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Technologies: A Bayesian Approach.” 

 

This is a draft of a journal manuscript that defines the empirical uncertainty quantification 
technique described in Sec. 5.2. 
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Abstract

An accurate understanding of uncertainty is needed to properly interpret
methane emission estimates from the upstream oil and gas sector in a variety of
contexts, from component-level measurements to yearly industry-wide invento-
ries. One possibility is to derive an uncertainty estimate from the physical model
that connects the measurement data to the emission estimates directly, but this
information is often proprietary and thus unavailable to end users. Instead, we
provide a method to develop probability distributions of measurements given
a true emission rate empirically using controlled release data. This method is
completely technology-agnostic, and provides a route to summarise uncertainty
without the need to release proprietary modelling or data. To demonstrate the
wide applicability of the method, we introduce an algorithm that can be used
to synthesize the uncertainty model and measurement-based surveys to produce
an uncertainty range for new measurements in the field.

Keywords: methane, uncertainty quantification

1. Introduction

Deep and rapid reductions in methane emissions from leading anthropogenic
sources, especially upstream oil and gas activities, are crucial in order to avoid
the worst outcomes of climate change [1], but doing this requires instrumentation
that can reliably detect and quantify these emissions. Technologies for doing
this include: quantitative optical gas imaging (QOGI) using mid-wavelength
infrared (MWIR) cameras [2, 3, 4]; stationary [5] and mobile [6, 7, 8] methane
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concentration sensors; and airborne [9, 10] and satellite-based [11] measure-
ments. All of these systems utilize a measurement model that relates direct
observations and auxiliary inputs to the methane emission rate. Often the
measurement model consists of a spectroscopic sub-model that connects some
radiometric measurement to a column density (ppm×m) or path-averaged con-
centration estimate (ppm), and an advection sub-model, usually informed using
anemometry data. The output of the inversion procedure is typically a point
estimate of the methane emission rate from the source (e.g., kg/hr).

Emissions estimates can only be interpreted properly in the context of un-
certainty. This aspect is particularly important in view of existing and emerging
methane emissions regulations and reduction commitments [1, 12, 13], e.g., to
answer the question “with what probability is this facility compliant with a
particular regulation?” Methane leak detection and repair (LDAR) programs
should also be optimized with quantification uncertainty in mind to give the
best trade-off between cost and emissions reductions, as it has been shown that
high quantification uncertainty contributes to certain types of LDAR programs
being less cost effective [14]. Further, methane emissions measurements are used
to develop broader jurisdiction-wide and global inventories [15, 16, 9], which are
needed to assess progress towards emissions reduction targets and to inform
policies and regulations, but these decisions can only be made in the context of
uncertainty. Therefore, there is a need for transparent techniques for estimating
emissions uncertainty that can be applied consistently in different contexts.

Approaches for quantifying methane emission uncertainty may be catego-
rized as either physics-based or data-driven. Physics-based approaches address
uncertainty associated with measurement noise, uncertain model inputs, and,
especially, the model errors induced by the approximations and simplifications
needed to derive a tractable measurement model, in an explicit way. As an
example, Montazeri et al. [17] derive formulas for different error components of
QOGI estimates, with the aid of virtual data generated from a computational-
fluid dynamics large eddy simulation (CFD-LES). Caultron et al. [8] developed
uncertainties for emission estimates obtained from a truck-mounted concentra-
tion sensor and inverse Gaussian plume model by accounting for uncertainty
in the Gaussian model diffusion coefficient, emission source and height, and
wind speed and stability class. Cambaliza et al. [18] developed uncertainties
for emission estimates inferred from aircraft-based concentration measurements
using different values for the background carbon dioxide and methane, depth,
changes in the convective boundary layer height, and perpendicular wind speed
parameters.

While physics-based approaches provide key insights into the uncertainty
of methane emission estimates obtained from various technologies, and how
they should be deployed to minimize these uncertainties, they also have several
key drawbacks. First, they require detailed knowledge of the measurement
model, which may be very complex or unavailable due to proprietary aspects
of the technology. Second, the results of a physics-based uncertainty analysis
are specific to a given technology and will not be broadly applicable, requiring
cumbersome effort for every technology of interest. Third, results of a purely
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physics-based uncertainty estimate may not agree with what is observed in real-
world scenarios due to missing or inadequate modelling of uncertainty sources.
Moreover, existing physics-based uncertainty analyses do not include methods
or procedures for how the results should be applied in practice, and there is a
lack of consistency in reporting of the results [8]. For example, most physics-
based approaches do not show how their results should be used to derive a 95%
confidence interval based on a given measurement from the technology.

Empirical approaches to uncertainty quantification rely on a statistical model
which compares true and measured emission rates from controlled-release data.
The statistical model can then be used to predict future measurements given a
true emission rate, or inverted to give a confidence interval for the true emission
rate given a measurement. Empirical approaches have two key benefits over
physics-driven approaches: 1) they are data-driven, meaning the results will
likely resemble what is actually observed in the field, and 2) the statistical
framework can be leveraged to provide unified and consistent guidelines for how
the results of the uncertainty analysis should be used in practice.

Empirical approaches require data from controlled-release field trials. To
this end, many single-blinded or double-blinded field trials have been conducted
with the goal of assessing the performance of methane emissions quantification
technology, e.g., [19, 20, 21, 10, 22]. However, empirical approaches employed
on these data have mainly been limited to simple linear regression approaches
which do not allow for quantification uncertainty to vary with the emission rates
[19, 20, 21, 10], with the exception of [22], who provide an approach to derive
the distribution of the true emission rate given a measurement from an airborne
methane detection and quantification technology.

