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EXECUTIVE SUMMARY 

In September 2021 the University of Waterloo (UW), Arolytics, Inc., and Carbon Management 
Canada (CMC) commenced a 3-year study to assess the potential of existing and emerging 
technologies for measuring methane emissions from upstream oil and gas sources, and develop 
uncertainties for these estimates.  

Research commenced with a review of available technologies, which were categorized according 
to operating principle and applicability to various emission measurement scenarios. Manufacturer-
specified performance characteristics were also summarized and tabulated. Based on these results, 
a subset of technologies was selected for detailed analysis: quantitative optical gas imaging 
(QOGI); truck-, drone-, and aircraft-based tunable diode laser-absorption spectroscopy (TDLAS); 
and aircraft-based near-wavelength and long-wavelength hyperspectral (HS) imaging.  

This activity was followed by a more detailed assessment of the technologies. This was done in 
two ways: First, Monte Carlo simulations were performed using AroFEMP to calculate the 
expected reduction in methane emissions were the technologies incorporated into an alternative 
fugitive emissions management plan (alt-FEMP), relative to a standard OGI-based FEMP. Second, 
a laboratory-scale experimental study was carried out using QOGI cameras on a heated vent of 
methane to better understand the operating principles, characteristics, and capabilities of this 
technology. 

The technologies were then deployed in three controlled-release field campaigns at CMC’s field 
station in Newall County, Alberta1. The controlled releases were “semi-blind”, meaning that the 
technology providers and operators knew the release locations, but not the release rates. A variety 
of measurement scenarios were considered, including stacks of various heights and an unlit flare; 
emissions from the top of a tank; and emissions from the side of a shed. The results highlighted 
how quantification accuracy was influenced by release rate, release scenario, and various 
environmental parameters (e.g., wind, ground temperature, and air temperature). 

The final research phase is focused on developing techniques for quantifying the uncertainty 
attached to emission estimates. Uncertainty arises from a variety of sources, including 
measurement noise; uncertain model parameters (e.g., wind speed, air temperature); and structural 
errors caused by the approximations and simplifications made when deriving the measurement 
models. These errors introduce bias and variability in the estimates.  

Two approaches have been developed to quantify uncertainty estimates, both based on Bayesian 
inference. The first approach is based on propagating measurement noise, model parameter 
uncertainty, and model error through the measurement equations. This approach focused on the 
truck based TLDAS system since the measurement equations (inverse Gaussian plume model) are 
straightforward and easy-to-use. In many cases, however, the model equations are highly complex 
and/or unavailable to a third-party operator. For this scenario, a second technique was developed 
that uses a set of controlled release measurements to develop an empirical likelihood model, which 
may be inverted to obtain uncertainties from subsequent measurements using the same technology. 
Finally, these models are being incorporated into a Monte Carlo simulation of an alt-FEMP, to 
assess the uncertainty attached to performance estimates for various methane emission 
management plans.  

 
1 While the Bridger GML was included in the analysis, they were unable to participate in field trials. 
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1. INTRODUCTION 
1.1 Purpose and scope 
As part of its strategy to address climate change, the Government of Canada has pledged to reduce 
methane emissions from the oil and gas sector by 40-45% below 2012 levels by 2025 [1, 2], with 
a further goal of reducing methane emissions by 75% by 2030 [3]. In December 2023 the 
Government of Canada announced further regulatory amendments that include enhanced screening 
and repair timelines that depend on leak rates and annual facility inspections conducted by an 
auditor [4]. 

To fulfill these obligations, Canada’s oil and gas producers need tools that can both detect and 
quantify methane emissions. Regulators need quantification tools to assess compliance of industry 
to these regulations. Climate modelers need the data from these tools to understand how emissions 
from Canada’s oil and gas industry contribute to climate change, information that provincial 
governments and the Federal government use to inform policy needed to fulfil Canada’s 
international treaty obligations and to avoid the worst outcomes of climate change.  

