used a combination of camera 

trapping (O'Connell et al. 2011, Burton et al. 2015) and satellite telemetry (Millspaugh and Marzluff 2001, Kays et al. 2015) 

to examine (1) the relationship between WTD distribution, anthropogenic disturbance, and natural landcover; (2) the 

seasonal changes in WTD distribution and the role of winter severity; (3) WTD home-range and space-use in the boreal 

forest; and (4) deer density in this heavily modified boreal forest landscape. 

 We are not the first to attempt to disentangle the relative contributions of forage availability and climate on white-

tailed deer. Patterson and Power (2002) asked this question for Nova Scotia white-tailed deer and Dawe et al. (2014) 

revisited it for Alberta boreal forests. However, we are the first to ask this question at landscape scales – where the effects 

of landscape composition and winter severity on distribution explicitly manifest – using continuous, longitudinal data on 

deer distributions and relative abundance. This novel approach allows us to test questions about the relative contributions 

of climate and landscape on boreal white-tailed deer expansion. If available forage and cover – especially in winter – are the 

principle drivers of white-tailed deer expansion in the boreal forest, then we would predict that deer distribution is 

correlated with the distribution of deciduous forests and those anthropogenic activities that create early-successional 

stands (e.g. forestry, seismic lines, and well pads), and that these features buffer deer distribution and deer density from 

fluctuations in severe winters. If winter severity is a principle factor, we would expect deer distributions and population 

sizes to shrink after more severe winters, irrespective of landscape composition. We test these hypotheses in the boreal 

forest of northeast Alberta. We do this using a combination of satellite telemetry, camera-based surveys, and spatially 

explicit density estimation models. Our twin goals were to learn more about the factors that contribute to white-tailed deer 

expansion in the boreal forest, and to create a method for estimating white-tailed deer density that overcomes the 

problems of poor sightability encountered in aerial surveys of this dense forest region. 

Study Area  

Our research was conducted in the boreal forest northeast of Lac La Biche, Alberta, Canada (Figure 1-1).  The study 

area is approximately 3000 km
2
 and encompasses the area around Christina Lake and Winefred Lakes, north of the Cold 

Lake Air Weapons Range. This landscape is a mosaic of lowland spruce, muskeg, upland spruce, deciduous and mixedwood, 

and some jack pine to the east.  The area has extensive forestry to the north, with motorized access and oil and gas 

development by multiple companies in the area to the south, west, and north of Winefred Lake.  

  



Page 7 

Experimental design  

Inferences from landscape-scale habitat selection studies depend greatly on the distribution of different habitat 

types that are sampled within those landscapes (Aebischer et al. 1993, Fisher et al. 2005). To provide as broad an inference 

space – the scope within which one can reliably extrapolate experimental results – as possible, our goal was to disperse the 

cameras across the study area so that the major habitat types in this landscape had an equal probability of being surveyed 

for deer occurrence. This landscape is very heterogeneous, and contains both common and rare habitat types, so a design is 

needed that samples habitat types disproportionately to their availability in the landscape. To achieve this dispersion, we 

used a stratified-random design to select 1-km x 1-km grid cells for surveying white-tailed deer occurrence. We used this 

size of grid-cell as it is likely to meet the assumptions of independence among survey sites, and closure within survey 

periods, required of occupancy models (MacKenzie et al. 2006). 

 

  

  

Figure 1-1. The Alberta Boreal 
Deer Project examined white-
tailed deer density and habitat 
selection in the northeast boreal 
forest, in the vicinity of Christina 
and Winefred Lakes.  

Canada 
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Cells were selected for sampling based on Alberta Vegetation Index (AVI) digital forest inventory data (AESRD 

2005). We categorized tree species as coniferous [black spruce (Sb), jack pine (Pj), white spruce (Sw), and balsam fir (Fb)] or 

deciduous [paper birch (Bw), aspen (Aw), balsam poplar (Pb), and tamarack (Lt)].  We determined the area of each polygon 

within each grid cell represented by each canopy species, and multiplied that by the percentage of the canopy in that 

polygon. We designated each polygon as lowland if the moisture regime was designated aquatic or wet, or upland if not. 

For each polygon, the canopy cover designations and moisture regime information were combined to create the following 

categories: upland conifer, lowland conifer, upland deciduous, lowland deciduous, upland mixedwood, lowland 

mixedwood, non-forested. 

The total area represented by each of the canopy cover/moisture regime combinations, and the non-forested 

category, were summarized for each 1 x 1 km grid cell, and we designated cells according to their composition. For 

example, we classified a cell as non-forested if more than 50% of its area was classified as non-forested at the polygon level; 

conifer if 70% or greater of the area was conifer polygons, and so on. Within each polygon, more than one forested 

category could be present, but each would have the same landscape designation (e.g. lowland or upland). 

Final classification of a grid cell was based on a combination of dominant canopy cover and dominant moisture 

regime.  Within the population of potential grid cells – defined by a systematic grid overlaying the study area - we selected 

those cells that intersected a navigable road to provide reliable access to survey sites. Surveying only cells with access to 

roads was a logistical necessity, but does constrain the inference space of our results to forested regions with roads. This 

selection process produced a candidate set of 406 grid cells. From this set, we randomly selected 12 grid cells to survey 

within each of the survey categories: lowland conifer, lowland mixedwood, upland conifer, upland mixedwood, and upland 

deciduous. We randomly selected an additional 5 cells in each category as back-ups in the event the primary cells could not 

be surveyed. The final candidate set of survey cells achieved representation across the landscape and across habitat types 

(Figure 1-1). 

Within each grid cell, we subjectively selected a site for camera placement. We visually surveyed the cell for 

wildlife trails, and then selected a trail with evidence of extensive and recent wildlife travel, to maximize probabilities of 

detection. Cameras were deployed on the game trail, a minimum of 50 m off the road. Subjective placement is necessary to 

capitalise on the effect of trails in maximising probability of detection, but does not compromise the experimental design, 

as the grid cell is the statistical sampling unit.  

Landscape reclassification 

This boreal landscape is naturally very heterogeneous – a mosaic of upland and lowland forest, spruce bogs, lakes, 

and rivers. To quantify this natural heterogeneity in a way that constrained the independent variables going into 

subsequent species-habitat models to a reasonable number (Burnham and Anderson 2002), we reclassified AVI digital 

forest inventory data into 12 classes that we predicted were potentially important for white-tailed deer (Appendix 1).  

This landscape has also experienced marked alteration for resource extraction (Figure 1-2). Forest harvesting is 

widespread in the north of the study area. There are industrial camps, borrow pits, sumps, and well pads. A meshwork of 
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traditional seismic lines (cutlines), 3-dimensional seismic lines (3D seismic), and pipelines roll across this landscape. A 

network of roads and trails (accessible but without gravel) cover much of the area, permitting human access. To quantify 

these features, we reclassified Alberta Biodiversity Monitoring Institute (ABMI) human footprint layer
1
 data into 3 classes 

representing polygonal anthropogenic features – cutblocks, well sites, and other ‘block features’. We used a high-resolution 

linear features layer
2
 to classify anthropogenic linear features on the landscape. We buffered these linear features 

(Appendix 1) to assign an area of footprint to each. This reclassification formed the basis for the camera-based species 

distribution model analyses reported in the following chapters.  

  

                                         
1 2010 Provincial Human Footprint layer downloaded from: 

http://www.abmi.ca/abmi/rawdata/geospatial/gisdownload.jsp?categoryId=3&subcategoryId=7 

2 ABMI and University of Alberta, Integrated Landscape Management Lab 

Figure 1-2. Anthropogenic 
footprint is extensively and 
intensively imposed on this 
landscape, including forest 
harvesting cutblocks (green), 
well sites (square dots) 
cutlines (black), 3D seismic 
(grey), and roads and trails 
(yellow). Large black dots are 
camera sites. 

http://www.abmi.ca/abmi/rawdata/geospatial/gisdownload.jsp?categoryId=3&subcategoryId=7
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CHAPTER 2: OCCUPANCY DYNAMICS OF WHITE-TAILED DEER IN 

NORTHEAST ALBERTA: THE EFFECTS OF WINTER SEVERITY ON 

ANNUAL SPATIAL DISTRIBUTION 
 

Introduction  

Understanding the drivers of species distributions has been at the heart of ecological inquiry from Darwin (1859) 

and Grinnell (1917) to today (Scott et al. 2002). Species distributions vary in space in conjunction with habitat suitability, 

community assembly, abiotic and climatic variables, and a host of other factors. Identifying which factors are key drivers of 

distribution is the goal of niche theory (Hutchinson 1957, Hutchinson 1965, Chase and Leibold 2003, Holt 2009). Species 

distributions also change through time in response to temporal environmental variability. Temporal fluctuations are harder 

to quantify than spatial, as they require long-term data, but their importance has been brightly illuminated by pressing 

needs of climate change science (Kareiva et al. 1993, Pearson and Dawson 2003, Thomas et al. 2004, Lawler 2009). There 

are myriad ways by which climate change is expected to affect species distributions. For mammals, responses are often 

rooted in changing energetic demands (Humphries 2009), and this is reflected in models of future species distributions 

under climate change scenarios (Lawler et al. 2009).  

 All mammals must balance energy intake with metabolic demands, and this need is particularly pronounced for 

boreal species, where winters can be severe and food supplies ephemeral (Humphries et al. 2004, Humphries et al. 2005). 

Different species have evolved different mechanisms for dealing with energetically costly, nutrition-poor winters. White-

tailed deer (WTD), for example, enter a kind of “controlled starvation” in the winter (Hewitt 2011), wherein metabolic 

demands exceed nutritional intake to some degree, and deer rely on fat reserves accumulated in the previous summer and 

fall to survive. Cold temperatures and deep snow incur a severe metabolic cost that outstrips available energy reserves, 

leading to high deer mortality (Ditchkoff 2011, Hewitt 2011). Deep snow, in particular, increases metabolic cost induced by 

drag when depth exceeds 50% of brisket height (approx. 60cm for a 50-80 kg white-tailed deer) (Parker et al. 1984, Hewitt 

2011). If sufficiently severe, overwinter mortality can markedly decrease population sizes (DeYoung 2011). Historically, 

severe winters may have restricted WTD from extending their range into the boreal forest region (Dawe 2011, Heffelfinger 

2011, Dawe et al. 2014). As the climate changes due to greenhouse gas emissions, northern winters have become less 

severe (Karl and Trenberth 2003). Average daytime winter temperatures have increased, and mean winter snow depth has 

decreased, with consequences for entire boreal and arctic communities (Walther et al. 2002, Post et al. 2009), including 

white-tailed deer. 

The expansion of white-tailed deer into the boreal forest region is the latest in an ongoing spread of this highly 

adaptable species. In the centuries following European colonization of North America, while most mammal species on the 

continent suffered range contractions, WTD were the only ungulate species to gain ground: they effected an estimated 6% 
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range increase across the continent (Laliberte and Ripple 2004). Population increases in white-tailed deer were a pervasive 

wildlife management problem throughout the later 20
th

 century (Heffelfinger 2011) and remain so in the 21
st

. The impacts 

of deer expansion are profound and widespread, affecting forest structure, forestry yield, community composition, 

biodiversity, ecosystem dynamics, and predator-prey dynamics (Côté et al. 2004). White-tailed deer expansion into the 

boreal forest is implicated in marked declines of threatened woodland caribou (Latham et al. 2011, Boutin et al. 2012, 

Latham et al. 2013). Deer are alternative prey for wolves, increasing wolf numbers, which decrease caribou populations – 

an example of apparent competition (Holt 1977, Holt and Kotler 1987, Holt et al. 1994). With the pressing need to stem 

caribou declines, white-tailed deer expansion is a topical model to examine the relative effects of winter severity and 

landscape change on boreal species distributions. 

The relative role of winter severity and landscape change in facilitating WTD expansion is controversial. Dawe et al. 

(2014), using snowtracking and aerial survey data collected 2002-2009, concluded that winter severity was an important 

predictor of deer occurrence in Alberta’s boreal forest, and thereby suggesting that the milder winters expected under 

climate change will continue to facilitate northward expansion of WTD range. Dawe et al. (2014) further suggested that land 

use change may interact with climate change, whereby landscape modifications from industrial development – forestry and 

oil and gas extraction – may buffer WTD against the effects of severe winters. To test this hypothesis, it is necessary to 

assess the spatiotemporal dynamics of deer populations. While severe winters may reduce the overall abundance of WTD, 

populations losses are not expected to be uniform in space (Stewart et al. 2011), and recovery may be rapid when severe 

conditions cease. Identifying landscape factors that allow WTD to persist in the face of severe winter conditions (i.e. spatial 

refugia), or facilitate their recolonization and recovery, is critical to targeting management toward minimizing the negative 

impacts of WTD expansion.  

In this study, we assessed the spatiotemporal dynamics of WTD over three years in a 3,000 km
2
 landscape within 

the boreal forest of Alberta, Canada. This region is not the leading edge of range expansion, but rather embedded within it; 

WTD are already distributed across the study area. Our goal was to investigate factors influencing distribution within this 

occupied boreal landscape, to help us understand those factors driving expansion. We use a relatively new method to 

assess WTD distribution: camera traps. Camera traps (CTs) are an increasingly popular ecological research tool that are 

adaptable to a variety of ecological questions (O'Connell et al. 2011, Burton et al. 2015), allowing us to cost-effectively 

survey species distributions over large areas and long periods. We used CT detections to model changes in WTD use of sites 

over time, applying an occupancy modelling framework to account for the fact that deer using a sampled area may not 

always be detected by a camera (i.e., imperfect detection; Mackenzie et al. 2002, 2006). In our context, we consider 

“occupancy” to represent deer use of a site, and “detectability” to represent availability of deer to be detected by a CT. This 

acknowledges that sites are not closed to changes in occupancy within a sampling period, and that detection will be 

influenced primarily by local deer abundance and movement in and out of the CT detection zone within a larger home 

range (Burton et al. 2015, Figure 2-1). This approach is cautious, but does not necessarily replace a count index if species-

level detectability is shown to approach 1.0. 
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As WTD use of the landscape changes seasonally and annually, we can estimate occupancy dynamics across time 

periods using multi-season occupancy models (MacKenzie et al. 2003, MacKenzie et al. 2006). Sites where WTD are absent 

may become occupied as the population expands or conditions change, which can be estimated as the probability of site 

colonization. Conversely, deer may stop using previously occupied sites, with some probability of site extinction. The sum of 

these processes is estimated as the spatial growth rate, a parameter analogous to the more familiar population growth rate 

(λ) but instead describes relative growth or decline in distribution, rather than abundance. 

We used multi-season occupancy models to estimate WTD occupancy dynamics over three years of differing winter 

severity. We tested two main hypotheses:  

1. Deer distribution contracts in winters, with more contraction in colder winters with deeper snow.  

2. Deer quickly recolonize sites during spring and summer, leading to relatively stable annual distributions even after 

severe winters.  

  

Figure 2-1. The detection of animals by camera traps is affected by ecological and observational processes 

occurring at both the local scale of the camera trap detection zone and the broader scale of the surrounding 

landscape. Explicitly accounting for these underlying processes is an important challenge for wildlife surveys 

with camera traps. Illustration by Jeff Dixon. From Burton et al. (2015). 
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Methods  

To establish the degree of seasonal and inter-annual change in temperature and snow depth in the study region, 

we obtained Environment Canada weather data (http://climate.weather.gc.ca) for the two closest weather stations: Lac La 

Biche and Fort McMurray, Alberta. We plotted daily mean temperatures and snow on ground (only available for Fort 

McMurray) across the three years of the study (October 2011 – September 2014).  

Deer sampling 

We surveyed deer occurrence across the study landscape by deploying one Reconyx™ Hyperfire PC900 camera 

(Holmen, WI) at each of 62 sampling sites. Cameras were set to “fast shutter” speed, as this setting reduces motion blur and 

provides high-resolution, detailed daytime images suitable for identifying sex and collared individuals where possible. 

Cameras were deployed in grid cells selected using a stratified-random design (Chapter 1). Cameras were deployed on 

wildlife trails chosen subjectively within the grid cell. This approach allowed us to maximize probability of detection, but did 

not compromise the probabilistic design as statistical inference is made with the grid cell as the sampling unit. Cameras 

were deployed a minimum 2-km apart. Following Burton et al. (2015), we define 'site' as the area approximating an average 

short-term (seasonal, 3-month) home range, centered on the camera detection zone. We assume the study area is the ca. 

3000 km
2
 area encompassing a minimum convex polygon surrounding the cameras sites.  

Deployment began October 22 2011 and ended October 26 2014. We separated the continuously collected camera 

data into month-long (30.4 day) survey periods. Each month was treated as one survey; three surveys comprise a primary 

sampling season, within which sites are assumed closed to species-level changes in occupancy, similar to Pollock's robust 

design for capture-recapture (Pollock (1982)). As noted above, we relax the closure assumption but assume that deer use of 

a site is not directionally biased within the relatively short three-month sampling season; that is, there is not one-way 

immigration or emigration, or complete mortality, of all deer using a site during a season. Under this assumption, variation 

in observed deer occurrence among months within a 3-month season represents “detection error”, attributed mainly to 

movement in and out of the camera detection zone (Figure 2-1). Deer behaviour varies seasonally, with most variation due 

to changes associated with mating, parturition, and dispersal (DeYoung et al. 2011). We therefore classed each “deer 

season” as three-month periods: rut (autumn, October – December), post-rut (winter, January – March), pre/early fawning 

(spring, April – June), and post-fawning (summer, July – September). The full data frame for the study is thus 12 seasons, 

with 3 repeated surveys within each season, for a total of 36 surveys at each site, each comprised of deer detection-

nondetection within the month. 

Seasonal variation in occupancy 

We ran several competing models, each with different assumptions about how detectability, site occupancy, site 

colonization, and site extinction varied through time. We tested whether the probability of detection was either (1) 

constant, (2) varied among seasons, or (3) varied among surveys. We likewise tested whether site occupancy, site 

colonization, and site extinction were either (1) constant, or (2) varied among seasons. Our goal for this analysis was to 

establish mean changes in occupancy across winters for the whole study area, not estimating spatial factors affecting 

occupancy within the study area. Therefore, we assumed for these models that there is no spatial variability in occupancy, 

http://climate.weather.gc.ca/
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an assumption we know is violated (Chapter 3). Therefore, occupancy estimates among seasons should be treated as 

average measures across the study area, and as relative measures for comparison among years, and not treated as a “true” 

single estimate of occupancy for each sampling site. 