In this work, we introduce a flexible empirical framework to elucidate quan-
tification uncertainty that can be applied to any technology modality and illus-
trate its use using field trial data from two campaigns carried out using four
methane detection and quantification technologies as well as controlled release
data reported by [22]. The empirical framework allows for the derivation of
two important probability distributions: 1) the distribution of measurements
given the true emission rate and 2) the distribution of the true emission rate
given a measurement. The first distribution is a building block to the sec-
ond distribution, and has the potential to be incorporated into simulation soft-
ware that models LDAR programs such as FEAST, LDAR-Sim, and AROFemp
[23, 24, 25]. The second distribution is an important input to simulation meth-
ods used to derive measurement-based inventory estimates such as [26]. Our
approach to deriving the second distribution also provides the opportunity to
incorporate context-specific information into the analysis, such as knowledge of
the emission rate distribution in a given region. The results of the analysis are
data-driven and the design of the field trials allows for the assessment of the
potential real-world effectiveness of the uncertainty quantification results.
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Figure 1: Technologies studied in the field trials. Top row, left to right: QOGI A, QOGI B,
QOGI C. Bottom row, left to right: airborne NIR HSI, truck-based TDLAS.

2. Materials and Methods

2.1. Methane Quantification Technologies

We demonstrate the analysis procedure using controlled release data from
four methane quantification technologies, three of which were evaluated in the
field trials described in Sec. 2.2: QOGI; truck-mounted tunable diode laser-
absorption spectroscopy (TDLAS); and airborne near-infrared hyperspectral
(NIR HS) imaging. We also consider an airborne TDLAS system (“Gas Map-
ping LiDAR™ ” (GML) from Bridger Photonics, Inc.) based on data reported
in Conrad et al. [22]. Examples of the technologies investigated in the field
trials are shown in figure 1.

2.1.1. Quantitative Optical Gas Imaging (QOGI)

QOGI systems are almost exclusively based on a mid-wavelength infrared
(MWIR) camera that contains a cold filter centered on the 3.34 µm methane
vibrational-rotational band. The intensity entering the camera aperture is im-
aged through the cold-filter and onto a focal plane array (FPA) that produces
a pixel intensity. The cameras are usually calibrated to generate a spectrally-
averaged absolute intensity along each pixel line-of-sight. The camera data is
then analyzed in near real-time by software on a peripheral tablet. The measure-
ment model is composed of a spectroscopic sub-model that generates a column
density map of the gas, and an advection model that infers a 2D projected ve-
locity field from the apparent plume motion between successive images. These
quantities are then combined to obtain a mass flow rate (e.g, kg/s).

The reliability of QOGI-derived emission estimates depends on factors that
include measurement distance between the plume and the camera, thermal
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contrast between the plume and the background, wind speed, and leak rate
[27, 19, 28]. Identifying favorable measurement scenarios draws considerably on
operator experience [29]. Three QOGI systems were deployed by three operators
of varying experience, as summarized in Table 1.

Table 1: QOGI operators and equipment

Operator Experience System Field Trial
A Professional FLIR GF320 with Providence

QL320 (v. 3.0.0.5)
1

B Professional,
new to system

OPGAL EyeCGas (v. 1.0.24) 2

C Novice FLIR GFx320 with FLIR
QL320 (v. 1.4.1)

1 & 2

QOGI Operator A used a FLIR GF320™ camera with a Providence QL320™
tablet (v. 3.0.0.5); QOGI Operator B used the OPGAL EyeCGas™ (v. 1.0.24)
and QOGI Operator C used a FLIR GFx320™ camera with the FLIR QL320™
Tablet (v. 1.4.1). Notably, while Operator B was an experienced QOGI opera-
tor, they were unfamiliar with the OPGAL system during the field trial. QOGI
Operator A was highly experienced and familiar with their equipment, while
QOGI Operator C was a novice, having less than six months of experience with
the system.

2.1.2. Truck-mounted TDLAS

Methane releases were also quantified using a truck-mounted TDLAS sys-
tem (Boreal Laser GasFinder 3 VB™). The absorptance, and therefore methane
column density (e.g., ppm·m), is inferred through wavelength-modulation spec-
troscopy (WMS) [30] and then converted to a path-average concentration (ppm).
The truck traversed the plume at distances ranging from 50 to 100 m downwind
of the release point. Methane concentrations were measured at one second
intervals; these concentrations and wind speeds obtained from an ultrasonic
anemometer operated by the service provider were then processed using a back-
wards Lagrangian stochastic quantification algorithm [31, 32] to obtain a release
estimate for each plume transect.

2.1.3. Airborne NIR HS imaging (GHGSat-AV™)
The airborne NIR HS system (GHGSat-AV™) consists of a downward-looking

wide-angle Fabry-Perot imaging Fourier transform spectrometer that operates
between 1630-1655 nm [33], mounted inside an aircraft [34]. The aircraft over-
flew the releases at an approximate altitude of 250 m above ground level and
airspeed of 240 km/hr. Thermal emission from the gas and ground is negligible
over this wavelength range; instead, the camera images sunlight transmitted
through the atmosphere, reflected from the ground, and transmitted back to
the camera. The methane column density is inferred from the attenuation of
the transmitted light via a multi-layer spectroscopic model, and then combined
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with an advection model [35] using wind data from an online weather model to
find the emission rate.

2.1.4. Airborne TDLAS

Bridger’s airborne GML™ system consists of two tunable diode lasers, and a
sensor that detects the ground-reflected laser light. One laser is used for range
finding and determining ground reflectivity, while the other scans the 1651 nm
CH4 absorption line to determine column density. The lasers move in a conical
pattern, which forms an ellipsoidal swath on the ground. Reflected light from
the range-finding and methane-absorbing lasers are combined to form a column
density via WMS. The column density estimates across the swath are used to
form a 3D plume concentration map, which is combined with an advection model
using wind speed from online weather data to obtain a release rate [20].