A diverse suite of candidate methane emission quantification tools is available to Canada’s oil and 
gas industry. There is unlikely to be a “one-size-fits-all” solution: techniques designed to measure 
localized, persistent fugitive leaks from valves or gaskets may not be suitable for diffuse and 
intermittent emissions vented from storage tanks, surface casing vents, and CHOPS (cold heavy 
oil production with sand) wells. Persistent emissions may be identified reliably using periodic 
surveys, while highly variable or intermittent emissions may require continuous monitoring. 
Recent advancements in optoelectronic hardware that include mid-wavelength infrared (MWIR) 
cameras, tunable diode laser absorption spectroscopy (TDLAS) in a range of configurations, and 
hyperspectral imaging from ground-based, aerial, and orbital platforms have augmented and 
disrupted the field of traditional approaches based on extractive sampling (e.g., the Bacharach HI 
FLOW sampler) although their accuracy, precision, and best practices under various 
measurement scenarios are still being refined.  

Choosing the “right tool for the job” depends largely on the uncertainty associated with the 
methane emission estimates. This is particularly the case in a regulatory context. For example: 
How certain is it that an operator is complying with emissions? Is it practical to impose a limit on 
emissions that cannot be measured with reasonable accuracy? What is the most cost-effective 
technology to deploy for a given measurement scenario?  To make these decisions, operators and 
regulators need to understand the uncertainty with which emissions may be quantified. Climate 
modelers and policy makers also need to understand the uncertainties attached to reported emission 
inventories to draft effective regulations that safeguard the environment without unduly penalizing 
oil and gas producers. 

With these goals in mind, the Petroleum Technology Alliance Canada (PTAC) and Clean 
Resources Innovation Network (CRIN) engaged the University of Waterloo (UW), Arolytics, Inc. 
(Arolytics), and Carbon Management Canada, Inc. (CMC) to undertake a three-year research 
program entitled “Evaluation of Emission Quantification Technologies”. The program is funded 
by the Alberta Upstream Petroleum Research Fund (AUPRF) through PTAC, the Government of 
Canada's Strategic Innovation Fund through CRIN, and the Natural Sciences and Engineering 
Research Council (NSERC) via the Alliance program. 

The UW/Arolytics/CMC team brings together the diverse and complementary range of expertise 
needed to fulfill these objectives. The UW team is led by Professor Kyle Daun from the 
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Department of Mechanical and Mechatronics Engineering, an expert in optical gas imaging, laser-
based diagnostics, remote sensing, and uncertainty quantification. Daun is joined by Professors 
Christiane Lemieux and Audrey Béliveau from the Department of Statistics and Actuarial Science. 
Lemieux’s research interests focus on Monte Carlo simulations, while Béliveau studies Bayesian 
statistics and uncertainty quantification. Arolytics’s participation is coordinated by Kevin Fritz, an 
expert in methane emissions quantification and FEMPs; Fritz also has extensive experience in 
methane emissions field measurements. Finally, CMC’s participation is managed by Kirk Osadetz, 
a geoscientist and expert in methane emissions from Canada’s oil and gas industry. Osadetz is 
CMC’s Programs Development Manager and also manages CMC’s Field Research Station, where 
candidate quantification technologies will be evaluated under industry-relevant conditions. 

Research activities were organized into four project phases: 

Phase 1: Quantification tool review interim summary table 

Phase 2: Recommendation of viable quantification tools 

Phase 3: Field campaign design and execution 

Phase 4: Data analysis and summary 

These research activities were guided with input and oversight from PTAC, CRIN, and members 
of the Industrial Steering Committee (ISC), a subcommittee of PTAC’s Air Research Planning 
Committee (ARPC). 

This final report summarizes the progress made in these four phases, discusses ongoing work, and 
points to future research directions. A particular focus is placed on activities that took place after 
the second interim report, including a third field trial that focused on airborne long-wavelength 
infrared hyperspectral imaging, and preliminary statistical analysis that took place in 2023. Some 
of these data analysis activities are ongoing and will be completed after the end date of this report.    

  



6 
 

2. PHASE 1: QUANTIFICATION TOOL REVIEW INTERIM SUMMARY TABLE 
Research commenced in September 2021 with Phase 1. The outcome of this phase was a 
comprehensive survey of 23 candidate emission quantification technologies, along with an 
assessment of their capabilities, their technological readiness level, and their applicability to 
measuring emissions at the component, facility, and site level.  