We ranked competing models using Akaike’s Information Criterion (AIC) scores, which provide a balance between 

the variance in the deer data explained by the model, and the number of variables needed to explain that variance 

(Burnham and Anderson 2002). Lower AIC scores indicate a parsimonious model that explains more variance than other 

models. AIC scores were normalised as AIC weights (AICw), which are analogous to the probability that any given model is 

the best model of the whole set. From AICw we calculated evidence ratios for each variable (ER). This is the ratio of the sum 

of all AICw of all models that included a given habitat variable, vs. those models that did not include that variable. For 

example, ER=2 suggests there is twice as much evidence supporting the inclusion of a habitat variable in a deer model, than 

evidence supporting leaving that variable out.  

Results  

 There were marked differences in winter severity among the three years of study (Figure 2-2). The 30-year mean 

annual snow depth at the Fort McMurray weather station is 30 cm (measured in February, when snow is 

deepest)(Environment Canada 2015). Snow depth exceeded 30 cm in 0 days in 2011-2012; 125 days in 2012-2013; and 73 

days in 2013-2014, indicating that winter severity peaked during the 2
nd

 winter of our study and differed considerably 

among all three. Temperature data from nearby Lac La Biche (for which no snow data were collected) were similar to Fort 

McMurray. Based on snow depth, we classified the three winters of the study as moderate (2011-2012) and severe (2012-

2013 and 2013-2014). We expected deer distribution to differ following these three winters. 
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White-tailed deer seasonal occupancy 

Between October 2011 and October 2014 we achieved more than 60,000 camera trap nights from the 62 sites 

across the study area. We collected and analysed 141,141 camera images; 112,648 of these were of white-tailed deer. 

Summing across years, deer were present at all of these sites at some point during the study, although frequency of 

occurrence (i.e. number of months present) varied markedly.  

The probability (p) of detecting deer (given they were present) varied monthly (black line, Figure 2-3). Detectability 

was lowest in late winter and spring, and highest in summer. In the summer, deer were almost perfectly detected, as p 

approached 1.0, and standard errors were relatively small. In the 2nd winter, deer were detected only half of the time that 

they occurred at a site, with detectability estimated to be less than 0.5. The probability of detection is a per-survey 

(monthly) estimate. The best-supported model carried 100% of the AIC weight, meaning that all of the weight of evidence 

supports this model, compared to competing models (Table 2-1).  

In most seasons, PFA approached 0.0; at worst (winter 2013), PFA = 0.03 (blue lines, Figure 2-4). Thus, in the worst-

case scenario, it was 97% likely that we detected deer at a site that they used at least once during a season, and usually we 

Figure 2-2. Environment Canada weather data from Fort McMurray, Alberta, 2011-2014, 

summarised daily. The 30-year mean maximum snow depth (blue dashed line) is 30 cm. The 

winter of 2011-12 exhibited average snowfall, whereas the winters of 2012-13 and 2013-14 

were relatively severe. 
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approached 100% probability. These results suggest that movements in and out of the camera site within seasons do not 

significantly change seasonal presence-absence measures of deer occurrence. 

Deer occupancy fluctuated widely among seasons (black line, Figure 2-4). In the autumn of 2011, deer were widely 

distributed across the study area, with occupancy near 1.0. Occupancy dropped only slightly in the first winter, which was 

mild, then rebounded in spring 2012. Occupancy remained mostly stable through the summer and autumn of 2012, and 

then dropped precipitously in the severe second winter. However, deer occupancy quickly rebounded in spring 2013. This 

same pattern repeated in the third winter, with a marked drop in occupancy, followed by a quick rebound in spring; 

occupancy remained stable in summer and early autumn. 

These occupancy dynamics were driven (in part) by the probability that a camera site occupied in one season 

would become empty in the next season – the probability of site extinction (ε). In the mild winter of 2012, probability of site 

extinction was less than 0.2 (red line, Figure 2-4). Few sites became empty in summer and fall. In the severe winter of 2013, 

ε jumped markedly. Half the sites that had deer in the summer and fall were empty in the winter. This dynamic repeats in 

the third year, with occupancy dropping by half in the winter. Occupancy dynamics were also driven by the probability of 

site colonization (γ) – the probability that a camera site unoccupied in one season would become occupied in the next 

season (blue line, Figure 2-5). After the mild winter of 2012, all empty sites were recolonized (γ = 1.0, SE = 0.00). 

Colonization was difficult to estimate in summer and fall because most sites were occupied; standard errors were large. 

After the severe winter of 2013, all empty sites were again recolonized (γ = 1.0, SE = 0.00). After the severe winter of 2014, 

site recolonization was again very high (γ = 0.88, SE = 0.06). 

In summary, although deer distribution shrank markedly in the severe winters of 2013 and 2014, high site 

colonization allowed deer distribution to rebound very quickly in each subsequent spring. Another way to consider these 

fluctuations in distribution is the spatial “growth rate” (λ), a model parameter calculated from estimates of occupancy, 

extinction, and colonization (Mackenzie et al. 2003, 2006). Spatial growth rate is analogous to population growth rate. If λ = 

1.0, then the distribution remains stable; if λ <1, then distribution is shrinking, and if λ > 1, then distribution is expanding. 

The spatial growth rate of boreal white-tailed deer fluctuated through time (green line, Figure 2-6). Deer distribution 

decreased each winter, with a greater decline in the more severe winters. Deer distribution increased markedly in the 

subsequent springs (γ = 1.8, SE = 0.24), returning to a stable distribution (1.0) in each summer and fall season. We 

estimated that the spatial growth rate after the final survey was 1.01 (SE = 0.03). 
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Table 2-1. Multi-season occupancy models of deer detection-nondetection at cameras from October 2011 to October 2014. 
These models estimate the probability that a site is occupied (ψ), the probability that an empty site will be colonized (γ), 
and the probability that an occupied site will go “extinct” (ε). These parameters were either constant (c) or varied among 3-
month SEASONs. The probability of detecting a white-tailed deer (if present),  p,  was either constant (c),  varied in each 
SURVEY, or varied among SEASONs.  

Model AIC ΔAIC AIC 

weight 

Model 

Likelihood 

k* -2LL** 

ψ,γ(SEASON),ε(SEASON),p(SURVEY) 1210.29 0 1 1 39 1132.29 

ψ,γ(c),ε(SEASON),p(SURVEY) 1244.90 34.61 0 0 33 1178.9.0 

ψ,γ(SEASON),ε(c),p(SURVEY) 1246.57 36.28 0 0 33 1180.57 

ψ,γ(c),ε(c),p(SURVEY) 1259.08 48.79 0 0 27 1205.08 

ψ,γ(SEASON),ε(SEASON),p(SEASON) 1271.43 61.14 0 0 23 1225.43 

ψ,γ(SEASON),ε(c),p(SEASON) 1305.30 95.01 0 0 17 1271.30 

ψ,γ(c),ε(SEASON),p(SEASON) 1305.50 95.21 0 0 17 1271.50 

ψ,γ(c),ε(c),p(SEASON) 1317.00 106.71 0 0 11 1295.00 

ψ,γ(SEASON),ε(SEASON),p(c) 1347.99 137.70 0 0 16 1315.99 

ψ,γ(c),ε(SEASON),p(c) 1384.73 174.44 0 0 10 1364.73 

ψ,γ(SEASON),ε(c),p(c) 1410.47 200.18 0 0 10 1390.47 

ψ,γ(c),ε(c),p(c) 1447.18 236.89 0 0 4 1439.18 

*number of parameters; **-2 x log likelihood 

 

Figure 2-3. The probability of detecting deer via cameras (black line) varied monthly. The probability of false 
absence (blue lines) within each season approached 0.0 for most seasons and at worst (spring 2014) was 3%. 
Bars represent standard errors of estimates. 
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Figure 2-4. The probability of white-tailed deer occupancy (black line) and the probability of site 

extinction (red line) varied among seasons. Site extinction was greatest in the two severe winters. Bars 

represent standard errors. 

Figure 2-5. The probability of site colonization (blue line) varied among seasons, and was high in all three spring 

periods. Bars represent standard errors. 
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Discussion  

Winter severity has been generally decreasing under a changing climate in western North America, with important 

consequences expected for  biotic communities (Lawler 2009, Lawler et al. 2009, Gilman et al. 2010, Chen et al. 2011, 

Barnosky et al. 2012). In this first examination of white-tailed deer distribution through time, we found that WTD occupancy 

decreased more markedly in more severe winters when snow is deep. The moderate winter of 2012 produced a small drop 

in occupancy, whereas the very severe winters of 2013 and 2014 – with cold temperatures and extreme snowfalls – 

resulted in a nearly 50% drop in occupancy across the study area. In winter, the metabolic costs of staying warm and 

moving through deep snow exceed the nutrition and energy derived from available forage (Delgiudice et al. 1990b, 

DelGiudice et al. 1992, Delgiudice et al. 2002, Ditchkoff 2011, Hewitt 2011). If this metabolic debt exceeds available fat 

reserves accrued the previous winter, deer die; if reserves exceed metabolic debt (and if deer avoid predation), they survive 

the winter. Overwinter deer mortality leads to seasonal cycles of population decline and growth (DeYoung 2011), but the 

numerical effect of winter mortality on population sizes is only known from a few, well-studied populations in Minnesota 

and the Dakotas; it is unreliable to extrapolate their results to boreal environments. This first examination suggests that 

distribution of boreal populations does decrease in severe winters. 

However, although we expected WTD distribution shrinkage to result from the population declines typically 

resulting from severe winters, distribution quickly rebounded after winter. In every spring, site occupancy rebounded to 

pre-winter conditions, nearing 1.0. Only half of the landscape was occupied in severe winters, but in spring, deer re-

Figure 2-7. The “spatial growth rate” of boreal white-tailed deer varied among seasons, and was >1 in all three spring 

periods. Bars represent standard errors of estimates; the dashed line represents zero spatial growth and a stable 

distribution. 
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occupied nearly the entire landscape. This finding is quite profound, and it defies expectations that severe winters would 

reduce WTD with some lasting effect. Even two severe winters in succession did not appreciably reduce spring deer 

distribution. This 'spring rebound' could result from either (1) widespread reproduction to replace losses suffered in the 

winter; or (2) adults surviving, and then recolonizing empty sites from local overwintering refugia. Given the rapidity of the 

recolonization events in all three springs, we hypothesize it is likely that both are occurring; but analysis of reproductive 

success (Chapter 3) and seasonal density estimates (Chapter 5) are needed to test this hypothesis.  

We also show that camera data can be a robust method for estimating seasonal dynamics of species distribution, 

sensu (MacKenzie et al. 2003, MacKenzie et al. 2006). Estimating and accounting for the probability of detecting deer via 

cameras – given a deer was present – was potentially important, as detection probability varied monthly. For a large, wide-

ranging animal such as deer, “occupancy” can be thought of as the probability of a deer spending time in the vicinity of a 

camera, and detectability depends on how often deer move into the range of the camera (among other things) (MacKenzie 

et al. 2006, Burton et al. 2015). In winter when deer yard up (Stewart et al. 2011), movement rates decrease; with fewer 

deer moving in front of the camera, detectability decreases even when deer are present. Movement increases in summer 

and fall months (Tierson et al. 1985, Grovenburg et al. 2009), and hence so does detectability. Quantifying and accounting 

for this detectability allows for more accurate estimates of occupancy, which are more likely to reflect true changes in 

distribution rather than just changes in behaviour.  

For occupancy models we relegate variation in monthly occurrence at a site to "error", expecting that this variation 

could potentially mask a signal of distribution (Type II error) or induce a false signal (Type I error). However, this variation 

may itself be an ecological signal. A deer absence may not be merely a function of missed detections, but instead a measure 

of how deer site-use varies through time as a function of habitat quality at that site. Researchers are beginning to adopt a 

dualistic approach to camera-trap data analysis wherein both occupancy analysis and analysis of uncorrected data are 

compared for convergence (or divergence) of conclusions (Fisher et al. 2013, Banks‐Leite et al. 2014, Burton et al. 2015). 

This approach may be useful in assessing species distributions over large scales, where variable time spent at a site can 

indicate differences in site quality. We adopt this approach in Chapter 3. 

In conclusion, white-tailed deer were widely distributed throughout the entire study area, reflecting predictions 

made by Latham et al. (2011) and Dawe et al. (2014) about WTD expansion in the boreal ecosystem. However, our 

longitudinal study also showed that although distribution contracted after each winter – including the two severe winters – 

distribution recovered quickly. White-tailed deer occupied the entire study area every spring, summer, and autumn. If our 

study area is representative of other highly impacted areas in the northeastern boreal forest, we hypothesize that under 

current land-use practices, regional landscapes will support white-tailed deer populations even in the face of severe 

winters, and thus the continued establishment of WTD in the region may not be dependent on moderate winters induced 

by climate change. An examination of the relationship between white-tailed deer and anthropogenic landscape features is 

needed to test this hypothesis. 
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CHAPTER 3: NATURAL AND ANTHROPOGENIC LANDSCAPE 

FEATURES AFFECTING WHITE-TAILED DEER DISTRIBUTION IN 

NORTHEAST ALBERTA 

Introduction  

Habitat loss, fragmentation, and alteration are a primary cause of many species’ declines and can profoundly affect 

ecological systems (Taylor et al. 1993, Fahrig 1997, 1999). Determining the correlates of a species’ spatial distribution across 

heterogeneous (and fragmented) landscapes is a key precursor to elucidating the ecological processes creating those 

patterns. In particular, disentangling natural from anthropogenic correlates of species distribution is a necessary 

requirement for effective conservation and management, and is often demanded when species conservation potentially 

conflicts with economically important landscape development. This task is further complicated as pattern and process can 

change markedly among landscapes as ecological and spatial contexts change, potentially preventing reliable inference 

from other landscapes (Fisher et al. 2005, Wheatley and Johnson 2009, Fisher et al. 2011). The challenge of linking changes 

in wildlife populations and ecological processes to landscape features is therefore a daunting one, especially in the highly 

complex boreal forest landscapes of northeastern Alberta. 

Alberta’s oil sands are among the world’s largest hydrocarbon deposits, a key component of the Canadian 

economy (Bayoumi and Mhleisen 2006), and a major factor in North American geopolitics. Open-pit bitumen mines are an 

oil sands icon, but in-situ drilling’s footprint is markedly more extensive (Schneider et al. 2006). Natural boreal forest 

heterogeneity has been augmented by a diversity of different anthropogenic features, including cutblocks, roads, trails, 

linear seismic lines, 3D seismic lines, well sites, and polygonal industrial features. etc. (Appendix 1). These features are 

typically covered with grasses, forbs, and browse – primary food sources for WTD (Moen 1978, Hewitt 2011) which we 

collectively term "early seral vegetation" hereafter. Petroleum extraction's footprint has pushed boreal forest disturbance 

patterns well outside the historical range of natural variation (Pickell et al. 2013, Pickell et al. 2015), and is without analog 

elsewhere in the globe, making these patterns a unique observational experimental system. Moreover, these features are 

additive to the patterns of forest harvesting across the boreal landscape which have their own effects on wildlife (Fisher and 

Wilkinson 2005). Petroleum extraction, timber harvesting, and road infrastructure have cumulatively and rapidly increased 

disturbance rates in Canada’s boreal forests (Spaling et al. 2000, Hansen et al. 2010).  

The effects of landscape alteration vary from species to species. For some species, removal of old, mature forest 

represents habitat loss; for others, it is a habitat gain (Thomas et al. 2001, Fisher and Wilkinson 2005, Ewers and Didham 

2006). In the boreal forest, a heterogeneous mix of deciduous and conifer of various stand ages, landscape alteration 

typically removes mature forest and replacing it with either early-seral vegetation such as forest harvesting cutblocks, or 

introducing novel anthropogenic structures on the landscape, such as well pads, seismic lines for petroleum exploration, 

and roads. The effects of forest harvesting – until the last decade, the primary form of anthropogenic landscape alteration 

in the boreal forest – has been extensively studied, and reviews show these effects vary widely among species (Fisher and 

Wilkinson 2005, Schieck and Song 2006). The ecological effects of roads and linear features have been less studied, but are 
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catching up. Road effects differ from cutblocks, often posing a barrier to movement (Forman 2003). For some species, roads 

and other linear features may actually expedite movement (Whittington et al. 2011, McKenzie et al. 2012). Road verges are 

also a source of early-seral vegetation. Roads and trails provide human access which can increase the success rates for legal 

licensed and unlicensed harvest of wildlife (Gratson and Whitman 2000) (B. Maile, pers. comm). Access may also increase 

poaching mortality (Trombulak and Frissell 2000). Access can lead to substantial pressure on highly sought-after game 

species. 

Very little is known about how these various anthropogenic features might interact with natural landcover to affect 

species distributions in this landscape. We predicted that, since most anthropogenic features are associated with WTD 

forage, that these features may be facilitating WTD expansion across the boreal forest. Dawe et al. (2014) used predictive 

models to examine the contribution of landscape alteration to WTD expansion at provincial spatial scales. However, they 

did not have empirical data on deer distribution to quantify these relationships at landscape scales. Our goal was to 

empirically estimate the relative contribution of natural landcover and anthropogenic disturbance to white-tailed deer 

distribution in the northeast boreal forest, at landscape scales.  

We used camera trapping (O'Connell et al. 2011) to survey deer distribution over three years. Cameras are widely 

used for surveying mammals (Burton et al. 2015) and have been used to characterize species density (Trolle et al. 2006, 

Sollmann et al. 2013), diversity (Tobler et al. 2008), habitat selection (Fisher et al. 2011, Fisher et al. 2013), and to estimate 

population and community changes through time (Karanth et al. 2004, O'Brien 2008).  Species distribution models make the 

assumption that the frequency of a species' use of a site is related to the landscape within some defined area around that 

site (Morrison et al. 2006). Defining the appropriate scale of this area is difficult, because different processes operate at 

different spatial scales (Figure 3-1). The area affecting a deer's occurrence at a camera site may be smaller than a home 

range, reflecting the influence of small-scale, local patch choices by individuals. Conversely, the size of the landscape 

affecting distribution may be larger than a home-range, since a variety of ecological factors – predators, competitors etc. – 

occurring well beyond the home-range affect the quality of a site for a species (Kotliar and Wiens 1990, Bowyer and Kie 

2006, Boyce 2006, Fisher et al. 2011, Fisher et al. 2012). Because we don’t know the size of the landscape that might affect 

a species’ occurrence – and getting the size wrong can lead to incorrect conclusions – a rigorous approach is to test several 

different landscape sizes and determine which best predicts that occurrence (Fisher et al. 2011).  