2.2. Field Trial Design and Execution

The QOGI, truck-mounted TDLAS, and airborne NIR HS imaging sys-
tems were evaluated through two controlled release field campaigns executed
at Carbon Management Canada (CMC)’s Newall County Research Station near
Brooks, Alberta, the first during April 20-26 2022 and the second during Septem-
ber 25-October 1, 2022. Technology developers and service providers were in-
vited to attend the field trials and quantify emissions of natural gas in a variety
of industrially relevant scenarios, including 1.7 m, 3.4 m, and 4.8 tall stacks,
and a 14-m tall unlit flare, following their standards-of-practice.

An assay showed that the natural gas consisted of 94.2 % methane, 3.4 %
ethane, 1.1 % propane, and 1.3 % minor components, predominantly N2 and O2

in roughly atmospheric abundances. The gas was released from a compressed
cylinder via a regulator valve and flowed through a heat exchanger to condition
the gas to atmospheric temperature. The conditioned gas then passed through
a mass flow controller (Alicat MCR-2000SLPM - D-PAR) and discharged to
the atmosphere in a manner that depended on the release scenario as shown in
figure 2.

Local meteorological conditions were measured using a portable 81000-L RM
Young 3D ultrasonic anemometer and a Davis WeatherLink Pro+™ weather
station. The portable anemometer was located 2.25 m above the ground. Back-
ground measurements of methane and other relevant species were monitored
throughout the tests using a Picarro cavity ringdown spectrometer located in a
structure approximately 250 m from the release locations. Background methane
measurements were between 2 to 2.5 ppm throughout the tests. Meteorology
and controlled release data for these field trials are provided in the supplemental
information (SI).

Service providers did not have access to meteorology data; instead, they con-
ducted their own on-site measurements or relied on third-party weather models,
as they would when deploying the technology in a practical scenario. Service
providers then compiled their own estimates and provided them to the academic
team.
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Figure 2: Controlled release set-up including heat exchanger and mass flow controller.

Additional data was taken from controlled release studies reported in the
literature: Bridger GML system was taken from the controlled, fully-blinded
release study reported by Conrad, et al. [22].

Table 2: Summary of technologies, providers, and available data from the field trials and ex-
ternal sources. N1 and N2 refer to the number of observations collected for a given technology
during the first field trial and second field trial, respectively.“Other” refers to data from Ref.
[22].

Technology N1 N2 Other
QOGI Operator A 117 0 NA
QOGI Operator B 0 71 NA
QOGI Operator C 14 106 NA
Truck TDLAS 142 125 NA
Aerial TDLAS NA NA 405
Aerial NIR HSI 46 37 NA

3. Uncertainty Quantification

3.1. Models for Uncertainty Using Controlled Release Data

We propose a statistical model that answers the following question: For a
given true emission rate, what range of measurements could be expected, given
the observed controlled release data, in the context of model error and measure-
ment noise? We take a Bayesian approach to fitting the model and thus in Sec.
3.1.2 we give a brief overview of Bayesian analysis, followed by technical details
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that include the prior distributions, Sec. 3.1.3, and model selection methods,
Sec. 3.1.4.

3.1.1. Novel Flexible Model

Let Qi be the true emission rate corresponding to the ith observation in the
field trial, and Mi be the emission rate estimated by the technology for the ith
observation, i = 1, . . . , n where n is the total number of observations for the
given technology. The relationship between Qi and the bias and variability of
Mi can be complicated, since both the bias and the variability may change over
the range of Qi. Additionally, the relationship between Qi and Mi may not
be strictly linear, as shown in e.g. figure 3. The model must also account for
the fact that all technologies may report a “false positive”, that is, estimating
a non-zero Mi when Qi = 0.

A flexible likelihood which allows the bias and variance of Mi to vary with
Qi and incorporates the possibility of false positives is given by

log(Mi) = log(ϕi) + ϵi, (1)

where
ϵi ∼ N(0, σ2

i )

and
ϕi = median(Mi).

A specification for ϕi is

ϕi =

{
α0 + α1Qi + α2Q

2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.

To ensure that the function is continuous at Qi = γ, we impose the restriction
that β0 = α2γ

2 − β1γ. In this likelihood, there is a quadratic relationship
between ϕi and Qi for values of Qi smaller than a threshold γ and a linear
relationship for larger values of Qi. This likelihood is normal on the log scale,
which corresponds to a log-normal likelihood on the measurement scale.

The specification of ϕi can be modified to give the best prediction results
and fit to the data. For example, the threshold parameter γ, β0 and β1 could
be removed, which would give a quadratic relationship over the whole range of
Qi. Table 3 summarizes the parameters that may be removed and Section 3.1.4
shows how the likelihood is chosen.

The model can be rewritten to facilitate interpretation by exponentiating
both sides of Eq. (1):

Mi = (ϕi)× eϵi , (2)

where ϕi is the median measurement for a true emission rate of Qi.
The likelihood in Eq.(1) is an extension of the scheme proposed by Conrad

et al. [22]. That is, their model is a special case of our likelihood where α0 = 0,
α2 = 0, β0 = 0, β1 = 0, and σ2

i = σ2 for all i = 1, . . . , n. Briefly, they as-
sume the median value of Mi has a multiplicative relationship with Qi, that is,
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ϕi = α1 × Qi, and the multiplicative error term has a constant variance over
the range of Qi. Our model expands on this in three ways. First, we allow
for linear and quadratic relationships between the median measurement and
Qi rather than a strictly multiplicative one. This is useful in modelling more
complex relationships. Additionally, it allows false positives to be modelled via
α0. Second, the inclusion of the threshold parameter t allows more flexibility
in modelling the relationship between the median of Mi over the range of Qi

rather than assuming a common median function for all Qi. Third, we investi-
gate different variance structures for ϵi which can allow the variance to change
with Qi to more accurately model the patterns observed in controlled data from
some instrumentation rather than assuming a constant variance. Another dif-
ference between this approach and that of [22] is that they investigate different
distributions for the error term, whereas we restrict ourselves to the log-normal
distribution, but investigate different forms for the median and variance which
are motivated by the data. Finally, we take a fully Bayesian approach to esti-
mation and inference discussed in section 3.1.2 whereas [22] uses a (frequentist)
maximum likelihood approach.