In general, each technology derives an emission measurement, Q (e.g., kg/hr) by combining a 
methane concentration measurement with an advection/transport model. In this regard, methane 
emission quantification technologies may be organized according to the nature of the data they 
collect, which largely determines their suitability for various emission scenarios and how 
uncertainty estimates may be derived. This is shown schematically in Appendix A.  

Some technologies are based on point-concentration measurements, like short-path TDLAS, which 
provide a local concentration of methane, c (e.g., kg/m3). These measurements are combined with 
a plume transport model (e.g., the Gaussian plume model [5, 6] or backwards Lagrangian 
stochastic model [7]) that incorporates local anemometry measurements to obtain an emission rate 
estimate. Other techniques are based on open-path measurements over long distances, like dual 
comb frequency spectroscopy [8], in which case the outcome is a column density, , integrated 
along the optical path (ppmm or kg/m2); this data may also be combined with a wind speed 
measurement to obtain an emission rate estimate. 

A third category of imaging technology generates a 2D map of column densities; an example 
MWIR quantitative optical gas imaging (QOGI). In some cases, the emission rates are inferred by 
combining the column density map with a win measurement, while, for sufficiently high frame 
rates, a 2D intensity-weighted velocity field may be inferred by feature tracking between 
successive images. Finally, a fourth class of technology is used to measure emissions from 
confined flows (e.g., ducts) using gauges. The summary table and diagrams are in Appendix A of 
this report. 

Based on this analysis, a subset of these technologies was identified for further analysis during 
subsequent project phases2:  

1. QOGI 
2. Truck-, drone- and aircraft-deployed TDLAS 
3. Aerial near-wavelength infrared (NIR) hyperspectral imaging 
4. Aerial long-wavelength infrared (LWIR) hyperspectral imaging.  

A brief description of each technique is provided in the following subsections: 

2.1 Quantitative Optical Gas Imaging (QOGI) using MWIR broadband cameras 
This technique is based on imaging the thermal radiation emitted by a hydrocarbon plume hotter 
than its background (white plume) or the background thermal radiation that is absorbed by a plume 
colder than its background (black plume). The spectral intensity from the scene enters the camera 
aperture and is then imaged through a broadband filter and onto a focal plane array (FPA). The 
broadband “cold filter” and FPA are located behind a “cold shield” and maintained at cryogenic 
temperatures. This is done to enhance the thermoelectric conversion efficiency of the sensor and a 

 
2 Aerial TDLAS could not be included in the field trials for logistical reasons, but data from previous published field 
campaigns has been analysed through Phase 4 activities. 
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void blackbody radiation from the sensor, camera chassis, and the filter, which would otherwise 
contaminate the signal and preclude quantitative interpretation of the image.  

The cold filter defines the measurement spectrum; a typical choice is 3.2-3.4 m (FLIR GFx320), 
which is aligned with a primary vibrational-rotational absorption band corresponding to the C-H 
stretching mode for hydrocarbons (~3.34 m, Fig. 1). The brightness of each pixel corresponds to 
the spectral intensity incident on the pixel, integrated over this wavelength band. 

The column density of gas along each line-of-sight,  (kg/m2), is then inferred from the pixel 
intensity by inverting a spectroscopic model. This requires knowledge of: (1) the plume 
composition (usually taken to be methane); and, in the case of white plumes, (2) the plume and 
ambient temperatures. The plume temperature is usually taken to be that of the ambient air 
temperature, following the assumption that gas emerging from a leak will quickly reach thermal 
equilibrium with the surrounding air. In the case of gases other than methane, a conversion chart 
may be applied to correct the column densities.  

The MWIR measurement spectrum is not the optimal choice based solely on the sensitivity of the 
pixel intensity to methane column density. Hydrocarbons have a secondary vibrational-rotational 
band at ~7.6 m (LWIR) which is far more intense than the 3.34 m feature because matter at 
ambient temperatures emits more thermal radiation at wavelengths closer to 10 m. However, 
while broadband LWIR cameras may be used to visualize methane, quantitative analysis is 
precluded by significant emission features from ambient H2O, as seen in Figure 1.  