Complicating matters, white-tailed deer habitat selection and space-use varies seasonally, in response to changing 

nutritional requirements and metabolic demands (Ditchkoff 2011, Hewitt 2011, Stewart et al. 2011). Deer distribution is 

also expected to change seasonally, as winter mortality depletes some habitats across a landscape, and then rebounds in 

the spring. Therefore, one might predict that the scale of the deer-landscape relationship may also change seasonally, with 

local factors becoming more important in the wintertime. Finally, deer-landscape relationships might change depending on 

how deer distribution is measured. Deer occurrence (presence or absence) through time may not reflect deer abundance, if 

a few deer are scattered widely throughout a landscape whereas most deer are clustered at a few sites. 
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Relative abundance is not always the best indicator of habitat quality (Van Horne 1983). The occurrence of a deer 

at a site does not always equate to high-quality habitat, as the animal may experience an ecological trap (Schlaepfer et al. 

2002, Battin 2004) wherein an animal occupies a site that does not increase its fitness. We can avoid this problem by 

assessing breeding success – considered to be a much more robust measure of habitat suitability for a species, and more 

reflective of the habitat's effect on fitness. Research on WTD pregnancy rates and recruitment suggests that female age and 

body condition affect breeding success (Ozoga et al. 1982, Ozoga and Verme 1986, Verme 1989, DelGiudice et al. 2007), and 

that body condition is primarily a function of nutrition afforded by available browse (Hewitt 2011). However, there is no 

research on the landscape-scale distribution of breeding success, and the natural or anthropogenic features that might 

affect this success. WTD range expansion is obviously a function of reproduction and mortality; examining whether 

landscape change is associated with increased breeding success helps elucidate the factors contributing to expansion.   

We tested five hypotheses:  

1. Annual WTD distribution is best described by landscape features measured at large scales, i.e. areas > 3000-

m radius.  

2. Winter WTD distribution is best described by landscape features at small scales, i.e. areas of 250-m radius.  

Figure 3-1. Different ecological processes occur at different spatial scales, each involving different landscape 
features. At small scales – the immediate area around a deer – food and cover be important. At intermediate 
scales, the presence of potential mates or other conspecifics may be important. Patch edge effects may play a role, 
as well as complementary or supplementary food sources. At even larger scales, the presence of predators in the 
landscape, and a source population of conspecifics, may be important. As landscape variables proxy these different 
processes, the degree to which landscape variables explain deer occurrence is expected to change across scales. 
(Illustration by Jeff Dixon) 
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3. WTD distribution is explained by a combination of deciduous forest and anthropogenic footprint, as a source 

of early-seral vegetation.  

4. The features explaining WTD in winter differ from those explaining annual distribution, with conifer cover 

being more important within that season. 

5.  WTD breeding success remains high after both moderate and severe winters, and is highest in areas with 

greater deciduous forest cover and human disturbance offering early seral vegetation. 

Methods  

We analysed each camera image and recorded the presence of each species detected. Where we were not certain 

of a species’ identification, we removed this observation from the dataset, to eliminate the problem of false positives. 

Missing data from inoperable cameras were removed from the dataset. We used the full three years of camera data to 

create two different response variables measuring deer distribution. The first variable was deer relative abundance, which 

we indexed by counting the total number of independent camera-detection events, and the number of deer observed in 

each event (Figure 3-2). We assumed that WTD detections separated by 10 minutes, or with a visibly different deer entering 

the frame, represented independent visits. The second response variable was deer persistence, which we measured as the 

number of months that a WTD was detected at a camera site over three years.  

We reclassified AVI digital forest inventory data into 12 classes that we predicted were potentially important for 

white-tailed deer (Table 3-1). We reclassified Alberta Biodiversity Monitoring Institute (ABMI) human footprint layer
3
 data 

into 3 classes representing polygonal anthropogenic features – cutblocks, well sites, and other ‘block features’. We used a 

high-resolution linear features layer
4
 to classify anthropogenic linear features on the landscape. We buffered these linear 

features to assign an area of footprint to each. These buffers, described in Table 3-1, are somewhat arbitrary but are the 

same as those used by Alberta Biodiversity Monitoring Institute for their analyses, so we sought to remain consistent. We 

used ARCGIS 10.2 and Patch Analyst (ESRI, Inc.) to calculate the percent area of each landscape feature around each camera 

site. Correlated variables cannot be included in a multivariate model, as they share information about the dependent 

variable – the problem of multicollinearity (Faraway 2004). As correlated variables measure the same relationships to the 

response variables, then they are redundant. Models with highly correlated predictors may yield spurious results, showing 

one variable as important when the correlated variable is driving the ecological relationship. The standard errors of 

parameter estimates tend to become large, potentially leading to Type II error – failing to identify an existing relationship. 

To prevent this problem, we tested for correlations among these landscape variables, and omitted correlated variables (r > 

0.6) from multiple-variable models (Zuur et al. 2010). This only partly deals with the problem, as correlated variables left 

                                         
3
 2010 Provincial Human Footprint layer downloaded from: 

http://www.abmi.ca/abmi/rawdata/geospatial/gisdownload.jsp?categoryId=3&subcategoryId=7 
4
 ABMI and University of Alberta, Integrated Landscape Management Lab 

http://www.abmi.ca/abmi/rawdata/geospatial/gisdownload.jsp?categoryId=3&subcategoryId=7
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out of the models could still be driving underlying relationships, so the choice of variables to retain is also based on strength 

of underlying hypotheses. 

 
Table 3-1.  Landscape reclassification for camera-based species distribution model analyses. GIS data from multiple sources 
were reclassified and combined to create 20 different landscape feature categories. We calculated the percent area of each 
category around each camera site, to create 20 independent variables. 

# Habitat Class Source
1
 Description

2,3
 

1 Upland deciduous AVI (Aw, Pb, Bw >=70% canopy), moisture = d or m 

2 Lowland deciduous AVI (Aw, Pb, Bw >=70% canopy), moisture = w or a 

3 Upland mixedwood AVI (40% -60%) canopy, moisture = d or m 

4 Lowland mixedwood AVI (40% -60%) canopy, moisture = w or a 

5 Upland spruce AVI (Sb, Sw, Fb >=70% canopy), moisture = d or m 

6 Lowland spruce AVI (Sb,Sw,Fb >=70% canopy), moisture = w or a 

7 Pine AVI All Pj (>=70%) 

8 Tamarack AVI All Lt (>=70%) 

9 Open wetland AVI <6% crown closure; moisture = w or a 

10 Upland shrubs AVI >25% shrub cover; <6% tree cover; moisture = d or m 

11 Water AVI Standing or flowing water 

12 Cutblocks ABMI Forest harvested areas, which regrow trees, and are 
important for deer in early seral stages. 

13 Nonforest AVI < 6% canopy  

14 Block features ABMI Borrow-Pits, Dugouts, Sumps, Industrial Sites, and Other 
Disturbed Vegetation not falling into other categories 

15 Wellsites ABMI Petroleum extraction well sites, disturbed forest with 
canopy removed, areas now grassy or shrubby. 

16 3D Seismic UALF Intensive (hashmarked) seismic petroleum exploration line 
ca. 1-3 m wide. 

17 Cutlines UALF Traditional seismic petroleum exploration line ca. 7-10 m 
wide and typically very long. 

18 Roads UALF All roads including One Lane Gravel, One Lane Paved,  Two 
Lane Gravel, Two Lane Paved, Unimproved Roads 

19 Pipelines UALF Petroleum pipelines 

20 Trails UALF Trail + TruckTrail: Unimproved dirt track ca. 5-10 m wide 
navigable by off-highway vehicle, foot, or horseback, or by 
truck. 

1
AVI – Alberta Vegetation Index; UALF = University of Alberta Linear Features Map Updated 2012; ABMI = Alberta Biodiversity Monitoring 

Institute Human Footprint Map Updated 2010.
 

2
Aw = aspen, Pb = poplar, Bw = white birch, Sb = black spruce Sw = white spruce, Fb = balsam fir, Pj = jack pine, Lt = tamarack/larch; d = 

dry, m = mesic, w = wet, a = aquatic 
3
Linear features were buffered for areal calculations as follows: Two Lane Undivided Paved Road: 9m; One Lane Undivided Paved Road: 

6m; Rail Line: 5.5m; Rail Line- spur: 5.5m; Two Lane Gravel Road: 7m; One Lane Gravel Road: 5m; Driveway: 2m; Unimproved Road: 6m; 
Trail: 6m; Truck Trail: 6m; Electrical Transmission Line: 17m; Pipeline: 12m; 3D: 2m; Cutline: 2m. 
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Spatial scale analysis  

We quantified the landscape within buffers of different sizes, or spatial scales (Figure 3-1). These spatial scales 

ranged from a 250-m radius circle to a 5000-m radius circle, in 250-m increments, around each camera site. This yielded 20 

different spatial scales we could compare to test which scale best explained deer occurrence. At each scale, we modelled 

deer persistence (0-36, over three years) against all 20 landscape variables using generalized linear models (Binomial errors, 

logit link) in R ver. 3.1.1 (R Foundation for Statistical Computing 2014). These models also included a term for the number of 

days the camera was active, since, some cameras failed during surveying.  Each model produces an AIC score (Akaike 

Information Criterion) (Burnham and Anderson 2002), which is a function of the number of variables in the model, and the 

log-likelihood of the model – the amount of variance in the deer data that the model can explain. A model with a low AIC 

score indicates that this model better explains deer occurrence than a model with a high AIC score. For each of these 20 

Figure 3-2. Deer relative abundance, measured as the number of deer observed at independent camera events, and deer 
persistence, measured as the number of months of deer occurrence over three years, at each of 62 camera sites. There is 
a high degree of concordance between these measures. The background is linear features (grey lines), updated to 2012. 
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“scale models”, we used the step-AIC function in R package MASS
5
 to identify the most parsimonious model that best fit the 

data. This function uses a backward and forward stepwise regression routine to create models with different combinations 

of variables, ranks each of these models based on AIC scores, and selects the lowest score. We normalised AIC scores of the 

best-fit 20 “scale models” as AIC weights (Anderson 2008); AIC weights of a set of models sum to 1.0, and are analogous to 

the probability that a model is the best one of the set. For example, if the best-fit model has an AIC weight of only 0.2, there 

is only a 20% chance that it is really best of the lot. If the best model has an AIC weight of 0.9, there is a 90% chance it is 

really the best. We plotted the 20 AIC weights against the 20 spatial scales to identify a peak, indicating the spatial scale at 

which landscape explains deer distribution. We repeated this entire procedure using this second response variable, deer 

relative abundance (Figure 3-2), using generalized linear models (square root-transformation, gaussian errors, identity link), 

to test whether different response variables yielded different scales.  

Deer habitat selection models  

Once a “best-fit” scale was identified, we used variables measured at this scale in an information-theoretic model 

selection framework (Burnham and Anderson 2002) to test different hypotheses about the relationship between WTD and 

landscape features (Table 3-2). Although defining hypotheses and corresponding models a priori is a conceptually strong  

approach (Anderson and Burnham 2002, Burnham and Anderson 2002), it does not always lead to the most parsimonious 

models that best explain a species' distribution. Crawley (2012) advocates a stepwise regression approach to find the 

"minimum adequate model" that best explains a species distribution but excludes unnecessary non-significant variables. 

We used both approaches, and compared stepwise models with the hypothesis-based models (Table 3-2) to determine 

which had the most support. Because these models were overdispersed (Zuur et al. 2007), we re-ran these models using 

quasibinomial regression, which accounts and corrects for overdispersion, and obtained parameter estimates from these 

models. We repeated this procedure again using only data from winter months (January-March each year for 3 years; 0-9 

months), to determine if winter habitat associations were different from annual habitat associations (generalized linear 

models, gaussian errors, identity link). 

We graphed univariate relationships between key predictor variables and species occurrence to show the slope 

and direction of relationships; the grey bands represent 95% confidence intervals of estimates. These plots show the range 

of independent variables these models were built upon; beyond this range the relationships may change. We used R 

package boot to assess the fit of the AIC-selected best model with 10-fold cross validation (Zhang 1993), a type of bootstrap 

procedure which fits the model for 10 subsets of testing and training data to assess model prediction error. 

  

                                         
5
 http://cran.r-project.org/web/packages/MASS/MASS.pdf 
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Table 3-2. Hypotheses about landscape-scale deer distribution in the northeast boreal forest. 

Description Model 
# 

Hypothesis:  
WTD distribution is explained by: 

Variables
  

(numbers refer to Table 1) 

Global model 1 All variables 1-20 
Natural landcover 2 Upland deciduous cover 1 
 3 All mixedwood cover 3+4 
 4 All conifer cover 5+6+7+8 
 5 Upland spruce 5 
 6 All deciduous + shrubs 1+2+8+10 
 7 Wetland 9+11 
 8 Upland forest 1+3+5 
 9 Lowland forest 2+4+6 
Nonforest 10 Early seral  10+12+13+14+15 
Forestry 11 Cutblocks 12 
Petroleum 12 Wellsites 15 
 13 3D seismic 16 
 14 Cutlines 17 
 15 Pipelines 19 
 16 Linear features 16+17+18+19+20 
 17 Block features 14+15 
Petroleum + 
Forestry 

18 Block features incl. cutblocks 14+15+12 

Access 19 Roads 18 
 20 Trails 20 
 21 Roads and trails 18+20 
All anthropogenic 22 All anthropogenic features 12+14+15+16+17+18+19+20 
Natural + forestry 23 Upland deciduous and cutblocks 1+12 
 24 Shrubs and cutblocks 10+12 
 25 Openings and cutblocks 10+12+13 
Natural + petroleum 26 Upland deciduous and 3D seismic 1+16 
 27 Upland deciduous and cutlines 1+17 
 28 Upland deciduous and all anthropogenic 1+12+14+15+16+17+18+19+20 
 29 Upland deciduous and all petroleum 1+15+16+17+19 
Natural + access 30 Upland deciduous and roads and trails 1+18+20 
Best-fit step-AIC 
model 

31 Variables selected by stepwise regression Varies 

 

Variation in breeding success  

We extended the occupancy framework (Chapter 2) to model the dynamics of breeding success by estimating 

parameters for different age classes using multi-state occupancy models (Nichols et al. 2007, Fisher et al. 2014). Just as 

species may be detected imperfectly, age-sex classes may also be detected imperfectly, when neither age nor sex is known 

with accuracy. Using camera imagery, sites can be classified into one of multiple states – such as sites with breeding, or 

without breeding – which may be observed with error. With repeated surveys we can estimate the probability, for each 

site, that the species is either wholly absent, present without breeding, or present with breeding; as well as the probability 

that a species will be detected in each of the two occupied states (Nichols et al. 2007; MacKenzie et al. 2009).  
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We classified each deer image according to whether an adult female with young of the year (fawns) was present or 

absent. If a female with fawns appeared in any image within the survey month, we classified that site as "breeding" for that 

survey. If fawns were not detected, we classified the site as "non-breeding", to create a detection-nondetection dataset 

with three states: breeding, non-breeding, or no deer detected. "Breeding" sites could be misclassified as "non-breeding" if 

we missed photographing extant fawns at the cameras, and the models estimate how often this occurred. With this dataset 

we ran several competing models, each with different assumptions about how detectability, breeding occupancy, and non-

breeding occupancy varied through time and in relation to landscape features. We tested whether the probability of 

detection was either (1) constant, (2) varied among seasons, or (3) varied among surveys. We likewise tested whether site 

occupancy of breeders and non-breeders was either (1) constant, or (2) varied in relation to landscape features. We used 

hierarchical models in the Program Presence (ver. 6.2) to estimate WTD occupancy (ψ), detectability (p), and breeding state 

(R), where: 

ψi = probability that site i is occupied, regardless of reproductive state 

Ri = conditional probability that young occurred, given that site i is occupied 

ψi(breeding) = unconditional probability that site i is occupied with breeding = ψi * Ri 

p(1)it = probability that occupancy is detected for site i, period t, given that true state = 1 (non-breeding), 

p(2)it = probability that occupancy is detected for site i, period t, given that true state = 2 (breeding), 

δit = probability that evidence of successful reproduction is found, given detection of occupancy at site i, period 

t, with successful reproduction (Nichols et al. 2007). 

 Occupancy models provide a per-survey estimate of p, and from this we calculated the probability of false absence 

(PFA) across the three surveys as [1-p]
3
 (Long et al. 2008). In the event that occupancy models failed to converge and could 

not estimate ψ and R, we also used generalised linear models (GLMs) to determine whether fawn occurrence varied with 

landscape features. The GLM approach assumes that detectability over the one-month survey was sufficiently high that the 

uncorrected number of months with detection is a reliable measure of relative site-use.  We summed the number of spring 

months (April, May, June) with and without breeding across all three survey years creating a 0-9 response variable (3 spring 

months times 3 years). We modelled number of breeding-months as a binomial count model (GLM; binomial errors, log 

link) in R ver. 3.1.1 (R Foundation for Statistical Computing 2014) against natural and anthropogenic landcovers, using the 

same hypotheses we made for adult deer (Table 3-2).  

Results  

Cross-scale analysis 

Of the 20 different spatial scales we examined, landscape measured at the 1000-m radius scale best explained 

annual deer relative abundance (Figure 3-3a) and deer persistence (Figure 3-3b). In each case this model was supported by 

over 98% of the evidence (AICw = 0.98 and 0.99, respectively). The 1000-m scale also best explained winter deer 

persistence (Figure 3-3c), providing strong evidence that variables measured at this scale are affecting deer distribution, 

regardless how we measured deer, or the time of year we sampled them. We used variables measured at the 1000-m scale 

in all subsequent species distribution models. 
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Deer-landscape relationships  

There was strong evidence (AICw > 0.99) that annual deer relative abundance was best explained by upland 

deciduous forest cover and all anthropogenic variables (model 28, Table 3-2). That is, there is a 99% probability that this 

model better explained deer relative abundance than any other model in Table 3-2, each of which had concomitantly small 

AIC weights (Figure 3-4a). The relationship between annual deer relative abundance (deer counts) and landscape features 

are illustrated in Figure 3-4. These results are mirrored for annual deer persistence: model 28 is supported by most (AICw > 

0.99) of the weight of evidence (Figure 3-4b). When we examined only winter deer persistence, the results are the same; 

model 28 is supported by most of the weight of evidence (Figure 3-4c).  