It is important to note that in this model the errors are additive on the log
scale, which implies multiplicative errors on the raw measurement scale as shown
in Eq. (2). The simplest way to model the variation is to set the variance of ϵi to
a constant, σ2

i = τ−1 for all i, where τ is referred to as the precision parameter.
Multiplicative errors may be suitable for lower and moderately-sized emission
rates, but for large values of Qi purely multiplicative errors may overestimate
variability for some technologies. A possible explanation for this is that for
smaller emission rates, both the error in raw concentration or column density
estimates and error in the advection model are significant, leading to product
uncertainty. For larger emission rates, however, either raw measurement error
or advection model error dominates, leading to sub-multiplicative errors in this
range. To accommodate this, we also propose using σ2

i = (τ + Qi/η)
−1 as an

alternative variance structure for ϵi which allows the variability of the error
terms to decrease with increasing Qi. The approach to choosing an appropriate
likelihood, including the variance specification, is described in Sec. 3.1.4.

This section concludes with interpretations of the parameters in the likeli-
hood. Threshold parameter γ allows the linear relationship to change for larger
values of Qi. α0 represents the median measurement when the true emission
rate is zero, which accounts for false positives. Parameters α1 and α2 are the
coefficients for Qi and Q2

i , describing the quadratic relationship between the
median measurement and the true emission rate when the true emission rate is
less than the threshold. Sums α0 + β0 and α1 + β1 are the slope and intercept
of the linear relationship between the median measurement and Qi when Qi

exceeds the threshold. Some technologies exhibit simpler relationships between
Qi and the median of Mi, in which case some or all of γ, α2, β0, and β1 may be
dropped from the model. Finally, two different variance specifications were used
in the likelihood: either σ2

i = τ−1 or σ2
i = (τ + Qi/η)

−1. In the former case,
τ−1 is the variance of all measurements on the log scale. In the latter specifica-
tion, τ−1 is the variance of the measurements when Qi = 0 and c controls how
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much the variance changes as Qi increases from zero. A larger value of η corre-
sponds to a milder reduction in variance as Qi increases. Table 3 summarizes
the parameters in the likelihood, their units, and scenarios in which they may
be included or removed.

3.1.2. Bayesian Analysis

The model parameters are estimated using a Bayesian approach. This is
done for several reasons: (i) the method is flexible, allowing the likelihood to
be tailored to the data; (ii) data can be synthesized seamlessly from multiple
sources (e.g., multiple measurement campaigns or different measurement modal-
ities); (iii) it explicates the use of prior information; and (iv) it provides the full
probability distribution of measurements given a true emission rate, amounting
to a comprehensive definition of what is known about the emission rate (see
Sec. 4.2).

Let the unknown parameters of a statistical model for the measurement Mi

given a fixed true emission rate Qi be represented by vector θ. In the Bayesian
framework, these parameters are envisioned as random variables defined by
probability distributions that are related by Bayes’ equation,

p(θ | M) =
p(M | θ)p(θ)

p(M)
, (3)

where M = (M1,M2, . . . ,Mn)
′. The probability distribution of interest is the

posterior distribution, p(θ | M), which summarises the information about θ in
the observed measurements along with any external or “prior” knowledge we
may have about θ. The likelihood distribution, p(M | θ), is the probability
distribution of the set of measurements for a fixed value of θ and is also a
function of the true emission rates Q, which is fixed and thus suppressed in the
notation in Eq. (3). It describes how likely it is to observe M for a given value
of θ and Q in the context of measurement noise and model error. Under the
assumption that measurement errors are independent between measurements,
we also have that p(M | θ) =

∏n
i=1 p(Mi | θ). The prior distribution, p(θ),

describes what is known about the unknown parameters before data is collected.
Prior distributions for the proposed models are discussed in Sec. 3.1.3. Finally,
p(M) is the marginal distribution of the data, which is constant for fixed data.

The posterior p(θ | M) is estimated using Markov Chain Monte Carlo
(MCMC) sampling, which generates a set of samples from the posterior distri-
bution of θ [36]. These samples are readily used to derive quantities of interest,
such as credibility intervals. MCMC sampling is done using Just Another Gibbs
Sampler (JAGS)[37] via the runjags R package [38].

We wish to understand the distribution of a measurement given a fixed
value of Qi. Let M̃i represent a new, unobserved measurement and Qi be an
accompanying true emission rate. Then we wish to find the posterior predictive
distribution of M̃i, given by p(M̃i | M,Qi) =

∫
p(M̃i | θ,Qi)p(θ | M)dθ, which

is the integral over θ of the likelihood of Mi given fixed θ and Qi times the
posterior distribution of θ. This distribution can be obtained via simulation
using samples from the posterior.
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3.1.3. Prior Distributions

As with any Bayesian model, an appropriate prior distribution depends on
the context of the problem at hand, including pre-existing knowledge and the
scale of the data. We summarise the units of each parameter in Table 3.