The 2D column density map is then combined with an advection model to obtain an overall mass 
flux according to 
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Figure 1: Emission spectrum for methane and water vapor at 300 K (a “white plume”). (CH4: L 
= 20 cm,  = 1, H2O: L = 200 cm,  =0.1.) Broadband QOGI measurements are constrained to 
the MWIR because of the water lines over the LWIR. 
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where () is the column density at a position  over the control surface, u is the 2D projected 
velocity, and n is the 2D normal vector. The advection model is inferred from the apparent motion 
of the plume in successive images. Unlike the spectroscopic model, the advection model is a 
proprietary and largely “black box” aspect of commercial QOGI software. The advection 
calculation may be affected by artifacts like “pooling” and background motion due to, e.g. moving 
clouds or vegetation; these effects were explored in Phase 3 activities. 

2.2 Truck-, aircraft-, and drone-based TDLAS 
Tunable diode laser absorption spectroscopy is a low-cost and reliable way to measure the 
concentration of a particular gas, e.g., methane. A distinguishing feature of tunable diode lasers is 
that they may be “tuned” across a narrow range of wavelengths by adjusting the supply current; in 
the case of gas sensing, the wavelengths capture one or more spectral lines corresponding to 
defined transitions between quantized vibrational-rotational states that act like a “fingerprint” for 
the species of interest (Figure 2). In the case of a homogeneous gas over a path length L, the gas 
concentration may be inferred from the Beer-Lambert Law,  

  L 0 expI I L     (2) 

where η is the wavenumber (cm-1, the inverse of wavelength), Iη0 and IηL are the incident and 
transmitted laser intensity, and η is the spectral absorption coefficient, which is proportional to 
the number density (molecules/m3) of the species of interest. Inverting Eq. (2) results in a column 
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Figure 2: Near-Infrared (NIR) absorption spectrum for CH4 used for TDLAS. Boreal Laser’s
GasFinder 3 instrument uses wavelength-modulated spectroscopy to infer the concentration
based on an absorption line at 1654 nm (6046 cm-1). This part of the spectrum is also the basis 
for the GHGSat instrument (1630-1655nm) based on absorbed sunlight. 
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density, e.g. ppmm  or kg/m2, which is proportional to the number of molecules along the path 
length. 

This approach is called direct absorption spectroscopy (DAS) and is the simplest implementation 
of TDLAS. In wavelength modulated spectroscopy (WMS), the wavelength is tuned rapidly over 
a single line by harmonically varying the supply current, and the absorption coefficient/column 
density is then inferred from the AC and DC components of the transmitted signal; WMS provides 
superior signal-to-noise ratio (and hence a lower detection threshold) compared to DAS and is 
therefore the most common TDLAS approach for methane detection.  

TDLAS may be deployed in a wide range of configurations to detect methane. For example, 
Bridger Photonics’ Gas Mapping LiDAR system consists of a TDLAS laser operating in WMS 
mode mounted on a movable gimbal on an aircraft that overflies the methane plume [9]. The 
ground-reflected portion of the laser is detected by a sensor onboard the aircraft. The ground 
reflectivity and column density may be inferred from the backscattered signal. Column densities 
obtained at different view angles are then tomographically reconstructed to form a 3D 
concentration map of the plume. Finally, the concentration profile is combined with an advection 
model based on modeled (e.g., Meteoblue) or locally measured wind speeds to find mass flow 
rates. In this configuration, the laser path is defined by the laser, the reflected light, and the 
receiver. This system's main drawback is that it only works if enough laser light is reflected from 
the ground. Consequently, the Bridger system does not perform well on wet or snow-covered 
surfaces, which absorb most incident radiation.  

Alternatively, the TDLAS sensor may be configured to measure the gas concentration over an 
enclosed path. In this approach, the volume is often terminated with a mirror to extend the path 
length and increase the instrument's sensitivity. In this configuration, the TDLAS instrument 
provides a time-resolved point concentration measurement (e.g., ppm, kg/m3). A set of 
concentration measurements made by moving the sensor through the plume is then combined with 
an advection model to obtain a mass flow rate.  