In other words, whether we measure deer distribution as total counts of deer detections, or months of deer 

presence; or whether we use all years of data or just winter months; the combination of upland deciduous forest and 

Figure 3-3. Landscape variables 

measured at the 1000-m radius 

spatial scale best explained (a) 

annual deer relative abundance; (b) 

annual deer persistence (b); and (c) 

winter deer persistence. The weight 

of evidence in each case is high 

(AICw > 0.9), suggesting very strong 

support for this spatial scale. 

a b 

c 
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anthropogenic features best explains deer distribution in the northeast boreal forest. Deer relative abundance was 

positively related to upland deciduous forest, cutblocks, well sites, cutlines, pipelines, and block features. Deer abundance 

was negatively related to 3D seismic, roads, and trails (Tables 3-3 to 3-5).  

As expected however, the minimum adequate model selected by the stepwise procedure outperformed all other 

models for every response variables (AICw > 0.99), and retained slightly different variables than were in model 28 (Tables 3-

3 to 3-5). These models performed well. The best-fit model of annual deer relative abundance explained 65.5% of the 

deviance in the deer data, and had a prediction error of 15%. The best-fit model of annual deer persistence explained 58.9% 

of the deviance, and carried a prediction error of 0.02%. The best-fit winter persistence model explained 44.8% of the 

deviance in the winter deer data, and had a prediction error of 0.07%. Though the variables retained in these models are 

slightly different, they nevertheless reinforce the conclusion that a combination of upland deciduous forest and 

anthropogenic features – cutblocks, well sites, trails, and block features – best explained annual white-tailed deer relative 

abundance and persistence. These relationships were also reflected in winter months, wherein cutblocks, trails, and block 

features best explained deer persistence. 

 

  

a b 

c 

Figure 3-4. A combination of upland 

deciduous and anthropogenic 

features (model 28) best explained 

(a) annual deer relative abundance; 

(b) annual deer persistence (b); and 

(c) winter deer persistence. The 

weight of evidence in each case is 

high (AICw > 0.9). Model numbers 

refer to Table 3-2. 
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Table 3-3a. Parameter estimates from the best supported candidate model (#28, Table 2) of annual deer relative abundance 
(number of deer detections over 36 months at camera sites), modelled against landscape features. 

Parameter Estimate std. error t-value p-value 

(Intercept) 4.33 3.99 1.09 0.28 

Upland deciduous forest 0.13 0.03 4.20 < 0.00 

Cutblocks 0.29 0.09 3.43 < 0.00 

Well sites 0.62 0.38 1.60 0.11 

3D seismic -0.14 0.29 -0.48 0.63 

Cutlines 0.12 1.96 0.06 0.95 

Pipelines 1.01 0.39 2.59 0.01 

Roads -0.77 1.40 -0.55 0.58 

Trails -3.29 1.63 -2.02 0.05 

Block features 1.56 0.40 3.91 < 0.00 

Camera days 0.00 0.00 1.35 0.18 

 
 
Table 3-3b. Parameter estimates from the best-fit stepwise model of annual deer relative abundance (number of deer 
detections over 36 months at camera sites), modelled against landscape features.* 

Parameter Estimate std. error t-value p-value 

(Intercept) 4.17 2.25 1.85 0.07 

Upland deciduous 0.15 0.03 4.89 0.00 

Upland mixedwood 0.26 0.13 2.09 0.04 

Lowland spruce 0.06 0.04 1.54 0.13 

Cutblocks 0.30 0.08 3.93 0.00 

Well sites 0.56 0.34 1.63 0.11 

Pipelines 1.11 0.36 3.03 0.00 

Trails -2.73 1.55 -1.76 0.08 

Block features 1.58 0.37 4.30 0.00 

  



Page 33 

Table 3-4a. Parameter estimates from the best supported candidate model (#28, Table 2) of annual deer persistence 
(number of months a deer was present at camera sites, out of 36), modelled against landscape features.  

Parameter Estimate std. error t-value p-value 

(Intercept) 0.22 1.01 0.22 0.83 

Upland deciduous forest 0.02 0.01 3.53 < 0.00 

Cutblocks 0.07 0.02 3.72 < 0.00 

Well sites 0.26 0.09 2.92 0.01 

3D seismic -0.02 0.06 -0.37 0.71 

Cutlines -0.19 0.42 -0.46 0.65 

Pipelines 0.01 0.08 0.13 0.90 

Roads -0.15 0.30 -0.48 0.63 

Trails -0.88 0.34 -2.63 0.01 

Block features 0.41 0.12 3.60 < 0.00 

Camera days 0.00 0.00 -0.15 0.88 

 
Table 3-4b. Parameter estimates from the best-fit stepwise model of annual deer persistence (number of months a deer 
was present at camera sites, out of 36), modelled against landscape features.  

Parameter Estimate std. error t-value p-value 

(Intercept) -0.16 0.19 -0.88 0.38 

Upland deciduous 0.03 0.01 3.89 0.00 

Cutblocks 0.07 0.02 4.27 0.00 

Well sites 0.24 0.08 3.06 0.00 

Trails -0.88 0.30 -2.89 0.01 

Block features 0.41 0.10 4.06 0.00 

 

Table 3-5. Parameter estimates from the best supported candidate model (#28, Table 2) of winter deer persistence (number 
of months a deer was present at camera sites, out of 36), modelled against landscape features.  

Parameter Estimate std. error t-value p-value 

(Intercept) -2.57 1.71 -1.50 0.14 

Upland deciduous forest 0.02 0.01 2.17 0.03 

Cutblocks 0.11 0.03 3.65 0.00 

Well sites 0.18 0.14 1.24 0.22 

3D seismic -0.03 0.11 -0.24 0.81 

Cutlines -0.29 0.64 -0.45 0.66 

Pipelines 0.03 0.13 0.24 0.81 

Roads -0.03 0.48 -0.06 0.95 

Trails -1.61 0.56 -2.87 0.01 

Block features 0.54 0.17 3.21 0.00 

Camera days 0.00 0.00 0.90 0.37 
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Table 3-5a. Parameter estimates from the best-fit stepwise model of winter deer persistence (number of months a deer was 
present at camera sites, out of 36), modelled against landscape features.  

Parameter Estimate std. error t-value p-value 

(Intercept) -1.30 0.31 -4.20 0.00 

Upland deciduous 0.02 0.01 2.47 0.02 

Cutblocks 0.10 0.02 4.02 0.00 

Trails -1.32 0.47 -2.78 0.01 

Block features 0.59 0.15 4.05 0.00 

 

Figure 3-5. The relationship between annual deer relative abundance (# counts at each camera site over three 

years) and some landscape features, from the best-supported candidate model (#28, Table 3-2). These graphs show 

univariate relationships, rather than the relationships from the multi-variable models, for illustration.  
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Evidence of breeding 

Of 112,648 deer images, 12,460 images (11.1%) had evidence of young of the year. This included single fawns 

(92.9%), twins (7.6%) and triplets (0.6%). There was a marked drop in the distribution of successful breeding across years. 

Of 62 sites, successful breeding was detected at 36 sites (58.1%) in 2012, 22 (35.5%) in 2013, and 12 (19.4%) in 2014. 

Among all years pooled together, 45 of 62 sites (72.6%) had evidence of breeding in at least one year. 

 

White-tailed deer breeding distribution 

Reproductively successful deer – does with fawns – were predicted by occupancy models to be widespread across 

the study area in spring 2012 following the mild winter (ψb = 0.89, SE = 0.14), as well as the springs of 2013 (ψb = 0.98; SE = 

0.02) and 2014 (ψb = 0.95; SE = 0.03) following the severe winters. However, these models were unstable, and convergence 

on a maximum likelihood estimate could not be reached in all cases. This, and the fact that the breeding occupancy 

estimates do not fit with the observed decline in the distribution of breeding among years, suggests more work is needed to 

understand dynamics in reproduction across this landscape. Moreover, we were unable to use occupancy models to 

determine whether the fraction of occupied sites with breeding varied with landscape covariates, as there was very little 

variation in breeding success across sites  (as measured by occupancy, which seems to be the wrong tool in this case). 

Models failed to converge and estimates of occupancy and probability of breeding were unreliable in the models with 

covariates. However, the probability of false absences for deer with fawns was ≤ 0.002 in all years, suggesting that we 

reliably detected fawns when they occurred, and that uncorrected presence-absence data could be used with generalized 

linear models to examine fawn occurrence.  

We used observed number of months of breeding (0 to 9) in generalized linear models to test whether breeding 

success varied spatially as a function of natural and anthropogenic landscape features. The best-supported generalised 

linear model (AICw = 0.80; Figure 3-6) suggests the percent of deciduous forest cover, 3D seismic lines, traditional seismic 

lines, and pipelines best explained the occurrence of white-tailed deer with fawns. All variables were significantly positively 

related to fawn occurrence (Table 3-6). 

Figure 3-6. A combination of 

upland deciduous and 

anthropogenic features (model 

31) best explained the 

occurrence of white-tailed does 

with fawns. The weight of 

evidence is high (AICw > 0.8). 

Model numbers refer to Table 

3-2. 
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Table 3-6. Parameter estimates from the best supported candidate model of spring fawn occurrence (number of spring 
months of detections over 3 years), modelled against landscape features. 

Parameter Estimate std. error z-value p-value 

(Intercept) -2.49 0.19 -13.03 < 0.00 

Upland deciduous forest 0.014 0.003 4.48 < 0.00 

3D seismic lines 0.10 0.03 3.47 < 0.00 

Cutlines 1.15 0.20 5.66 < 0.00 

Pipelines 0.08 0.03 2.55 0.01 

 

 

Discussion  

Upland deciduous forest and anthropogenic features were the best predictors of white-tailed deer relative 

abundance and persistence, both annually and in winter. In all models, deer were more likely to occur where there was 

more upland deciduous forest in the landscape. This result is perhaps intuitive. Abundant forage is critical to deer 

persistence; white-tailed deer diet is dominated by the leaves and stems of woody deciduous plants (as well as grasses and 

forbs); conifer needles offer comparatively low nutritional value (Moen 1978, Hewitt 2011). Upland deciduous forest 

provides abundant ungulate browse in the boreal forest. Moreover, areas of anthropogenic footprint such as cutblocks tend 

to regenerate into young, early-successional species that also provide abundant forage (Fisher and Wilkinson 2005). We 

expected that forest cutblocks from timber harvest would drive this relationship, as white-tailed deer were frequently 

observed in cutblocks during the aerial survey over the study area this year (L.D. Roy, pers. obs.). Although WTD are indeed 

using cutblocks, the area covered by other anthropogenic footprint – well sites, industrial block features, and pipelines, 

always explained deer occurrence better than cutblocks alone. The cumulative effects of multiple resource sectors that 

have so radically altered the Alberta boreal landscape (Pickell et al. 2013, Pickell et al. 2015) collectively increase the 

amount of the landscape covered by early seral vegetation, augmenting natural deciduous landcover, providing abundant 

deer browse. These landscape features markedly increase both the abundance and persistence of white-tailed deer in the 

boreal landscape. 

Some anthropogenic features had a negative effect on WTD distribution. No matter how measured, WTD tended 

to avoid areas with high proportion of roads and trails. "Roads" provide motorized access; "trails" are cleared linear 

features accessible by foot and off-road vehicle, and provide human access into forested areas that is not easy or possible in 

intact areas. The consistent negative relationship with trails suggests deer avoid these features, perhaps because they 

perceive these as high-risk areas. Although human access into forested areas is recognized as a key factor in game 

management, surprisingly little research has been devoted to understanding the effect of industrial access on wildlife 

distribution (Trombulak and Frissell 2000). Some research in Alberta shows recreational access can have a significant effect 

on ungulate distribution (Muhly et al. 2011, Rogala et al. 2011), and we can hypothesize that with extensive human 
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presence on this landscape – petroleum industry workers, hunters, and recreational outdoorsmen – increased access may 

be deterring WTD use of some areas. From a management perspective, this relationship is worth further consideration. 

The most pervasive anthropogenic features in the landscape were cutlines (traditional seismic lines) and 3D 

seismic. Adult deer avoided 3D seismic, though the effect was not significant, suggesting 3D seismic is not having a great 

effect on adult WTD distribution. However, 3D seismic did have positive and significant association with deer reproductive 

success. How 3D seismic is bolstering reproductive success is unknown, though early seral vegetation on the line borders 

may play a role. Traditional seismic lines were likewise significant predictors of deer reproductive success. The effect of 

traditional cutlines was weak for adults, though the relationship between WTD and cutlines changed depending on how we 

measured it. Deer abundance was greater in areas with more cutlines, but deer persistence was lower in these areas. This 

changing direction suggests that deer congregate near these areas but only shortly, because they either (1) leave quickly, or 

(2) suffer mortality. These linear features increase predation rates of wolves on woodland caribou (Whittington et al. 2011, 

McKenzie et al. 2012), and it is reasonable to assume that wolves using cutlines may likewise predate WTD. If deer are 

attracted to cutlines (increasing abundance) but then are predated (reducing persistence), cutlines may pose an ecological 

trap (Schlaepfer et al. 2002). However, the positive relationship between seismic lines and reproductive success suggest 

exactly the opposite: females occurring in areas with high densities of lines are more likely to produce fawns.  

White-tailed deer habitat relationships vary seasonally in other regions (DeYoung 2011, DeYoung et al. 2011), and 

so we expected different habitat relationships in winter than in the full-year period. This was not the case, except for a few 

variables. Relationships remained the same in winter as they were year-round. In fact, the stepwise model of winter deer 

persistence selected fewer variables than did the stepwise model of annual deer persistence, suggesting fewer features are 

important in winter: upland deciduous forest, cutblocks, trails, and block features. Concordance between annual and winter 

models suggests that the primary factors driving deer distribution in this landscape remain constant among seasons: an 

abundance of available deciduous and early seral forage, and avoidance of human access.  

The rapid recolonization after overwinter reduction observed in Chapter 2 suggests that the landscape provides 

abundant forage upon which white-tailed deer may quickly capitalize. Given this rapidity, a high degree of overwinter 

survival is likely an important component of that recolonization. Our analysis of habitat associations of does with fawns 

suggests breeding success may also play an important role. Many sites in this landscape supported successfully breeding 

deer immediately after moderate and severe winters, and models (tentatively) predict that breeding is widespread in all 

three years. Pregnancy induces markedly greater metabolic costs on female deer (Pekins et al. 1998, Ditchkoff 2011). If 

WTD females in this landscape were metabolically stressed after severe winters, female mortality, small fawns with low 

survival (Ditchkoff 2011), and starvation-induced abortions (Worden 1992, in Pekins et al. 1998) might be expected to 

reduce reproductive success. We observed female overwinter mortality (Chapter 4), but obviously we have no evidence of 

fawn survival or of pregnancy and abortion rates, which would require luteal, protein assay, or ultrasound examination (e.g. 

Andelt et al. (2004)). Further research is required to resolve these mechanisms. 

Notwithstanding, we found no evidence that overwinter mortality (or other mechanisms of population reduction) 

were extensive enough to markedly reduce population distribution. Instead, we found that although the distribution of 

fawning decreased through time in conjunction with severe winters, fawning was still widespread and WTD distribution 
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remained stable. Fawning success was greater in areas with more deciduous forest and anthropogenic features associated 

with early seral vegetation (seismic lines, pipeline rights-of-ways). Nutrition has widely known effects on ungulates' 

probability of pregnancy, over-winter survival, parturition, and neonatal survival (Parker et al. 2009, Hewitt 2011). Greater 

nutrition from abundant available forage can prevent metabolic stress and increase survivorship and reproductive success 

(Hewitt 2011), although this relationship is not straightforward. Forage biomass is in itself not a good predictor of deer 

nutrition, as forage distribution relative to inedible vegetation plays a significant role (Spalinger and Hobbs 1992). Edible 

forage is concentrated in cutblocks and industrial block features, and this concentrating effect may be important. This may 

be especially true in spring, during green-up, when energetic demands of gestation are great (Pekins et al. 1998).  

In summary, our conclusions about white-tailed deer distribution and habitat relationships are consistent across 

different metrics of abundance, and between age-sex classes. Our research strongly suggests that resource extraction on 

this boreal landscape is providing nutritional subsidies that provide for stable deer distributions over time – even after 

severe winters. The expansion of white-tailed deer is a continental-scale issue ongoing for over a century (Côté et al. 2004, 

Heffelfinger 2011). It has occurred despite heavy hunting in some regions, and despite a massive expansion in urban and 

rural residential landscapes. The conversion of mature forest, especially conifer forest into species that provide ample deer 

forage is a primary mechanism of this continental expansion. Our research shows that the very unique forms of 

anthropogenic disturbance in this boreal forest landscape are contributing to WTD expansion in the northerly region of the 

species' range. From a management perspective, managing for increased human access to facilitate wildlife harvest may be 

one way of managing white-tailed deer populations in the boreal forest. However, the influence of early seral vegetation is 

pervasive, suggesting that to be effective over the long term, white-tailed deer population management through increased 

harvesting may have to be augmented by landscape management. 
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CHAPTER 4: WHITE-TAILED DEER SPACE-USE AND RESOURCE 

SELECTION IN THE BOREAL FOREST 

Introduction  

Animals depend on multiple resources for survival, and the adaptation of a species to its available resources 

underpins niche theory and most of ecology (Grinnell 1917, MacArthur 1968, Chase and Leibold 2003, Soberon 2007). 

Optimal foraging theory dictates that an animal will use its environment to obtain resources in a way that maximizes its 

fitness and minimizes mortality (Fretwell and Calver 1969, Fretwell 1972, Pianka and Parker 1975, Pyke et al. 1977, Krebs 

1978, Huey and Pianka 1981, Pianka 1981). Consequently, individuals' space-use and resource selection have underpinned 

much of wildlife ecology research for the last two decades or more (Millspaugh and Marzluff 2001, Boyce et al. 2002, Manly 

et al. 2002, Johnson et al. 2006, Millspaugh et al. 2006). Though advances in monitoring technologies such as camera traps 

have increased research examining species-habitat relationships at population and landscape scales (Fisher et al. 2011, 

O'Connell et al. 2011, Burton et al. 2015), the examination of individual's space use remains a key pursuit in ecology. 