Parameter Units Exclusion criteria
α0 [Mi] *
α1 Unitless None
α2 [Mi]

−1 †
β0 [Mi] *,†
β1 Unitless †
γ [Mi] †
τ Unitless None
η [Mi] †

Table 3: Summary of the units for each parameter in the likelihood, important to keep in mind
when specifying prior distributions. Exclusion criteria: * = may be removed if technology
does not have false positives in controlled release data, † = may be removed if its removal
leads to a simpler model which has adequate fit and predictive performance.

The parameters of the likelihood to be estimated are α0, α1, τ , along with
optional parameters α2, γ, β1, and/or η. All parameters are assumed to be
independent, that is,

p(θ) = p(α0, α1, τ, α2, γ, β1, η) = p(α0)p(α1)p(τ)p(α2)p(γ)p(β1)p(η), (4)

so we can specify individual prior distributions for each parameter.
We can derive empirical prior distributions by considering the role of each

parameter in the model and their units. Since α0 is the median measurement
when the true emission rate is zero, it should be small and non-negative. It
is parameterized by a gamma distribution, where the shape and rate parame-
ters can be chosen so the mean of the distribution is similar to the mean false
positives observed in the data. For example, for the data reported by QOGI
Operator A, the average false positive is 0.27 kg/h so we use a gamma distri-
bution with shape parameter = 0.5 and rate parameter = 2, which has a mean
of 0.25 and variance of 0.125. Note that β0 is a function of other parameters
to ensure that the piece-wise function is C1 continuous. A prior is not specified
for this parameter.

In a simple linear model, α1 is the slope of Qi so for every one unit increase in
Qi, the median measurement increases by α1 units. A perfect technology would
have α1 = 1. Thus we use a prior for α1 which has a median of 1 and is non-
negative. Further, we seek a distribution with the property that for any constant
k > 1, the probability that α1 > k should be the same as the probability that
α1 < 1/k, or in other words, the probability that the technology over-estimates
by a factor of k is the same as the probability that it under-estimates by a factor
of 1/k. This property is desirable in the prior because information about under-
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or over-estimation should only come from the data. Thus we use a standard log-
normal distribution (shape parameter equal to one, location parameter equal to
zero, and scale parameter equal to zero [39]) because it has this property. For
example, if α1 follows the standard log-normal distribution the probability that
α1 < 1/2 = probability that α1 > 2 = 0.244.

Coefficient α2 is associated with Q2
i when Qi ≤ γ. Similarly to α0 and α1,

we restrict this parameter to be non-negative to avoid taking the log of zero or a
negative number. Due to the units of α2, we use a prior with a relatively small
variance. For example, if we wanted the variance to be equivalent to 10 kg/h,
that equals 0.1 [kg/h]−1. Thus we use a half-normal distribution with variance
parameter equal to 1.

Parameter β1 (unitless, nonnegative) represents the change in α1 when Qi >
γ. As with α1, we use a standard log-normal distribution as a prior for β1.

The threshold parameter γ represents the value of Qi for which the rela-
tionship with Mi changes from quadratic to linear. The parameter γ must be
somewhere in the range of the Qi data. We use a uniform prior distribution on
(0, max) where max is determined by the largest value of Qi observed in the
data for a given technology.

Parameter τ represents either the inverse of the variance of measurements
on the log scale in a constant variance model, or the inverse of the variance of
measurements when Qi = 0 on the log scale and is referred to as the precision
parameter. We use a vague non-negative prior of a half-normal with variance
parameter set to 100 on τ−1/2, as suggested in [40].

Finally, if the more complicated variance model is used, a prior must be
chosen for η. Little external information is known about η except it must be
non-negative. We use a half-normal with variance set to 100.

The sensitivity of results to prior specification was checked for all models.
Results were obtained for the stated priors. Next, the model was refit with
priors where the range and/or variance was changed for some parameters. The
posterior distribution of each parameter was then compared between the two
models. The resulting 90% prediction bands were also compared between the
models. Unless otherwise stated in the results section, the model results were
insensitive to the prior specification.

3.1.4. Model Selection

As discussed in Sec. 3.1.1, a variety of candidate models may be formed by
adding or removing likelihood parameters, each of which may result in differ-
ent implications for measurement bias and variability. For example, removing
Qi/η from the variance expression leads to a simpler model which has constant
variance on the log scale. In general, a model with more parameters will fit the
controlled release data better but may also be prone to over-fitting, which can
result in poor predictive performance. Therefore, we use a combination of De-
viance Information Criteria (DIC), prediction bands, and residual plots to select
a model that provides a good trade-off between goodness of fit and complexity.

The Deviance Information Criterion, or DIC, combines goodness-of-fit to
the training data and model complexity to provide an overall assessment of the
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model [36]. It is analogous to the AIC, a frequentist model selection tool used
by Conrad et al. [22] in the context of uncertainty modelling of methane quan-
tification technologies. When comparing multiple models, a lower DIC value
indicates a better balance between model fit and complexity, with differences of
two or more considered meaningful [41].

We are also guided by plotting prediction bands derived from the posterior
predictive distribution of measurements for different values of Qi over a scatter-
plot of the data used to fit the model. If the prediction bands show a much wider
or narrower spread than the data used to fit the model, this is an indication that
the variance is not modelled well. Prediction bands can also be compared to
additional data that was excluded from the model fit (“external data”), which
indicates the generalizability of the model predictions. If the model predictions
look similar to the external validation data, this is an encouraging sign that
the model is suitable to be used under different conditions. Investigating the
residuals, defined as the difference between the model-predicted value (M̂i) and
the observed data point (Mi), that is, residuali = Mi − M̂i provides still more
insight into areas of improvement for the model.