Conceptually, an individual's selection of resources is expected to scale up to home-range selection, and thence to 

population distribution. Johnson (1980) suggested there is a "natural ordering" of these selection processes across space. 

First-order selection defines the full species range of an organism. Second-order selection defines the selection of a home-

range from within that species range. Third-order selection defines the selection of habitats or features (such as forest 

types) within that home range (Johnson 1980). This conceptual framework has been widely adopted as a foundation for 

explaining species' resource selection across different spatial scales (Rettie and Messier 2000, Bowyer and Kie 2006), 

although the observed patterns of selection across scales have been revealed as much more complex than this simple 

hierarchy would suggest (Wheatley and Johnson 2009, Fisher et al. 2011). For example, a deer's selection of an individual 

forage plant within a deciduous stand does not easily scale up to explain the selection of forest types within a home range, 

or its selection of a home range within the boreal forest. An entire sub-field of ecology has emerged to understand why 

processes change across spatial scales (Wiens 1989, Kotliar and Wiens 1990, Wiens et al. 1993, Schneider 2001, Scott et al. 

2002). Nevertheless, resource selection and space-use by individuals does provide a useful piece of the puzzle that is 

species' population distribution. We sought to understand space-use and resource selection by white-tailed deer in 

Alberta's boreal forest, to test whether conclusions made at the scale of populations are consistent with individuals' 

selection of resources. 

White-tailed deer may be one of the most captured, collared, and radio-tracked of North American mammals. 

Scores of studies have examined white-tailed deer space use across their continental range from Florida to Canada; 

unsurprisingly, these studies reveal a remarkable degree of variability (Stewart et al. 2011). In general, white-tailed deer 

space-use is affected by the usual suspects: available forage, water, and escape cover, though the exact features providing 

these requirements vary across habitats (Stewart et al. 2011). Moreover, white-tailed deer sexually segregate (McCullough 

et al. 1989, Kie and Bowyer 1999, DePerno et al. 2003), further affecting space-use by individuals. Sexual segregation and 

space-use is density- dependent (Kie and Bowyer 1999), complicating generalizations. White-tailed deer movement and 
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resource selection also changes seasonally, but not in a uniform way. Some deer individuals are obligatory migrators, 

moving between distinct summer and winter ranges; some are conditional migrators, moving only under specific 

environmental conditions relating to temperature or snow depth; some are residents and do not move at all (Sabine et al. 

2002, Grovenburg et al. 2009). Finally, landscape structure is known to affect mule deer (Odocoileus hemionus) space-use 

(Kie et al. 2002) and this also holds true for white-tailed deer (Long et al. 2005) – meaning that space-use is expected to 

vary with the degree of habitat fragmentation and loss from anthropogenic landscape development.  

All of this variability – even within populations and landscapes – means that generalizations about deer space-use 

are elusive; predictions about expanding populations in new environments are even less reliable. Very little is known about 

space use and resource selection by white-tailed deer in northern boreal forests, where they are relative newcomers.  How 

do Alberta boreal deer populations use and share their space? What resources do they select or avoid? How does resource 

selection change across seasons? We endeavored to answer these questions by capturing, collaring, and mapping locations 

of white-tailed deer females.  

Methods  

We captured and collared white-tailed deer in our study area in the northeast boreal forest (Figure 4-1), in the 

vicinity of our camera array to support density estimates (Chapter 5). We fitted deer with LOTEK Iridium Track M 3D 

telemetry collars
6
. The collars weigh 840 g (approximately 1.5% of body weight) with a centre collar size of 44 +/- 7 cm. 

These collars use the Iridium satellite system to download GPS (Geographic Positioning System) locations from the collars, 

and transmit these data to the user's computer via email. Collars were programmed to record a location every two hours 

(12 locations per day), and provided approximately two years of battery life. 

We captured six white-tailed deer females using net-guns from a helicopter
7
 in March 2012 and January 2013 

(Appendix 2). In February 2013 we switched to ground capture to better target deer within our camera array. We tried 

stalking deer with a tranquilizer gun, but this proved ineffective. We also attempted to capture deer using rocket-net on 

baited stations, but this was likewise ineffective. Finally, we used Clover traps (Clover 1956) equipped with TrapSmart
TM

 

devices (Vernon, NJ, USA), which sends an email to a cellphone 

when the trapdoor closes. Clover traps are expected to minimize 

stress on deer relative to other modes of capture (Delgiudice et al. 

1990a, DelGiudice et al. 2001, Haulton et al. 2001). Capture and 

handling protocols were reviewed and approved by AITF's Animal 

Care Committee, and permitted by Alberta Environment and Parks.  

                                         
6 http://www.lotek.com/iridium-animal-collars.htm 

7 Bighorn Helicopters, Cranbrook, British Columbia 
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Figure 4-1. Satellite collars (coloured dots, unique to each female) were deployed across the study area in 

the vicinity of anthropogenic features including cutblocks (green), 3D seismic (light grey), cutlines (dark 

grey), pipelines and roads (yellow-red spectrum according to width), and well sites (small squares). 
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Traps were placed in locations that cameras or snow tracking data indicated were populated by female white-

tailed deer, and which were within the vicinity of our camera-trapping array. Traps were deployed and pre-baited in 

November, and set and monitored in shifts through the winter, for a total of 222 trap-days. Captured animals were 

physically restrained, assessed for signs of health, ear tagged, fitted with the collar, and then released. GPS locations of 

collared animals were compiled in ArcGIS 10.2 (Esri, Inc) and analyzed. 

GPS bias analysis  

GPS satellite collars provide location data with a high degree of precision, but habitat-selection models generated 

from collars may be biased if collars are more successful at achieving satellite fixes in some habitats than in others. Failed 

fixes can result from different canopy densities or terrain ruggedness (D'Eon et al. 2002, Frair et al. 2004, James III et al. 

2005), collar position (D'eon and Delparte 2005) or a function of programming (e.g. different fix rates set across diurnal 

cycles or across seasons; (Horne et al. 2007)). Some brands of GPS collar are more sensitive to GPS bias than are others 

(Hebblewhite et al. 2007). To quantify the degree of GPS bias potentially occurring in this study, we used stationary collars 

to quantify fix failures and obtain a measure of bias. Following the methods of Frair et al. (2004), we deployed stationary 

collars at multiple sites within different forest stands characteristic of the study area. 

Home range analysis 

We estimated home-range sizes using minimum convex polygon and kernel home-range estimators (Worton 

1989). We used the 95% isopleth, describing 95% of the location volume, as an estimate of each individual’s home range. 

Location data were autocorrelated – that is, a location was dependent on the location before it, because they were 

obtained over short (2-hr) intervals – but Fieberg (2007) showed that autocorrelation does not affect kernel density 

estimates. We calculated home-range sizes using the R package adehabitatHR (Calenge 2006) and examined the 

distribution of these sizes relative to the numbers of locations taken, and looked for differences among seasons. 

Resource selection functions 

We used resource selection functions (Manly et al. 2002) to test whether boreal white-tailed deer individuals 

selected or avoided natural and anthropogenic landscape features. Resource selection functions (RSFs) can employ several 

different models to assess selection or avoidance (Johnson et al. 2006). We opted to use a logistic regression-based model 

to compare used sites (deer telemetry locations) with unused but available sites within the same landscape. We collected 

108,327 deer locations within the Alberta provincial boundary during the study period. As we did not have landscape data 

for neighboring Saskatchewan, where some deer migrated into (Figure 5-1), we truncated the data at the border. We 

created a minimum convex polygon around the outermost locations. Within this polygon, we generated an equal number 

(108,327) of random locations and treated these as available locations. A complementary analysis using step selection 

functions (Thurfjell et al. 2014) was undertaken in a separate analysis and is included as Appendix 3. 
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In ArcGis 10.2, we quantified the % dominant canopy species in forested stands in which the location fell (e.g. 

aspen overstorey with 30% canopy) based on Enhanced Alberta Vegetation Inventory (AVIE) data
8
. We used the Alberta 

Biodiversity Monitoring Institute (ABMI) human footprint layer
9
 data to quantify distance to nearest polygonal 

anthropogenic features – cutblocks, well sites, and other polygonal ‘block features’. We used a high-resolution linear 

features layer
10

 to quantify distance to nearest anthropogenic linear features (e.g. cutline; Table 4-1). When features 

overlapped or were adjacent to one another, they were assigned precedence as described in Appendix 1. The search 

algorithm required exceptionally long time periods to locate rare linear features that were far from deer locations, so we 

truncated the searchable area to within 20-km of the study area. Linear features beyond this distance were recorded as 20-

km away. We assumed that features beyond this distance are unlikely to influence deer habitat selection, and could find no 

literature to the contrary. Locations that fell physically within a feature were recorded as 0-m distant from that feature. 

Composite variables were created for those landscape features that were poorly represented in the landscape (Table 4-1), 

for which we calculated the minimum distance to any feature within that composite variable. We standardized all variables 

by subtracting the mean and dividing by standard deviation using the scale() function in R (R Foundation for Statistical 

Computing 2014). This centers the value of each variable on 0.0 and allows comparison of effect sizes (analogous to the 

slope of the line between deer and the landscape variable). 

Correlated variables share information, therefore including them in the same model may yield spurious results. 

Correlation is often typical of landscape data; for example, some anthropogenic features may be more likely to occur in 

some forest types. To prevent problems induced by collinearity, we explored the data and tested for correlations among 

landscape variables using the Zuur et al. (2010) protocol.  Using Pearson correlation coefficients (r
2
) matrices and multi-

panel scatter plots, we reduced variables within each category by retaining only those variables that were correlated with 

an r
2
 < 0.70. This cutoff retained some partially correlated variables that were of ecological significance. We used variance 

inflation factor (VIF) estimation to examine the effects of including partially correlated variables in multivariate models 

(Zuur et al. 2010). Using a cut-off value of VIF < 3 – a generally accepted threshold to minimize the effects of collinearity in 

models (Craney and Surles 2002) – we used a stepwise approach to further reduce the number of variables retained for a 

global model. The final list of independent variables is listed in Table 4-1; we used these variables in resource selection 

functions. Regression models assume that observations are independent of one another (Bolker et al. 2009). This is 

obviously not the case for telemetry data, in which multiple observations (thousands) are obtained from a single animal. 

Each location is constrained by, and hence correlated with, the previous location – a problem known as serial 

autocorrelation (Fieberg et al. 2010). Moreover, each animal's unique behavior will dictate its choice of resources, such that 

a location from one animal is not directly comparable to a location from a different animal (Aarts et al. 2008, Koper and 

Manseau 2009). Treating each location as the sampling unit is a classic example of pseudoreplication (Hurlbert 1984). To 

                                         
8
 AVIE data were created and provided by Alberta Environment and Parks. 

9
 2010 Provincial Human Footprint layer downloaded from: 

http://www.abmi.ca/abmi/rawdata/geospatial/gisdownload.jsp?categoryId=3&subcategoryId=7 
10

 ABMI and University of Alberta, Integrated Landscape Management Lab 

http://www.abmi.ca/abmi/rawdata/geospatial/gisdownload.jsp?categoryId=3&subcategoryId=7
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overcome this problem, we adopted mixed effects models, which treat each individual as a "random effect", essentially 

calculating a different intercept for each animals' resource selection (Gillies et al. 2006, Aarts et al. 2008, Koper and 

Manseau 2009).  We used generalized linear mixed effects models (binomial errors, logit link) (Zuur et al. 2009, Zuur et al. 

2013) to test whether white-tailed deer were closer to, or further from, each of these features than expected by chance. 

We formulated several hypotheses about how we expected white-tailed deer to respond to natural and anthropogenic 

features. Each hypothesis was characterized by a separate statistical model (Table 4-2). We ranked the weight of evidence 

for each model (and corresponding hypothesis) using an information theoretic approach (Burnham and Anderson 2002).  

 
Table 4-1. Natural and anthropogenic features derived from Alberta Vegetation Index (AVIE) data, and ABMI Human 
Footprint data. These variables were used in multiple models to test predictions about white-tailed deer resource selection 
(Table 4-2). All anthropogenic features were measured as "distance to the nearest feature of this type". 

Variable Name Description 

CUTBLOCKS Forest harvesting areas with mature trees removed and saplings regrowing 

CUTLINE Traditional seismic petroleum exploration line ca. 7-10 m wide 

3D SEISMIC Intensive (hashmarked) seismic petroleum exploration line ca. 1-3 m wide 

ELECTRICAL Electrical transmission line and grassy right of way 

HIGH.DENSITY High density industrial sites, representing high human activity (e.g. oil drilling camp) 

INDUSTRIAL.MINE Borrow Pits, Industrial Sites, Mine Sites, Well Sites, Peat Mines 

NEAREST.BLOCK CutBlocks, High Density, Other Disturbed, Industrial Mine, Settlement, Wellsite 

NEAREST.LINEAR Cutline, Cutline3D, Electrical, Pipeline, Trail, Truck Trail, Rail, Road 

OTHER.DISTURBANCE Recreation areas and other vegetated areas created for human use, including golf courses, 
grave yards, vegetated edges of airports, and any other disturbed areas with vegetation 

OTHER.LINEAR All roads including one and two lane, paved and gravel, railways, and winter roads 

PIPELINE Petroleum pipeline and grassy right of way 

RAIL Railway line and associated vegetated right of way 

ROAD Hard surface road, Roads including vegetated verge, Unimproved (gravel) roads 

SETTLEMENT Cultivated Areas, Municipal Areas, Urban Areas, Rural Residential Acreages 

TRAIL Unimproved dirt track ca. 5-10 m wide navigable by off-highway vehicle, foot, or horseback 

TRUCK TRAIL Unimproved dirt track navigable by truck 

PCT_AW* Trembling aspen Populus tremulodies 

PCT_BW White birch Betula papyrifera 

PCT_FB Balsam fir Abies balsamea 

PCT_LT Tamarack Larix laricina 

PCT_PB Balsam poplar Populus balsamifera 

PCT_PJ Jack pine Pinus banksiana 

PCT_SB Black spruce Picea mariana 

PCT_SW White spruce Picea glauca 

These are composite variables; measuring the distance to the closest of any of these features, regardless of type. *PCT 
refers to the percent of the forest canopy overstorey dominated by this leading tree species. We also included variable 
denoted uPCT, referring to the percent of the forest understorey dominated by each of these tree species.  
 



Page 45 

Table 4-2. Hypotheses about landscape-scale deer distribution in the northeast boreal forest, grouped by similar types of 
natural and anthropogenic features. Variable names refer to Table 4-1. 
General Hypothesis Model set Model Model variables Hypothesis: habitat use by white-

tailed deer is predicted by… 

 Global Model 1 CUTBLOCKS + HIGHDENSIT + 
OTHERDISTU + INDUSTRIALMINE + 
SETTLEMENT + CUTLINE + CUTLINE3D + 
ELECTRICAL + PIPELINE + TRAIL + 
TRUCKTRAIL + RAIL + ROAD + 
OTHERLINEAR + PCT_AW + PCT_BW     + 
PCT_PB + PCT_PJ + PCT_SB + PCT_SW + 
PCT_FB + PCT_LT + UPCT_AW + 
PCT_BW + UPCT_PB + UPCT_PJ + 
UPCT_SB + UPCT_SW + UPCT_FB + 
UPCT_LT 

All natural and anthropogenic 
variables. 

Polygon (or block) 
disturbances provide 
early seral vegetation 
and hence a forage 
subsidy for deer. 

Anthropogenic  
Footprint_Block 

2 CUTBLOCKS + HIGHDENSIT + 
OTHERDISTU + INDUSTRIALMINE + 
SETTLEMENT + WELLSITE  

Distance to all polygonal human 
footprint features. 

  2a NEAREST BLOCK FEATURE Distance to the nearest block 
feature, regardless of type. 

  3 INDUSTRIAL MINES Petroleum extraction features with 
grass and shrubs not trees, often 
maintained in a disturbed state. 

  4 WELL SITES Distance to well sites, disturbed and 
grassy or shrubby; cameras suggest 
they are important for deer. 

  5 CUTBLOCKS Distance to forest harvested areas, 
which regrow trees, and are 
important for deer in early seral 
stages. 

  6 SETTLEMENT  Distance to residential areas and 
urban town sites, which provide 
early seral vegetation and possibly 
refuge from predators. 

  7 OTHER DISTURBANCE Distance to other human footprint 
disturbance, which may have some 
unknown effect. 

Linear disturbances 
change how deer move 
but also change how 
predators move, so are 
associated with 
predation risk and may 
be avoided. 

Human 
Footprint_Linear 

8 CUTLINE + CUTLINE3D + ELECTRICAL + 
PIPELINE + TRAIL + TRUCKTRAIL + RAIL + 
ROAD 

All linear features. 

  8a NEAREST LINEAR FEATURE Distance to nearest linear feature, 
regardless of type. 

  9 CUTLINE + CUTLINE 3D + ELECTRICAL + 
PIPELINE 

Industrial linear features. 

  10 RAIL Railway lines only. 
  11 ROAD Road features only. 
  12 TRAIL + TRUCKTRAIL Trail features only, as trails provide 

human access into forests but 
without the vehicle hazard danger, 
so act differently than roads. 

 Distance to 
nearest 
SAGD features 

13 CUTLINE, CUTLINE3D, WELLSITES Petroleum extraction features. 
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  14 CUTLINE Traditional seismic lines, which 
facilitate wolf movement and may 
be avoided. 

  15 CUTLINE3D 3d seismic lines may act differently 
than regular seismic (cutlines). 

Deer select habitats 
based on overstorey 
composition; they 
select deciduous but 
avoid conifer. 

Vegetative 
overstorey 

16 PCT_AW + PCT_BW + PCT_PB + PCT_PJ 
+ PCT_SB + PCT_SW + PCT_FB + PCT_LT   

All forest cover overstorey types. 

  17  PCT_PJ + PCT_SB + PCT_SW + PCT_FB + 
PCT_LT   

Conifer forest overstorey cover.  