The DIC, prediction bands, and residual plots were used for model selection
as follows: First, the simplest model possible with constant variance was fit to
the data (a multiplicative model with α1 if there are no false positives in the
data or a linear model with α0 and α1 otherwise). The DIC was calculated using
JAGS. Prediction bands were compared to the data used to fit the model and
residual plots were inspected. If the prediction bands were much wider or nar-
rower than the spread of the data, this indicated that the variance model should
be explored. If the residual plots showed systematic problems, this indicated
that the median specification should be explored. Models were then augmented
as suggested by the diagnostic plots, refit, and DIC was re-calculated. This
process was repeated until the diagnostic plots were satisfactory and the DIC
was at least three less than that of the previous model.

4. Results and Discussion

4.1. Uncertainty Results

In this section, we present the selected likelihoods for five different methane
quantification technologies/operators, discuss the performance, and comment
on the generalizability of the model if applicable. The chosen models are sum-
marized in Table 4.

4.1.1. QOGI Technologies

Prediction bands and posterior median predictions are shown for QOGI Op-
erators A, B, and C in Figures 3, 4 and 5, respectively. All QOGI technologies
underestimate emissions on average. The likelihoods from QOGI Operators B
and C are best modelled using a quadratic function for the median below a small
threshold, then a linear function. QOGI Operator A is best modelled using a
quadratic function for the median. Data provided by Operator A has a more
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Table 4: Summary of selected models for each methane quantification technology provider.

Technology
Selected likelihood
ϕi σ2

i

QOGI A α0 + α1Qi + α2Q
2
i (τ +Qi/η)

−1

QOGI B

{
α0 + α1Qi + α2Q

2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.
τ−1

QOGI C

{
α0 + α1Qi + α2Q

2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.
(τ +Qi/η)

−1

Truck TDLAS α0 + α1Qi (τ +Qi/η)
−1

Aerial TDLAS α1Qi (τ +Qi/η)
−1

Aerial NIR HSI α0 + α1Qi τ−1

limited range than the other QOGI technologies - with a max Qi value of 30
kg/h, compared to 80 kg/h for Operator C and 50 kg/h for Operator B. For
QOGI technologies in general, the likelihood has more curvature in the lower
range of Qi while a linear relationship on the log scale is suitable for higher
release rates.

The results for QOGI Operator B are quite distinct from those of Operators
A and C. This may be attributed to this operator’s lack of familiarity with
the camera settings during the testing, as reported by the operator. This lack-
of-familiarity manifests as an additional factor that influences (broadens and
biases) the likelihood.

QOGI Operator C was present for both field trials. Only 14 measurements
were made for this technology at the first field trial, which we use as external
data. These data points fall within the 95% prediction band, suggesting that
the model is generalizable.

4.1.2. TDLAS

Results from the selected models for truck and aerial TDLAS systems are
shown in Figs. 6 and 7. The truck-based TDLAS tends to underestimate
emissions, while the aerial technology overestimates on average.

For truck-based TDLAS, the model was fit using data from the second field
trial, while data from the first field trial was used as external data to assess the
model’s generalizability. Most of the external data points fall within the predic-
tion bands. However, the median trend appears different for the external data.
A possible explanation for this is that weather conditions may have differed
between trials one and two in such a way that estimates were systematically
larger during the first trial than the second.

Figure 8 shows the predictions resulting from the Bayesian uncertainty model
derived for the airborne TDLAS compared to the one presented by Conrad et al.
[9]. The Bayesian model gives narrower prediction bands than the other model,
which is particularly noticeable in the upper range of Qi. This is likely due to
the different variance specifications used in the models; the model in Ref. [22]
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Figure 3: Uncertainty quantification model results for QOGI Operator A. The model was fit
to data from the first field trial. No external data were available.
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Figure 4: Uncertainty quantification model results for QOGI Operator B. The model was fit
to data from the second field trial. No external data were available.
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Figure 5: Uncertainty quantification model results from QOGI Operator C. The model was
fit to data from the second field trial. Controlled release data from the first field trial was
used as external data.

17



Figure 6: Uncertainty quantification model results for truck-based TDLAS data. The model
was fit to data from the second field trial. Controlled release data from the first field trial was
used as external data.

uses a constant variance whereas the selected model from our proposed Bayesian
approach allows the variance to change with Qi. The median predictions (solid
black line) are very similar between the two models.

4.1.3. Airborne NIR HS Imaging

The prediction bands from the selected model for the airborne NIR HS
imaging technology are shown in Fig. 9. The technology tends to overestimates
emissions. The model was fit to data from the second field trial, while data from
the first field trial were used as external data. There appear to be systemic dif-
ferences between the data from the two field trials, with the data from the first
field trial underestimating emissions more often, and data from the second field
trial overestimating emissions more often. However, most of the external data
points still fall within the 95% prediction bands, which is a positive indication
of the applicability of the model. During the field trials, the operator remarked
that the conditions were considered marginal due to excessive cloud cover and
would not be typical of those under which commercial measurements were con-
ducted, while those of the second field trial were nearly ideal. This could explain
the lack of implausibly large estimates calculated during the first trial, as com-
pared to the second field trial, where there two estimated measurements that
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Figure 7: Uncertainty quantification model results for airborne TDLAS data provided by [22].

Figure 8: Side-by-side comparison of Bayesian model proposed in table 4 and that presented
in [22] for airborne TDLAS.
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Figure 9: Uncertainty quantification model results for airborne NIR HS data. The model was
fit to data from the second field trial. Controlled release data from the first field trial was
used as external data.

are so large they fall outside the 95% prediction band.

4.2. Application: Quantifying Uncertainty in New Measurements

4.2.1. Algorithm

Finally, we describe a possible downstream application of the distributions
derived in section 4.1. Suppose we wish to calculate a credible interval for the
true emission rate based on methane measurements made in the field where the
true emission rate is not known. Let Qnew represent the unknown true emission
rate associated with the new measurement and Mnew be the measurement made
in the field. We wish to know the distribution of Qnew given Mnew and our
uncertainty model derived from controlled release data. The distribution of
interest is p(Qnew | Mnew,M). Using Bayes equation, Eq. (3), we can say that

p(Qnew | Mnew,M) ∝ p(Mnew | Qnew,M)p(Qnew | M)

= p(Mnew | Qnew,M)p(Qnew), (5)

where the true emission rate is modeled as independent of the measurements
from the controlled release trials. Computational techniques can be used to
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obtain p(Mnew | Qnew,M). We can say that

p(Mnew | Qnew,M) =

∫
p(Mnew | Qnew, θ,M)p(θ | Qnew,M)dθ

=

∫
p(Mnew | Qnew, θ)p(θ | M)dθ. (6)

The distribution p(Mnew | Qnew, θ) is the likelihood given by the uncertainty
model from 3.1.1 where Qi = Qnew. p(θ | M) is the posterior distribution of θ
given the controlled release data. This integral can be approximated as follows:

1. Sample θj j = 1, . . . , J times from p(θ | M)

2. For j = 1, . . . , J , calculate p(Mnew | Qnew, θj)

3. The integral in (6) ≈
∑J

j=1 p(Mnew|Qnew,θj)

J

This process can also be performed for repeated measurements of the same
source, that is, where Mnew is a vector, Mnew = (Mnew

1 , . . . ,Mnew
n ). Under

the assumption that the uncertainty in each measurement is independent of
previous measurements, conditional on Qnew, at step two, p(Mnew | Qnew, θj) =∏n

i=1 p(M
new
i | Qnew, θj).

The distribution p(Qnew) in Eq. (5) is the prior distribution of Qnew, where
we assume the new measurement is independent of the controlled release data.
This distribution can be informed using relevant pre-existing data, such as sur-
vey data on leak rates in the region where the measurement was made. This
facilitates the natural synthesis of external data with controlled release data and
the new observed measurement.

The posterior distribution of interest p(Qnew | Mnew,M) can be sampled as
follows:

1. Draw a sample of size L from the prior distribution p(Qnew): S = {Qnew
1 , . . . , Qnew

L }
2. For l = 1, . . . , L, approximate p(Mnew | Qnew

l ,M) using the previously
described algorithm

3. Calculate weights

wl =
p(Mnew | Qnew

l ,M)∑L
k=1 p(M

new | Qnew
k ,M)

(7)

4. Resample from S with sampling probabilities wl for l = 1, . . . , L to get a
sample of size K from the posterior distribution p(Qnew | Mnew,M).

4.2.2. Set-up

The algorithm described in the previous section is demonstrated using the
model selected in Sec. 4.1 for QOGI Operator C. We consider two data scenar-
ios: one where a single measurement of a source is made, and one where five
independent measurements of the same source are made. We also investigate
two different prior distributions, p(Qnew), to show how information flows from
the prior to the posterior distribution.
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We simulate the process of performing measurements in the field (e.g., as
part of a LDAR survey program) as follows: First, we choose a hypothetical
true value for the source we will measure, which we set to Qi = 25 kg/h.
Then, we simulate “measurements” by drawing from the posterior predictive
distribution defined in Sec. 3.1.2, p(M̃i | Mi, Qi = 25 kg/hr). This is done
five times to produce five independent “measurements” of the same source. Let
Mnew

1 , . . . ,Mnew
5 represent the five simulated measurement values: 20.3 kg/h,

11.7 kg/h, 8.9 kg/h, 16.2 kg/h, and 16.4 kg/h.
To understand how prior information impacts the estimates, we use two dif-

ferent prior distributions. The first prior is a uniform distribution where we
only impose the upper limit of 200 kg/h, while the second is a log-normal distri-
bution, as this distribution has been suggested to model leak rate distributions
[42].

To summarise, we investigate four different scenarios:

1. Only Mnew
1 is used, and p(Qnew) is a uniform distribution from 0 to 200

kg/h.

2. All of Mnew
1 , . . . ,Mnew

5 are used, and p(Qnew) is a uniform distribution
from 0 to 200 kg/h.

3. Only Mnew
1 is used, and p(Qnew) is a log-normal distribution with shape

parameter 1, location parameter equal to zero, and scale parameter equal
to 2.6 [39]

4. All of Mnew
1 , . . . ,Mnew

5 are used, and p(Qnew) is a log-normal distribu-
tion with shape parameter 1, location parameter equal to zero, and scale
parameter equal to 2.6 [39]

4.2.3. Results

The different information expressed in the two priors can be visualized by
comparing the histograms in Fig. 10. The uniform prior expresses that all
values between 0 and 200 kg/h are equally likely. This may be a naive choice,
because surveys have shown that extremely high emitters are much less likely
than lower emitters [43, 42]. The log-normal prior expresses that there is about
a 50% chance that the emission rate is less than 13.6 kg/h and 75% chance that
the emission rate is less than 26.2 kg/h, with very large values being rare.

Also, posterior distributions are not centred around the measured values,
which were all less than the “true” value of 25 kg/h. This is a reflection of
the results shown in Fig. 5, where it is clear that the technology systematically
underestimates the true emission rate. The algorithm presented in this section
allows the information captured in the model derived from Sec. 3.1 to be inverted
and produce estimates that are equal to the true emission rate, on average.