  18 PCT_AW + PCT_BW + PCT_PB    Deciduous forest overstorey cover. 

Deer select habitats 
based on understorey 
composition, targeting 
stands with deciduous 
understorey.         

Vegetative 
understory         

19 UPCT_AW + UPCT_BW + UPCT_PB + 
UPCT_PJ + UPCT_SB + UPCT_SW + 
UPCT_FB + UPCT_LT     

All forest cover understory types. 

  20  PCT_PJ + PCT_SB + PCT_SW + PCT_FB + 
PCT_LT   

Conifer forest understory cover.  

    21 PCT_AW + PCT_BW + PCT_PB    Deciduous forest understory cover. 

Stand characteristics 
predict deer 
occurrence. 

Successional 
stage 

22 SERAL STAGE + HEIGHT + DENSITY  Stages and characteristics of forest 
stand structure (categorical). 

  23 FC_DOM + HEIGHT + DENSITY Dominant cover class, average 
height of tree cover, and percent of 
ground covered. 

  24 FC_DOM Dominant cover class only. 
  25 HEIGHT Average stand height of leading 

dominant and co-dominant tree 
cover. 

  26 DENSITY Percentage of ground covered by 
tree crown cover. 

  27 SERAL STAGE  Stage of ecological succession and 
average birth year of stand using 
10yr origin classes. 

Cumulative Effects 
Models 

Cumulative 
Effects  

28 COMBINATION OF THE BEST FIT 
VARIABLES FROM EACH MODEL SET 

The combined effect of the best 
supported models. 

Do deer use linear 
features more 
frequently near other 
sources of disturbance 
(early successional 
forage)? 

Interactions 29 BEST SUPPORTED OVERSTOREY 
FEATURES * BEST SUPPORTED LINEAR 
FOOTPRINT FEATURES + BEST 
SUPPORTED OVERSTOREY FEATURES * 
BEST SUPPORTED BLOCK FOOTPRINT 
FEATURES. = MODEL 16 * MODEL 8 + 
MODEL 16 * MODEL 2 

Footprint x habitat interaction. 

  30 CUTLINE * WELLSITES + CUTLINE3D * 
WELLSITES 

Linear features x block features 
interaction. 

  31 CUTLINE * CUTBLOCKS + CUTLINE3D * 
CUTBLOCKS 

Petroleum and forest harvesting, 
acting synergistically. 
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Each model produces an Akaike's Information Criterion (AIC) score (Burnham and Anderson 2002), which is a 

function of the number of variables in the model, and the log-likelihood of the model – the amount of variance in the deer 

telemetry data that the model can explain. A model with a low AIC score indicates that this model better explains deer 

locations than a model with a high AIC score. We normalised AIC scores as AIC weights (Anderson 2008); AIC weights of a 

set of models sum to 1.0, and are analogous to the probability that a model is the best one of the set. For example, if the 

best-fit model has an AIC weight of 0.3, there is a 30% chance that it is the best-fit model. If the best model has an AIC 

weight of 0.8, there is an 80% chance it is the best-fit model.  

Results  

White-tailed deer captures 

We captured 6 white-tailed deer females via helicopter net-gunning in 2012. All of these collars immediately failed 

(Figure 4-3). The collar problems were identified by the manufacturer and rectified; new collars were used in subsequent 

deployments. We tried helicopter captures again in 2013 and captured 5 females; all but one died shortly thereafter 

(Appendix 2). The low success rate and high mortality rate of known-fate deer lead us to not recommend helicopter 

captures for boreal white-tailed deer. We captured white-tailed deer 74 times with Clover traps in 222 trap nights (Table 4-

3). We collared 29 females. Clover trapping proved a far more effective way to capture boreal deer than other methods 

attempted. 

 

Table 4-3. Capture rates of boreal white-tailed deer using baited Clover traps. 

Age-sex class Number captured 

collared females 29 
captured males 10 
captured fawns 29 
recaptured fawns 2 
recaptured collared does 3 
total captures 73 
total trap nights 222 
total captures / 100 trap nights 32.8 
total collars / 100 trap nights 13.1 

 

Location data 

Satellite location data were collected for 38 white-tailed deer females. A total of 111,978 telemetry locations were 

obtained, with a mean of 2946 per collared deer (range = 133 - 12,236; Figure 4-2 a,b). Periods of data collection – from 

date of capture to date of mortality or collar fail, or to June 4, 2015 for active collars  – ranged from 15 to 778 days (mean = 

221, median = 162, sd = 192 days; Figure 4-3).  

 

 



ALBERTA BOREAL DEER PROJECT 

 

Page 48 

 

Figure 4-2. (a) The number of collared deer for 

which location data were collected throughout 

the study period. Reference lines indicate July 

1 (red) and January 1 (blue) of each year, from 

2012-2015. (b) The total number of telemetry 

locations collected each day, indicating the 

monitoring intensity over the study period. 
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Home range sizes 

There was considerable variation in extent of movement across the 38 collared deer, with 95% Minimum Convex 

Polygon (MCP) home ranges spanning from 0.29 to 850 km
2
 (mean = 84, median = 5.1, sd = 183). Most individuals had small 

home ranges while a few covered very large areas during the period of data collection (Figure 4-4). Ten of the collared 

females undertook large seasonal movements to cover total areas greater than 75 km
2
. Among the remaining 28 monitored 

deer, mean 95% MCP was 7.3 km
2
 (median = 3.5, sd = 9.4). Home range sizes were highly correlated whether estimated by 

MCP or by 95% and 50% kernel density (not shown). As would be expected, home range size (or extent of movement) was 

correlated with length of observation period and number of locations; however, the correlation was not very strong (r < 

0.35; Fig. 4-5), implying that other factors influenced variation in movement behaviours. Grouping deer by the season(s) in 

which they were monitored showed that deer monitored primarily during winter had much smaller home ranges sizes 

(mean = 4.0 km
2
, sd = 6.1, n = 23) than deer monitored between spring and fall (mean = 56.7 km

2
, sd = 73.8, n = 9) or across 

the entire year (mean = 267 km
2
, sd = 384.0, n = 6; Fig. 4-6).  Similarly, an analysis of mean step lengths showed that, on 

average, deer moved to a greater extent during summer than winter (Fig. 4-7; further details in Appendix 3). Further 

analysis is warranted of individual variation in home range sizes, using standardized time periods, as well as in location of 

ranges and seasonal changes. 

Figure 4-3. The duration that each individual female (CollarID) was monitored varied markedly, as some 
died quickly whereas others remained alive throughout much of the study. 
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Figure 4-4. Distribution of home range sizes (estimated by 95% MCP) across: TOP, all collared female deer 
over the entire period that they were monitored (note that these include seasonal migratory movements 
for some deer); BOTTOM, only those with non-migratory ranges less than 50 km2. 



Page 51 

 

Figure 4-5. Correlation between 95% MCP home range size and number of days of GPS monitoring for collared deer. 

 

Figure 4-6. Variation in home range size by season(s) in which deer location data were collected. 
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Figure 4-7. Mean step lengths (across 2-hour fix intervals) for collared deer during different months. See Appendix 3 for 

more information about step lengths and step selection functions. 

 

Resource selection functions 

 We ranked multiple models in a nested approach (Table 4-2) to test hypotheses about how white-tailed deer 

females selected or avoided natural and anthropogenic landscape features. Within each block of models describing a 

common type of features (linear, forest overstorey, etc.), the most complex model of each set was definitively best-

supported (Table 4-4).  Within each model group, the most complex model was best-supported (highest AIC weight). 

Support for the best model was unambiguous, as AICw ~ 1.0 in each case. Among the best-supported models within each 

group, the cumulative effects model best described white-tailed deer resource selection, with AICw ~ 1.0. 
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Table 4-4. Ranking of white-tailed deer resource selection models, within nested groups of similar landscape features. 
Model numbers refer to models described in Table 4-1. 
Model Group Model number AIC ΔAIC AICw 
     

Block features Model 2 250007.5 0.0 1.00 
 Model 2a 273978.7 23971.2 0.00 
 Model 3 300334.7 50327.2 0.00 
 Model 4 280927.6 30920.1 0.00 
 Model 5 299897.6 49890.1 0.00 
 Model 6 280311.7 30304.2 0.00 

Linear features Model 8 244572.7 0.0 1.00 
 Model 8a 275901.6 31328.9 0.00 
 Model 9 275562.7 30990.0 0.00 
 Model 10 293288.1 48715.4 0.00 
 Model 11 286339.8 41767.1 0.00 
 Model 12 258667.9 14095.2 0.00 

SAGD features Model 13 276817.2 0.0 1.00 
 Model 14 296032.8 19215.6 0.00 
 Model 15 299371.1 22553.9 0.00 

Forest overstorey Model 16 257765.2 0.0 1.00 
 Model 17 274790.1 17024.9 0.00 
 Model 18 264957.1 7191.9 0.00 

Forest understorey Model 19 291352.5 0.0 1.00 
 Model 20 293309.8 1957.3 0.00 
 Model 21 298316.4 6963.9 0.00 

Successional stage Model 22 187539.9 0.0 1.00 
 Model 23 195156.6 7616.7 0.00 
 Model 25 275144.3 87604.4 0.00 
 Model 26 208852.7 21312.8 0.00 
 Model 27 246968.3 59428.4 0.00 

Cumulative effects  Model 28 186655.6 0.0 1.00 
and interactions Model 29 194019.3 7363.7 0.00 
 Model 30 274169.1 87513.5 0.00 
 Model 31 294815.2 108159.6 0.00 

Ranking of best-supported models from each group 

Model Group Model number AIC ΔAIC AICw 

Cumulative effects Model 1 / 28   192900 0.0 1.00 
Block features  Model 2 250008 57107.6 0.00 
Linear features Model 8 244573 51672.8 0.00 
SAGD features Model 13 276817 83917.3 0.00 
Forest overstorey Model 16 257765 64865.3 0.00 
Forest understorey Model 19 291353 98452.6 0.00 

  

The cumulative effects model suggested white-tailed deer resource selection in this boreal landscape is dictated by 

a number of natural and anthropogenic factors (Table 4-5). Deer selected several natural features: aspen stands, white and 

black spruce stands, and stands with larch understorey selected (parameter estimate > |0.1|). Deer weakly avoided a few 

natural features, most strongly black spruce and larch overstoreys. Deer were closer than expected to several 

anthropogenic features: forest harvesting cutblocks, trails, well sites (Figure 4-8), roads, and pipelines. Deer were farther 

than expected from 3D seismic lines (Figure 4-8) and high density industrial sites. Stands with jack pine overstorey and 

industrial mine sites were not significantly selected nor avoided. 
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Table 4-5. Parameter estimates from the best-supported resource selection function of female white-tailed deer in the 
northeast boreal forest of Alberta, Canada, from telemetry locations spanning across all seasons. With the exception of the 
intercept, variables are arranged from strongest positive parameter estimates to strongest negative parameter estimates. A 
positive relationship between deer locations and "distance to" anthropogenic features indicates deer were farther from 
that feature than expected by chance. 
 
Variable Parameter estimate Std. error z value Pr(>|z|) Significance

+
 

(Intercept) -0.294 0.091 -3.22 0.00129 ** 

ELECTRICAL 1.087 0.016 70.10 < 2e-16 *** 

PCT_AW 0.569 0.008 73.36 < 2e-16 *** 

HIGH.DENSITY 0.464 0.012 37.93 < 2e-16 *** 

PCT_SW 0.216 0.006 35.36 < 2e-16 *** 

UPCT_LT 0.214 0.006 33.01 < 2e-16 *** 

PCT_BW 0.119 0.006 21.62 < 2e-16 *** 

CUTLINE3D 0.107 0.014 7.47 7.85E-14 *** 

UPCT_PJ 0.063 0.006 11.16 < 2e-16 *** 

UPCT_PB 0.045 0.007 6.09 1.10E-09 *** 

UPCT_SW 0.031 0.007 4.56 5.12E-06 *** 

PCT_PJ 0.003 0.007 0.48 0.63175 NS 

INDUSTRIAL.MINE -0.014 0.013 -1.10 0.27031 NS 

UPCT_BW -0.015 0.006 -2.31 0.02087 * 

UPCT_AW -0.029 0.007 -3.97 7.25E-05 *** 

PCT_PB -0.045 0.005 -8.31 < 2e-16 *** 

PCT_FB -0.047 0.006 -7.53 4.93E-14 *** 

SETTLEMENT -0.074 0.013 -5.55 2.90E-08 *** 

UPCT_SB -0.080 0.007 -12.12 < 2e-16 *** 

UPCT_FB -0.084 0.009 -9.82 < 2e-16 *** 

CUTLINE -0.144 0.008 -17.43 < 2e-16 *** 

PCT_LT -0.166 0.007 -22.40 < 2e-16 *** 

PCT_SB -0.243 0.007 -35.32 < 2e-16 *** 

PIPELINE -0.363 0.018 -20.04 < 2e-16 *** 

WELLSITE -0.405 0.014 -29.90 < 2e-16 *** 

ROAD -0.491 0.013 -39.20 < 2e-16 *** 

TRUCKTRAIL -0.530 0.017 -31.59 < 2e-16 *** 

OTHER.DISTURBED -0.812 0.010 -78.71 < 2e-16 *** 

RAIL -0.853 0.012 -71.63 < 2e-16 *** 

CUTBLOCKS -0.899 0.011 -84.06 < 2e-16 *** 

TRAIL -1.051 0.009 -115.26 < 2e-16 *** 

+Significance codes:  ~0***, 0.001**, 0.01*, 0.05
@

, 0.1
NS 
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Figure 4-8. Boxplots of random locations (0) and white-tailed deer telemetry locations (1) and in relation to some landscape 

features that were significantly selected or avoided. Deer locations were closer to cutblocks (upper left panel), farther from 

3D seismic lines (upper right), closer to trails, and closer to well sites than were random locations. 
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Discussion  

 White-tailed deer space-use in the boreal forest was highly variable among individuals. This is consistent with 

similar studies from across WTD range (DeYoung et al. 2011), which show WTD home ranges vary from 1 – 20 km
2
. Deer are 

also highly variable in their seasonal space-use patterns, with some individuals migrating every winter, some staying 

resident every winter, and some migrating only under certain conditions (conditional migration) (Sabine et al. 2002). If we 

exclude long-distance movements, boreal female WTD home ranges averaged around 7 km
2 

in our study (+/- 9 sd, although 

the large variability in length and timing of collar monitoring across individuals makes standardization more difficult). This 

information helps us to estimate white-tailed deer abundance (Chapter 5), but otherwise does not yield much useful 

information about the factors contributing to white-tailed deer expansion. A more in-depth examination of variation in 

home-range size among individuals, with respect to the habitat composition and degree of anthropogenic alteration, might 

yield more insights (Fieberg and Börger 2012). 

Female white-tailed deer selected forest stands with high percentages of deciduous trees (aspen and birch), but 

also upland conifer (white spruce). Stands with conifer understoreys were also selected. We predicted that deer would be 

associated with deciduous stands, as these provide browse species commonly used by white-tailed deer across their 

northern range (Hewitt 2011). Conifer cover, including conifer understorey, catches snowfall and reduces snow depth on 

the ground. Lower snow depth reduces metabolic costs on deer (Ditchkoff 2011, Hewitt 2011), and these snow refuges are 

often selected by deer (Stewart et al. 2011). However, deer avoided lowland coniferous stands such as black spruce and 

tamarack, which typically contain little available browse. Forested stands providing a mix of browse and snow refuge are 

selected in this boreal landscape, fitting with our hypotheses. 

Deer were significantly farther than expected from electrical lines, high density industrial sites, and 3D seismic 

lines. The latter is of particular interest as these features are so spatially intensive across the south and centre of the study 

area. At this time we cannot suggest why this avoidance occurs.  

White-tailed deer were closer than expected to anthropogenic features that replace mature forest with early seral 

vegetation: cutblocks, well sites, and pipelines. Cutblocks are known as high-quality deer habitat (Fisher and Wilkinson 

2005), and our results are consistent with many studies before us on this point. Well sites, in comparison, are small 

polygonal areas with grassy or shrubby cover surrounded by mature forest. We hypothesized that the juxtaposition of 

escape cover and abundant browse provided by well sites would be heavily selected by WTD. Our hypothesis was 

supported, and this conclusion also fits with the landscape-scale association between well sites and WTD relative 

abundance modelled from camera data (Chapter 3). Together, these results support our hypotheses that white-tailed deer 

are selecting deciduous forest and disturbed areas with early seral vegetation. 

However, deer were also closer than expected to several linear features: trails, truck trails, and roads. This result 

result runs counter to expectations. Linear features provide early seral vegetation, but also human access, and are the 

primary areas where accidental mortalities (road kills) and hunting mortalities reportedly occur. Moreover, wolves travel 

linear features searching for prey, as travel is easier and search times are reduced; therefore predation rates on caribou are 
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greater (Whittington et al. 2011, McKenzie et al. 2012) and it is very likely that predation rates on deer are likewise greater. 

These results suggest white-tailed deer do not, apparently, exhibit trade-offs in habitat selection (sensu Fretwell and Calver 

1969, Fretwell 1972, Pyke et al. 1977) by avoiding areas with higher mortality risk. It is important to note that this analysis 

includes all deer data from all years, conducted using a simple approach, and is only a first examination of white-tailed deer 

habitat selection. Further analysis of seasonal data, using more precise analyses such as step selection functions, may yield 

different conclusions. 

As the spatial use of landscapes by white-tailed deer is pervasively variable among (and within) regions (Stewart et 

al. 2011), there is no straightforward comparison between our results and those from other studies. In highly fragmented 

mixed forest-agricultural landscapes in South Dakota, white-tailed deer movements were heavily influenced by 

anthropogenic footprint: row crops, pasture, and grassland (Grovenburg et al. 2009). Like boreal deer and those in New 

Brunswick (Sabine et al. 2002), South Dakota deer exhibited mixed migration strategies – some deer were resident, some 

obligate, and some conditional migrators. In mixed agricultural-Carolinian forests in New York, white-tailed deer selected 

for deciduous forest and agricultural features throughout the year, and coniferous forest in winter (Williams et al. 2012). 

Williams et al. concluded that deer perceive heterogeneity and move among patches differently with changing resources 

within patches. We opted to use an annual resource selection function to provide a cohesive overview of deer selection in 

the boreal forest. Movement and selection within long time periods such as ours is likely a function of seasonally changing 

browse availability, predation risk, social dynamics, and annual density (Gautestad and Mysterud 2005). Shorter time 

frames, especially those tied to specific seasons, are likely tied to a smaller range of variables. Winter may be particularly 

important for white-tailed deer as this is a period of great stress, and presumably strong selection (Beier and McCullough 

1990). Our camera-based species distribution models did not show a marked difference between annual and winter 

distribution, but our boreal white-tailed deer telemetry data could be further mined to examine seasonal space-use shifts.  

The nature of the anthropogenic footprint in the Alberta boreal landscape also makes comparisons difficult, as 

most studies have been conducted in forested or mixed forest-agricultural landscapes. However, recent mule deer 

(Odocoileus hemionus) research has explicitly examined species' response to petroleum extraction footprint. In Colorado, 

anthropogenic footprint altered mule deer space-use and home-range philopatry (Northrup et al. 2015a).  Northrup et al. 

(2015b) found that mule deer strongly avoided well pads and roads, resulting in the effective loss of 50% of critical winter 

range. Conversely, we observed selection of wellpads and roads by white-tailed deer. Mule deer also altered their diel 

behaviour, avoiding human activity more during the day than at night. Behavioural responses to features may be 

manifested by boreal white-tailed deer, and this is also worth future examination. The different responses to human activity 

between the two species may in part drive the declines in mule deer and increases in white-tailed deer observed in 

landscapes across western North America. 

The conclusions about white-tailed movement and resource selection lend support to our overarching hypothesis 

that landscape development for resource extraction from multiple industrial sectors is altering landscape function, allowing 

for persistence of white-tailed deer, even after severe winters. The final piece of evidence with which we can test this 

overarching hypothesis arises from an examination of white-tailed deer densities before and after severe winters. 
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CHAPTER 5: ESTIMATING WHITE-TAILED DEER DENSITY IN THE 

BOREAL FOREST 

Introduction  

Estimating and monitoring the abundance of white-tailed deer populations in Alberta’s boreal forests is an 

important management challenge. Reliable abundance estimation facilitates effective management of white-tailed deer 

harvest (Hansen 2011), and understanding the expansion of white-tailed deer populations is an important aspect of 

conservation efforts for woodland caribou (Latham et al. 2011, Boutin et al. 2012). Many different methods have been used 

to estimate the abundance of white-tailed deer populations (e.g. DeYoung 2011). In Alberta, white-tailed deer population 

monitoring has typically used aerial survey transects and a modified Gasaway sampling technique to estimate abundance 

(a.k.a. stratified random block survey; e.g. Chapman & Gilligan 2013). These aerial ungulate surveys have primarily focused 

on moose populations, and a key challenge for deer monitoring is that their sightability from aerial transects may be very 

low in boreal forest. More recently, distance sampling methods have been used to try to improve estimates by explicitly 

modelling detectability (Buckland et al. 2001; Peters et al. 2014; Burgar & Sztaba 2015). However, there remain challenges 

associated with distance-based estimation methods and they have not yet been proven for estimating white-tailed deer 

density in Alberta’s boreal forests. 

Camera traps (CTs) are a valuable non-invasive survey tool increasingly used to monitor wildlife populations 

(Burton et al. 2015). Fisher & Burton (2012) suggested that CTs may provide an alternative approach to monitoring white-

tailed deer and other mammals in Alberta’s boreal forests, and the Alberta Biodiversity Monitoring Institute recently 

changed their mammal monitoring program from one based on snow tracking to one based on CTs. Camera trapping readily 

provides an index of relative abundance (i.e. detection rate) that is potentially useful for monitoring population changes 

over time (Carbone et al. 2001, O’Brien 2011). However, such indices rely on the questionable assumption of equal 

detectability over areas or time periods being compared, and thus require either calibration with robust estimates of 

abundance, or a more direct estimation of detection probability (Anderson 2001; MacKenzie & Kendall 2002; Sollmann et 

al. 2013a). 

Occupancy estimation provides a formal approach to estimate detection probabilities (MacKenzie et al. 2006), and 

thus occupancy has been recommended as a state variable for monitoring wildlife populations at regional scales (e.g. Noon 

et al. 2012; see also Chapter 2). However, occupancy is a relatively coarse metric describing species distribution or habitat 

use, and it does not provide detailed information on population abundance within occupied areas. Methods have been 

developed to estimate local (site-level) abundance based on detections from point surveys such as camera trapping (e.g. 

Royle 2004; Chandler et al. 2011; Denes et al. 2015). Nevertheless, these techniques require assumptions that may not be 

realistic for relatively wide-ranging species that are not easily individually identified (e.g. white-tailed deer), such as 

independence of detections among surveys and sites (but see Duquette et al. 2014). 
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Capture-recapture techniques are frequently used to estimate wildlife density from CT data, but these techniques 

also traditionally depend on accurate identification of individuals (Foster & Harmsen 2012; Burton et al. 2015). Such 

“marked” approaches are difficult to apply on “unmarked” species such as white-tailed deer, for which reliable 

identification of individuals from photographs is difficult. Jacobson et al. (1997) proposed a population estimator for white-

tailed deer using data from camera surveys in which individual males were identified using antler variation (see also Watts 

et al. 2008). Such an approach has potential, but Moore et al. (2013) showed the method underestimated known deer 

populations by 32% on average. Furthermore, it relied on baited sites, which can be problematic, particularly when data on 

multiple species is also being collected (e.g. McCoy et al. 2011; Burton 2014). Recent extensions of spatial capture-

recapture (SCR) models have been proposed for estimating density of unmarked or partially marked wildlife populations 

(Chandler & Royle 2013; Sollmann et al. 2013b; Royle et al. 2014). These show promise but have not been widely tested. 

The goal of this study is to test the utility of these new techniques for estimating white-tailed deer density in the project 

study area in northeastern Alberta (Chapter 1). 

Methods & Results  

Spatial and temporal variation in deer relative abundance  
The camera trap survey was initiated in October 2011 and completed in October 2014, covering a continuous 3-

year sampling period (1101 sampling days; Fig. 5-1). During this period, data were collected from 62 camera stations for a 

total sampling effort of 60,937 camera trap-days (accounting for inactive days due to camera malfunctions; see Chapter 1 

for further details on the camera trap methods).  

 

 

Figure 5-1. Number of camera stations active on each day of the study period, from 22 October 2011 (Day 1) to 26 October 

2014 (Day 1101). Blue lines indicate January 1 and red lines indicate July 1 for each year (2012-2014). 
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We calculated a count of deer detections for each day and station by defining a detection event as a photograph, 

or sequence of photographs, of an individual deer staying within the camera detection zone. Each individual captured in the 

photograph was counted, and when all individuals left the photographic frame, the next photograph was counted as a new 

detection event (with no minimum threshold of elapsed time). We calculated a total count that included all photographed 

deer regardless of age, and a second count that excluded fawns (young of year) for the purpose of density estimation (see 

below). The total count of deer detections, summed across all stations and days, was 17,359 (15,609 excluding fawn 

detections). Note that this is not an estimate of abundance as it includes the same individuals counted multiple times. We 

divided the daily count of deer detections by the number of active camera stations per day (Fig. 5-1), or number of active 

days per station, to create temporal and spatial indices of deer relative abundance that accounted for variation in sampling 

effort (cf. O’Brien et al. 2003). However, we emphasize that the relationship between the index and true deer abundance is 

not known since the index does not distinguish individuals (and thus double-counts individuals) nor does it account for 

detectability (defined as the probability of detecting an individual given its occurrence at the sampled site). As such, this 

simple index reflects both the local abundance of deer around camera stations and the behavioural activity of those deer 

(e.g. habitat use, movement; Burton et al. 2015). 

Assessing variation in the count index across camera stations and sampling days can give insight into changes in 

deer abundance and habitat use across space and time. As implied above, we highlight the implicit assumption that 

detection probability is constant across the spatial or temporal bounds of comparison, and thus urge caution in making 

inferences about abundance or habitat use without testing this assumption (see Chapter 2 on estimating detectability 

through occupancy modelling). There was considerable variation in the deer count index across camera stations during the 

study period (Figs. 5-2, 5-3); hypotheses about environmental variables potentially underlying this spatial variation are 

investigated in Chapter 3. 
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Figure 5-2. Variation in the total count of white-tailed deer detection events across camera sampling sites summed over the 
entire survey period, and corrected for the number of active sampling days for each site. 

 

Figure 5-3. Spatial variation in the index of white-tailed deer relative abundance (count per camera-day) across camera 
sampling sites over the entire survey period (axes are UTM coordinates of camera stations). 
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There was also considerable variation in the daily deer count over the 3-year study period (Fig. 5-4). This variation 

likely reflects seasonal variation in both local abundance and movement; for instance, deer survival and movement rates 

are lower during winter, while fecundity and movement are higher during snow-free periods (Chapter 4). Detection rates 

were also generally lower in the second and third years of the study, corresponding to more severe winters in the region 

relative to the first year (colder winters with more snow; Fig. 2-2). This pattern motivates the hypothesis that deer density 

declined in the study area as a result of increased winter severity—a hypothesis we aimed to test through more robust 

density estimates (see below). 

 

Figure 5-4. Variation in the daily count of deer detections across the three-year survey duration (counts summed over all 

active camera stations each day and divided by the number of active stations. Day 1 = 22 October 2011). Blue shading 

represents winter periods (Dec-Mar) and the solid line is a lowess smoother of the count index. 

 

The spatio-temporal patterns in deer detections also indicate that deer relative abundance declined during winter periods 

and later in the study (Fig. 5-5). However,  these patterns support the conclusion that deer recovered quickly after the 

severe winters, both in terms of the number of sites used and relative use (or local abundance) at sites (see Chapters 2,3). 
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Figure 5-5.  Spatio-temporal patterns of white-tailed deer detections across camera sampling sites during the study period, 

showing declines in relative abundance across years but seasonal increases from winter to summer. Each plot shows the 

relative number of deer detections (size of circle) at individual camera sites (crosses) for a specific time period. The top row 

shows relative abundance patterns across winter periods (January-March) for each year of the study; the bottom row shows 

patterns for summer periods (June-August). The total number of deer detections is indicated for each period. Plot axes give 

the standardized UTM coordinates for camera stations. 

 

Estimating deer density using a n unmarked spatial count model 

A robust method for estimating deer population density is required to reliably assess population dynamics. This 

includes using an estimator that accounts for detection heterogeneity to calibrate a relative abundance index (such as the 

detection rate described above) if such an index is to be used to assess spatial or temporal trends (e.g. Rovero & Marshall 

2009). Chandler & Royle (2013) proposed a spatially explicit model for estimating density in unmarked populations (i.e., for 

which individuals are not marked or otherwise identified). Their approach builds on recently developed spatial capture-

recapture (SCR) models, which improve on traditional capture-recapture models by explicitly accounting for effective 

sampling area and spatial heterogeneity resulting from interactions between animal movements and sampling locations 

(Efford 2004; Royle et al. 2014). The spatial count (SC) model for unmarked populations uses spatial correlation in counts 

from relatively closely spaced sampling units to model the location of individual activity centres, and thereby estimate 
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distance-related heterogeneity in detection. Density is then calculated by counting the number of estimated activity centres 

(Chandler & Royle 2013; Royle et al. 2014). Essentially, the model extends the SCR framework by considering individual 

detection histories to be latent, or unobserved, variables that result in the observed count of detections.  

The SC model uses an approach called data augmentation whereby a maximum hypothetical population size, M, is 

specified for the given study area. M should be greater than the expected true population size, N, encompassing both real, 

detected individuals and potential individuals with all-zero detection histories (Royle et al. 2014). The model then estimates 

the number of individuals that exist within the sampled population; that is, the proportion of M that make up N. The model 

is formulated in a hierarchical structure consisting of: 

 zi, an auxiliary variable indicating if individual i is a member of the population N, which is modelled as a Bernoulli 

variable dependent on probability ψ, 

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝜓) 

 the latent encounter history, y, of individual i at site j on occasion k, which is modelled as a Poisson variable 

dependent on zi and the individual encounter rate, λijk, 

𝑦𝑖𝑗𝑘 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘𝑧𝑖) 

 the encounter rate is in turn modelled as a function of the baseline encounter rate at a camera trap, λ0, and a 

distance function describing how encounter rate declines with increasing distance between the trap location,xj, 

and the individual’s activity centre, si (i.e. home range centre), 

 

𝜆𝑖𝑗𝑘 =  𝜆0𝑒𝑥𝑝(−∥ 𝑥𝑗 − 𝑠𝑖 ∥2)/2𝜎2 

 

where σ is the scale parameter determining the rate at which the encounter rate decreases with distance (assuming a 

Gaussian or bivariate normal model of space usage in this case), 

 

 and the observed count, njk, is then calculated as the sum of all latent encounter histories over the M potential 

individuals, 

𝑛𝑗𝑘 =  ∑ 𝑦𝑖𝑗𝑘

𝑀

𝑖=1
 

 

The SC model can be implemented in a Bayesian framework using Markov Chain Monte Carlo (MCMC) estimation, 

with prior distributions specified for the parameters ψ, σ, and λ0. It also requires specification of a state-space, S, 

representing the region containing the potential locations of individual activity centres, si. This should be chosen to be 

sufficiently large to include all animals with a non-negligible probability of being detected by camera traps during the 

sampling period (Royle et al. 2014). 
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The SC model makes several assumptions that should be carefully considered, including demographic and 

geographic closure over the sampling period, random distribution of activity centres, encounter probability declines with 

distance from home range centre, and independence of encounters among and within individuals (see Royle et al. 2014 for 

further discussion of these assumptions and the expected degree of model robustness to violations). 

As an initial test of this method, we applied an SC model to a subset of the camera survey data roughly 

corresponding to the period for which the last aerial-based estimate of deer population density was made. An aerial survey 

of Wildlife Management Unit (WMU) 517 was conducted in January 2013 by Alberta Environment and Sustainable Resource 

Development (AESRD, now Alberta Environment & Parks, AEP; Chapman & Gilligan 2013).  The white-tailed deer population 

was estimated to be 693 (± 367, 90% C.I.), corresponding to a density of 0.15/km
2
, which provides a basis for comparison 

with our initial estimate (although we note that the true population density remains unknown). 

We used the daily deer detection count for each of 57 camera stations for a 57 day period from 1 December 2012 

to 26 January 2013. This period was chosen as a compromise between having a relatively large sample of detections and 

reducing potential bias due to violating model assumptions, such as geographic and demographic closure. We excluded 

fawns from the count as we felt they were likely to violate the assumption of independence among detections of different 

individuals (i.e. fawns are more likely to be detected with their mothers), so the resulting estimates are for the deer 

population ≥ 1 year old. We added a 10-km buffer to the locations of the outermost camera stations, creating a rectangular 

state-space of 6,482 km
2
, and specified a maximum population size of 2,000 deer across the entire state-space (which 

corresponds to a maximum potential density of 0.31 deer/km
2
. Note that the state-space is not exactly the same as the area 

covered by WMU 517, which was the focus of the AESRD aerial survey). We specified uninformative (vague) prior 

distributions and random initial values for the estimated parameters of σ (scale parameter), λ0 (baseline encounter rate), 

and ψ (probability that a potential individual is included in the sampled population). The derived parameter N reflects the 

estimated number of individual activity centres (i.e. individual deer) and is converted to density by dividing by the area of 

the state-space. 

We found estimating parameters of this SC model to be very computationally intensive due to the large number of 

potential latent encounter histories that need to be assessed across the large state-space. We successfully ran a model 

using the program JAGS version 3.4.0, executed with the package rjags (Plummer 2014) within program R version 3.3.1 (R 

Core Team 2014). The model run consisted of 2 MCMC chains of 10,000 samples each after an initial burn-in of 1,000 

iterations, and it took 166 hours to run (~ 7 days) on a Dell Precision M3800 laptop with dual 2.20 GHz processors and 16 

GB of RAM. The model produced reasonable estimates of σ (scale parameter) and λ0 (baseline encounter rate) but a diffuse 

posterior distribution for N (number of deer in the state-space; Fig. 5-6). The posterior mean and SD for N was 1,412 ± 366 

deer (95% C.I. = 697 – 1,969), corresponding to an estimated mean density of 0.22 ± 0.06 white-tailed deer/km
2
 (95% C.I. = 

0.11 – 0.30), but the posterior distribution was truncated at our specified maximum “augmented” population size of 2,000 

(M), and the MCMC chains did not fully converge (Fig. 5-6).   
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Figure 5-6. Results of white-tailed deer density estimation using a spatial count model for camera trap detections over the period Dec. 

2012 – Jan. 2013. Markov Chain Monte Carlo iterations (Left, showing both chains) and posterior probability densities (Right) for the 

estimated parameters N (number of deer), λ0 (“lam0”, baseline encounter rate), and σ (“sigma”, scale parameter). 

 

Estimates of σ can be converted to home range area, assuming a bivariate normal model of space usage (Royle et 

al. 2014). Estimates from this model correspond to a mean of 5.8 km
2
 (± 0.14 sd, median = 5.5, 95% CI = 3.4 – 11.0), which 

appear reasonable based on telemetry analysis of female deer home range sizes (Chapter 4).  

In order to try to improve on this initial SC estimate, we ran another model using a larger augmented population 

size (M = 2500) and an informative prior on σ based on observed home range sizes of collared deer [dgamma(3,70)]. This 

model took 45 days to complete and showed better convergence but did not significantly change the accuracy or precision 

of the resulting density estimate (mean = 0.21 deer/km
2
, 95% CI = 0.098 – 0.36; Figs. 5-7, 5-8; Table 5-1). 
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Figure 5-7. Posterior estimate of white-tailed deer density from a Spatial Count (unmarked) model applied to camera-trap 

data for the period 1 December 2012 to 26 January 2013. 

 

 

Figure 5-8. Comparison of white-tailed deer density estimates from the AEP aerial survey (January 2013) and the camera-

trap sampling (December 2012 – January 2013). Uncertainty is shown using 90% confidence intervals, as reported in the 

AEP report (Chapman & Gilligan 2013). 

 

Given the long computation times for this implementation of the SC model in JAGS, we evaluated alternative 

implementations using a custom MCMC algorithm developed by Royle et al. (2014), namely the function scrUN from the 

scrbook R package. Computation times using this algorithm remained slow but were faster than the JAGS implementation. 