4.3. Discussion

As highlighted by Figs.3 - 9, relying solely on measurements without consid-
ering uncertainty can lead to significant misinterpretations of the emission rate.
The methods presented in Sec 3.1 provide a way to summarise both the vari-
ability and systematic bias of a technology. They are situated in the Bayesian
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Figure 10: Comparison of histograms for the two different prior distributions p(Mnew) inves-
tigated in the analysis.

statistical framework which facilitates probabilistic inference, the derivation of
credible intervals, and downstream approaches, as exemplified in Sec. 4.2.

Specifically, the algorithm presented in Sec. 4.2 provides a distribution of
the true emission rate given all available information, including a measurement
or set of measurements, controlled release data, and external prior knowledge,
e.g., what is a believable leak rate for a given scenario? This prior knowledge
strongly informs the posterior when the measurement data is limited, but its
influence diminishes as more measurements becomes available. This is beneficial
because it formalises an informal process: in the absence of data, we must rely
more on previous knowledge, whereas when more data are available, we rely less
on our previous knowledge. The results also show that increasing the numbers
of measurements reduces uncertainty in the posterior; that is, as we collect more
data, we can be more certain about the true value of the emission rate. The
models presented here could be used to determine how many measurements
should be performed for a certain technology and emission rate to ensure that
the credibility intervals are within a certain value. This algorithm in tandem
with the models described in Sec. 3.1 could be used in the future to help plan
or assess the effectiveness of LDAR programs, e.g., by identifying the optimal
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Table 5: Summary of 90% credible intervals (CrI) for the four different data scenarios, and
their lengths.

Prior Number of Values 90% CrI Length of CrI
Unif(0,200) 1 (12.3, 71.0) 58.7
Unif(0,200) 5 (14.9, 37.3) 22.3

LogNormal(2.6, 1) 1 (3.1, 47.9) 44.8
LogNormal(2.6, 1) 5 (13.9, 35.5) 21.6

Figure 11: Posterior distributions for the true value of the emission rate given the observed
measurement(s), prior distribution, and controlled release data.

combination of technologies that achieve a certain credibility interval.
Although extensive meteorological data were collected during the field trials

(as detailed in the SI), we refrain from incorporating them in the statistical
models. This is because the goal of the models is to summarise the performance
of a technology over a variety of conditions. To this end, the field trials were
conducted at different times-of-year and each trial over multiple days, so that the
results could be used to assess the performance of the technologies over a variety
of conditions. This also enabled the use of external validation - checking to see if
data collected under one set of conditions can be used to predict data collected
under a different set of conditions. However, it may be possible to improve the
predictive performance of the models by incorporating meteorological data into
the likelihood, discussed further in the Conclusion section.
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5. Conclusions

A wide range of quantification technologies have been deployed to measure
methane emissions from the upstream oil and gas sector, including ground-based
infrared cameras, airborne hyperspectral imaging, and truck and airborne laser
absorption spectroscopy. However, measurements from these technologies can
only be interpreted properly in the context of uncertainty, which arise from
measurement noise, uncertain model parameters, and, especially, the approxi-
mations and simplifications that must be made to render the models tractable
(model error).

This paper presented a formalism for developing uncertainty estimates from
controlled release data within the Bayesian framework. The outcome of this
analysis are posterior probability density functions that comprehensively define
what is known about an emission rate, based on the measurement data, con-
trolled release data, and prior information. This approach is entirely technology-
agnostic, does not require knowledge of the underlying physical model, and may
be adapted to a wide range of scenarios.

The probability density functions may be summarized as credibility intervals
(e.g., the range of emission rates that correspond to a given probability) and
may be used for other purposes, such as the input to probabilistic simulations to
assess the effectiveness of alternative fugitive emissions management plans (alt-
FEMPS) or the in calculating the uncertainty attached to inventory estimates.
This study demonstrates clearly the importance of multiple measurements dur-
ing any particular emission survey study. Two implications of this result are
immediately of significance for regulation and policy. Currently the structure
and schedule of regulations tends to specify only the annual frequencies of site
and equipment emission monitoring surveys (cite the Alberta or BC regulations
if you wish). A key result of this study is that the uncertainty of a given sur-
vey is dependent on the number of measurements made. Due to the relatively
large uncertainties observed for different technologies in this study, it is likely
that multiple measurements would be required to achieve a desired emission
rate uncertainty. Therefore, regulators would be advised to specify the mini-
mum number of observations at any emission source in addition to the annual
emissions survey frequencies. Alternatively, and perhaps more appropriately
due to the relationship between uncertainty and true emission rate, a desired
uncertainty range per emission source should be specified and the number of
measurements required to achieve this uncertainty should be made.

An important aspect of methane detection and quantification technologies
not covered by the methodology so far is the detection probability, that is, how
likely it is that a technology will detect a given emission source under a set of
conditions. Work has been done to characterise probability of detection and
uncertainty separately, e.g., [22]. An advantage of the Bayesian approach taken
in this paper is that it lends itself well to model extension. Modelling of detection
probability could be done simultaneously to uncertainty modelling by using a
hierarchical Bayesian model. Extending the model to simultaneously consider
detection probability and measurement uncertainty is an important avenue of
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future work.
Another area of further exploration lies in the incorporation of meteorologi-

cal data into the likelihood. Given a large amount of controlled release data, it
may be possible to narrow the posterior probability by incorporating the meteo-
rological data into the likelihood. For example, the likelihood could be modified
so that the median function is

ϕi = α0 + α1Qi + β1(wind speedi).

In other words, the meteorological data becomes an additional observable. An-
other caveat to the inclusion of covariates is that more controlled release data
would be needed to accurately estimate the increased number of model parame-
ters. However, it has the potential to improve the predictive performance of the
models. Incorporating meteorological data into the model could be investigated
further.
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