However, the estimates generally failed to converge and did not seem reliable – they produced very different estimates 

than the spatial mark-resight models described below. For instance, even when using an informative prior for sigma (based 
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on observed home range sizes), SC estimates of density using the scrUN function sometimes differed by more than an order 

of magnitude from the SMR density estimates. We therefore urge caution in applying this estimation approach and suggest 

that more evaluation is needed for the SC models of unmarked populations. Other authors have similarly reported 

challenges with obtaining reliable estimates from SC models applied to realistic datasets (e.g., Chandler & Royle 2013; 

Sollmann et al. 2013a,b) .  

Despite the encouraging result that our estimate of white-tailed deer density from the SC model corresponded 

reasonably well with the AEP aerial survey estimate (Fig. 5-8), we conclude at this time that the SC models are of uncertain 

reliability for broader application. There may not be enough information in typical camera survey datasets to reliably 

estimate sigma and lambda without additional information from marked individuals. We suggest that further assessment of 

the SC models is warranted, including evaluation of different MCMC implementations (e.g. Nimble), greater iterations to 

more thoroughly assess convergence, and tests against known populations—ideally real populations of known density, but 

simulated populations could also be used. Notwithstanding these recommendations for further research on SC models, we 

focused the remainder of our effort for this report on assessing the utility of spatial mark-resight models that use additional 

information on marked individuals. 

 

Estimating deer density using a spatial mark -resight model 

Spatial mark-resight (SMR) models represent a hybrid between the spatial count (SC) models of unmarked 

individuals (described in previous section) and the spatial capture-recapture (SCR) models of marked individuals (wherein 

all detected animals are individually identified; Royle et al. 2014). The data underlying SMR models include individual 

encounter histories across sites and occasions for a subset of the sampled population that is marked, as well as the spatial 

counts of all unmarked individuals across those sites and occasions. SMR models build on traditional mark-resight models 

(e.g. McClintock & White 2012) by explicitly modelling the locations of detections, thereby linking abundance estimates to a 

clearly defined area and facilitating unambiguous estimates of density (Sollmann et al. 2013a,b). 

In the SMR model, individual encounter histories, yijk, are partially latent, with only those for the m marked animals 

being observed. The observed count, njk, is modelled as the sum of all latent encounter histories over the M-m potential 

unmarked individuals in the state-space, and a Bayesian framework (using Metropolis-within-Gibbs Markov chain Monte 

Carlo sampling) is used to estimate model parameters  (as described above; see also Chandler & Royle 2013; Sollmann et al. 

2013a,b; Royle et al. 2014). 

In our study, the marked subset of the population consisted of collared female deer (see Chapter 4). Encounter 

histories (i.e. camera detections) and telemetry relocations for these deer were modelled in combination with the camera-

specific counts of unmarked deer, using a custom MCMC algorithm implemented in the scrPID.tel function from the scrbook 

R package (Royle et al. 2014). To evaluate the SMR models, we first identified periods of sampling with suitable numbers of 

collared deer exposed to, and detected by, the camera array (Fig. 5-9). In order to maximize use of data while minimizing 

the potential for model violations, we sought to choose relatively short periods (e.g. 2-3 months) that maximized the 
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number of collared deer monitored and their camera detections while minimizing violations of the assumption of 

population closure (e.g. mortality or migration of collared deer, fawning period). 

 

Figure 5-9. Periods of monitoring for satellite-collared deer (y-axis, black lines) over the duration of the study (x-axis), with 

red points indicating camera detections of collared deer. Green shading denotes three periods for which spatial mark-

resight density estimates were made to allow comparison of density across years. Migratory movements of collared deer 

during the yellow-shaded period led to a poor estimate of density. Orange shading indicates the period for which a spatial 

count model was used to estimate density for comparison with the January 2013 AEP aerial survey. Blue shading at the 

bottom corresponds to December to March winter periods in each of the three main study years (2011-2014). 

Based on a more complete evaluation of space use by the collared deer (Chapter 4), we expanded the state-space 

for the SMR models to encompass a 10,000 km
2
 area defined by adding a 20-km buffer to the outermost camera locations 

in the sampling array (although we note that future work should consider reducing computation time by using an irregularly 

shaped state-space that more closely matches the area sampled by the camera array). We chose the period from 1 April to 

30 June 2014 (“Spring 2014”) for the first SMR estimation, as it represented a period with the most collared deer monitored 

and detected by cameras (study days 893-983, 10 collared deer and 50 active camera stations; Fig. 5-9).  The model was run 

with a single MCMC chain of 11,000 iterations (2,000 discarded as burn-in), using the scrPID.tel function, with the maximum 

potential unmarked individuals set at M = 2000. 

This period produced a very low mean density estimate of only 0.037 deer/km
2
 (95% CI = 0.028 – 0.049; Fig. 5-10), 

much lower than the mean density of 0.21 deer/km
2
 estimated from the SC model for Winter 2012-13 (Fig. 5-7; Table 5-1).  
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However, further evaluation of the telemetry data revealed that this estimation period included large, seasonal migratory 

movements by several deer (Fig. 5-11), resulting in a very high estimate for σ, the spatial scale parameter (Fig. 5-12). This 

large estimate corresponds to an unrealistically large home range size (> 600 km
2
) and indicates that this period of 

estimation violated a key assumption of the modelling framework, namely that home ranges (activity centres) were stable 

and the population was closed to immigration or emigration from the state space. We conclude that the density estimate 

was very sensitive to this model assumption, and therefore that the Spring 2014 period was not appropriate for estimating 

deer density using this approach.  

 

 

Figure 5-10. Posterior distributions of the SMR deer density estimates for the periods 1 April to 30 June 2014 (“Spring 2014”, left), and 1 

July to 31 August 2014 (“Summer 2014”, right). Dashed red lines denote the posterior means. Further evaluation indicated that the Spring 

2014 estimate was biased low due to seasonal migratory movements of some collared deer (and thus violation of the model’s assumption 

of closure and stable home ranges). 
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Figure 5-11. Telemetry locations (red points) and minimum convex home ranges (black lines) of collared deer for the Spring 2014 

estimation period (1 Apr – 30 June 2014), relative to the camera array (blue points) and state-space (dashed box). This shows that 

seasonal migratory movements occurred during this period (large polygons), and thus that model assumptions of stable home ranges and 

population closure were violated. 
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Figure 5-12. Estimates of σ, the spatial scale (movement) parameter, for the SC model in Winter 2012-13 and the SMR models in Spring 

and Summer 2014 (posterior mean and 90% C.I.). The Spring 2014 period included large, seasonal migratory movements by deer, 

resulting in a very large estimate of σ (corresponding to a home range of > 600 km
2
), and a low estimate of density (Fig. 5-10). By 

contrast, estimates of σ for the other periods were more consistent with non-migratory deer home ranges (e.g. 5-15 km
2
), and thus did 

not violate model assumptions. 

We then shifted the estimation period to later in that year (“Summer 2014”: 1 July - 31 August, study days 984-

1045), which represented a period with similar camera and telemetry data for collared deer (Fig. 5-9), but during which 

deer did not make large, migratory movements (Fig. 5-12). We ran 21,000 MCMC iterations (discarding 1,000 as burn-in) 

and increased M to 4000. The resulting density estimate for this period was more similar to the SC estimate for the winter 

2012-13 (mean = 0.24, 90% CI = 0.16 – 0.33; Fig. 5-10, Table 5-1), and the estimate of sigma was more in line with 

expectations of stable home range size (mean sigma = 0.06, equivalent to a bivariate normal home range size of 13.8 km
2
 ; 

Fig. 5-12). This result reinforced our interpretation that the SMR model is sensitive to seasonal migratory movements (i.e., 

non-stable home ranges during estimation period). It also suggested that the deer population did not decline between the 

Winter 2012-13 and Summer 2014 periods. 

In order to further evaluate the SMR estimation method and investigate temporal trends in deer density within the 

study area, we next estimated density for the periods from a) 16 May to 16 August 2012 (“Summer 2012”), and b) 24 May 

to 31 August 2013 (“Summer 2013”; study days 208-300 and 581-680, respectively). These periods were chosen to 

maximize the number of collared deer and their detections by cameras (Fig. 5-9) while avoiding long-distance seasonal 

movements (determined by inspecting telemetry locations, as in Fig. 5-11). The comparison across the three summer 

periods, from 2012 to 2014, allowed a test of the hypothesis that deer abundance declined in the study area due to the 

severe winters of 2012-13 and 2013-14 (Fig. 2-2). 
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We implemented these models in a similar manner as described for the previous SMR models, with the exception 

that we ran 30,000 iterations and increased M to 10,000 for the Summer 2012 model (based on results of an initial run in 

which the posterior estimate of N was truncated at 5,000; this longer version of the model took 12 days to complete). The 

resulting mean posterior density estimate for Summer 2012 was 0.46 deer/km
2
 (95% CI = 0.32-0.64; Fig. 5-13), and for 

Summer 2013 mean density was estimated as 0.25 deer/km
2
 (95% CI = 0.17 – 0.35; Fig. 5-13; Table 5-1). These results 

suggest that the deer population did decline in abundance over the severe winter of 2012-13, but remained relatively 

constant after the following winter of 2013-14, which was also more severe than average (Fig. 5-14). 

 

Figure 5-13. Posterior distributions of the SMR deer density estimates for the periods 16 May to 16 August 2012 (“Summer 2012”, left), 

and 24 May to 31 August 2013 (“Summer 2013”, right). Dashed red lines denote the posterior means. 
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Figure 5-14. White-tailed deer population density estimates from the spatial mark-resight models for the three summer periods: 16 May 

to 16 August 2012, 24 May to 31 August 2013, and 1 July to 31 August 2014. 
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Table 5-1. Summary results of the main density estimation models applied to the white-tailed deer dataset (SC = spatial count model on unmarked sample; SMR = 

spatial mark-resight model on partially marked sample). 

Model type Estimation 
Period 

Number of 
collared deer 
(marked 
individuals) 

Number of 
active camera 
stations 

Density 
Mean 
deer/km

2
  

(95% CI) 

Scale 
Mean sigma 
(95 % CI) 

Detectability 
Mean lam0 
(95% CI) 

Comment 

SC 1-Dec-2012 to 
26-Jan-2013 

0 57 0.21  

(0.10 – 0.36) 

0.057 

(0.040 – 0.077) 

0.39 

(0.27 – 0.58) 

Compares well with AEP aerial 
survey estimate of 0.15/km

2
, 

but SC models are difficult 

SMR 1-Apr-2014 to 
30-Jun-2014 

10 50 0.037 

(0.028 – 0.049) 

0.58 

(0.56 – 0.60) 

0.017 

(0.013 – 0.021) 

Estimate sensitive to migratory 
movements (violation of model 
assumption) 

SMR 1-Jul-2014 to 
31-Aug-2014 

8 51 0.24 

(0.15 – 0.35) 

0.086 

(0.082 – 0.089) 

0.19 

(0.12 – 0.28) 

Estimate considered more 
reliable since no migratory 
movements of collared deer 

SMR 24-May-2013 
to 31-Aug-2013 

8 53 0.25 

(0.17 – 0.35) 

0.12 

(0.11 – 0.12) 

0.13 

(0.09 – 0.19) 

Suggests density declined over 
severe 2012-13 winter 

SMR 16-May-2012 
to 16-Aug-2012 

5 60 0.46 

(0.32 – 0.64) 

0.073 

(0.070 – 0.077) 

0.39 

(0.28 – 0.53) 

Suggests density declined over 
severe 2012-13 winter 
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Conclusions  

Our evaluation of spatial count and spatial mark-resight models suggest that camera-based density estimation 

using spatial capture-recapture methods hold considerable promise for surveying white-tailed deer populations in the 

boreal forest. Camera-based surveys provide different information than aerial-based surveys (which are currently required 

for management), and each has its advantages. Camera-based surveys have the potential to significantly augment 

population information obtained from a region, especially in areas where poor sightability that varies among habitats 

renders the statistical reliability of aerial surveys questionable. With the initial research work completed, an inexpensive 

and efficient protocol for data collection and analysis is definitely feasible. We recommend that camera-based surveys be 

adopted as test cases in adjacent areas to develop and evaluate this method for future surveys. 

Our SC estimate of deer density was comparable to the AEP aerial survey estimate in January 2013 (Fig. 5-8), 

suggesting the camera-based approach provides an alternative means of monitoring deer populations, particularly when 

considering the additional data generated by camera surveys (this report; Fisher & Burton 2016). Nevertheless, SC models 

appear to be sensitive to the MCMC algorithm used, as evidenced by the discrepancy in density estimates obtained when 

we changed from implementing models in JAGS to using the custom scrUN function. This sensitivity, and the performance 

of SC models more generally (including computational efficiency), warrants further evaluation, and is indeed at the cutting-

edge of camera trap and SCR research (Royle et al. 2014). 

Capitalizing on the additional information obtained through GPS-collaring a subset of deer improved our ability to 

estimate deer density. Incorporating the telemetry locations and camera detections of these known individuals into SMR 

models provided a stronger basis for modelling the movements and detectability of deer, as has been seen in other studies 

(e.g. Chandler & Royle, Sollmann). However, we found that the SMR models can be very sensitive to long-distance, 

migratory movements that violate the model assumption of stable activity centres and population closure within the state-

space (Fig. 5-12). It is therefore important to restrict survey periods for density estimation to those with the greatest 

likelihood of meeting such assumptions. When we used 2-3 month summer sampling periods, when deer were not 

expected (or observed) to migrate, we generated reasonable estimates of density across the three years of the study. These 

estimates suggest that deer density declined by almost half in the study area across the severe winter of 2012-13 (Fig. 5-

14), when accumulated snow on the ground reached a height of almost double the 30-year average for the region (Fig. 2-2). 

This is consistent with the hypothesis that winter severity limits deer populations, as has been suggested in other studies 

(Dawe et al. 2014; Serrouya et al. 2015). However, deer density appeared to hold stable across another severe winter in 

2013-14, suggesting some resilience in this population, which is consistent with our observations that deer distribution and 

relative abundance rebounded across the study area during snow-free seasons (Figs. 5-4, 5-5 and Chapter 2). Encouragingly, 

the trend in SMR density estimates across years was similar to that observed in the camera detection rates (Fig. 5-4), 

suggesting that the latter could be useful as a coarse index of changes in deer population abundance over time (although 

we suggest caution and further evaluation before relying on such a relative abundance index to infer trends in density). 
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We recommend that research be continued to further evaluate these SC and SMR modelling approaches. Firstly, 

comparing SC and SMR estimates to independent density estimates provides an important means of assessing their 

accuracy and precision. Unfortunately we could not attempt an SMR model to coincide with the January 2013 AEP aerial 

survey, due to a lack of collared females during this period (Fig. 5-9). It would be useful to pursue opportunities to facilitate 

methodological comparison, such as by deploying camera arrays to coincide with aerial ungulate surveys being undertaken 

by AEP in the oil sands region (e.g. Burgar & Sztaba 2015). It may also be worthwhile to compare results of the SC and SMR 

models to those of other recently developed methods that can be applied to similar camera and telemetry data (e.g. 

Rowcliffe et al.2008; Ivan et al. 2013; Tingley et al. 2015). 

Tests of model accuracy and precision should also be done using simulated datasets, where true density is known 

and individual factors can be varied (e.g. movement behaviours, sampling design). This would also allow more detailed 

evaluation of optimal sampling frameworks. It is important to bear in mind that the camera trap sampling design for this 

study preceded development of these SC and SMR modelling methods, and was in fact designed with different sampling 

objectives (e.g. occupancy). Simulation studies using observed detection rates could help assess how different designs 

affect model performance—for instance, whether a denser camera array (i.e. more systematic grid with tighter spacing) 

could provide SC models with more power to reliably model movement, detection and the location of activity centres. 

Similarly, our study had a relatively small proportion of marked individuals at any given time, and few camera recaptures for 

each (Fig. 5-9), so simulation could help evaluate the number of marked individuals to target to optimize SMR model 

performance (Chandler & Royle 2013). 

Further testing of the sensitivity of models to key assumptions (e.g. demographic closure, movement behaviour) 

could also be done through empirical comparisons of estimates from different periods, datasets, methods, and species 

(including other collared species detected during this study).  As one example, our marked subset included only female 

deer, which may exhibit different movement behaviours from males. Next steps may include individually identifying bucks 

based on antler characteristics, and incorporating identified individuals into SMR models to account for such potential sex-

specific behaviours. 

We also recommend further evaluation of options to reduce model computation times and test consistency, such 

as omitting unsampled portions of the state-space, customizing MCMC algorithms, and running models in parallel on 

multiple processors or within a faster programming environment like Stan or Nimble (Royle et al. 2014; P. de Valpine 

unpublished report). Once the density estimation models have been carefully evaluated and fine-tuned, the results can be 

used to parameterize SC and SMR simulation models to refine camera trap study designs for future density surveys of 

white-tailed deer and other species in Alberta’s boreal and beyond. Building on these closed population models, the use of 

open or integrated population models also holds considerable promise for long-term monitoring of population dynamics 

(e.g. Chandler & Clarke 2014; Whittington & Sawaya 2015).  
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SUMMARY CONCLUSIONS 
 

1. White-tailed deer are widespread through the study area in Alberta's northeast boreal forest. 

2. WTD distribution shrinks more markedly in more severe winters, but rebounds quickly in each spring, regardless of 

winter severity. 

3. WTD distribution is positively related to anthropogenic features generated by forest harvesting and petroleum 

extraction, as well as upland deciduous forest. 

4. Individual WTD selected anthropogenic features associated with early seral vegetation, including those stemming 

from forest harvesting, petroleum exploration and extraction, and transportation infrastructure. 

5. WTD density dropped markedly after a severe winter, but then remained stable following a second severe winter. 

6. Camera-based surveys and spatially explicit mark-resight models offer a way of enumerating deer density in 

environments where aerial surveys miss many animals due to poor sightability. 

7. In summary, we suggest there is strong evidence that white-tailed deer expansion in the boreal forest is due to an 

interaction between less severe winters following climate change, and a substantial forage subsidy provided by 

widespread anthropogenic features. There is no evidence to suggest this issue is mainly a result of climate change, 

or of landscape change, but instead is like due to the interacting effects of climate and landscape change. This 

research suggests landscape management, in addition to population management, will be a key component of a 

white-tailed deer management strategy. 

  