Two common approaches for traversing the sensor through the plume are: truck based TDLAS 
and airborne TDLAS (e.g., drone mounted.) In the case of the drone-mounted TDLAS sensor 
deployed in the first field campaign, the drone flies a descending helical path around the methane 
source (Figure 3); the helical path defines a control surface, A, which may then be combined with 

Figure 3: Example helical path flown by the TDLAS-equipped drone in the first field campaign. 
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a wind measurement to determine the total release rate. In one approach, called the cylindrical flux 
plane approach [10], the emission rate is estimated from 

      
A

Q c dA  r u r n r  (3) 

where r is the position vector, u(r) and c(r) are the wind velocity vector and concentration at r, 
and n(r) is the unit normal vector. Alternatively, the emission rate may be found from an inverse 
Gaussian plume model, which is discussed below. The wind velocity may be found from 
anemometry (e.g., mounted on the drone) or based on the power required for the drone to maintain 
its position in a crosswind. This technique, along with other approaches for inferring methane 
release rates from drone measurements, are summarized in Ref. [10]. 

In the case of a truck mounted TDLAS system (Figure 4), concentration measurements are made 
at various plume transects. Inferring the emission source that caused these concentrations amounts 
to solving an ill-posed inverse problem, since an infinite set of candidate sources could account 
for the observed concentration measurements. Accordingly, it is necessary to impose additional 
information that connects the source to the concentration measurements; the simplest approach is 
to assume a Gaussian plume model [5], which assumes that the time-averaged concentration field 
from a steady release is given by 

      2 2 2

2 2 2
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2 2 2 2x y z z z
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r  (4) 

where r = (x, y, z) is the position vector, u is the wind speed, h is the effective release height, and 
y and z are coefficients related to atmospheric conditions. In Eq. (4) the x-axis is aligned in the 
downwind direction. Equation (4) is rearranged to express Q in terms of the concentration 
distribution, which are approximated by the finite set of truck measurements, {c}. Other choices 
for inverting the concentration measurements are available, including the backwards Lagrangian 
stochastic approach [7].  

The main drawback of both the drone and truck mounted TDLAS systems is that they assume that 
the release and wind are time-invariant, while, in reality, both change with time. The outcome of 
the first field trial showed the emission rates derived from the drone-based measurements were 
particularly susceptible to the errors introduced by this approximation.  

 Figure 4: Truck-mounted TDLAS system used in the first two field campaigns. 
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2.3 Aerial NIR and LWIR hyperspectral imaging 
As noted in Sec. 2.1., a key limitation of broadband QOGI cameras is that the detected spectral 
intensity is integrated over the measurement spectrum. Consequently, the camera can only be used 
to measure pure mixtures (or mixtures of known composition) and, in the case of “white plumes” 
the plume temperature must be specified. These limitations may be overcome through 
hyperspectral (HS) imaging.  

In contrast to a broadband QOGI camera, which generates a single image aligned with the 3.34 
λm V-R band of methane, HS cameras generate “data cubes” containing hundreds or thousands of 
images, each at a distinct wavelength. In many cases, this is done through interferometry; this type 
of HS camera is called an imaging Fourier transform spectrometer (IFTS). In this approach, the 
image entering the camera aperture is split. The two split images then travel slightly different 
distances and are then recombined; due to the different distances travelled, the recombined images 
are brighter or darker than the original image due to wave interference effects. Many images are 
collected for each optical path difference, and the resulting interferogram may be Fourier-
transformed to produce the data cube.  

Two types of IFTSs are analyzed in this study, each of which works over a distinct measurement 
spectrum and according to a different measurement principle. GHGSat has adopted their orbital 
package [11] into an airborne system; it consists of a Fabry-Perot IFTS that operates between 
1630-1655 nm, over the NIR spectrum. Thermal emission from the gas and ground is negligible 
over this wavelength range; instead, the camera images sunlight transmitted through the 
atmosphere, reflected from the ground, and transmitted back to the camera. The methane column 
density is inferred from the attenuation of the transmitted light via a multilayer spectroscopic 
model, and then combined with an advection model to find the emission rate.  

There are several schemes that may be used to convert the column density map into an emission 
rate. In the integrated mass enhancement approach the emission rate is approximated by [11, 12] 

  eff eff

1eff eff

,
N

i i
iA

u u
Q x y dA A

L L
 



    (5) 

where ueff is the wind speed and Leff is a characteristic plume length, taken to be the square root of 
the plume area, found using a Boolean plume mask that distinguishes plume pixels from 
background pixels. A second approach, called the cross-sectional method, infers Q by measuring 
the mass flux across M column transects at various distances downwind from the source and 
parallel to the wind: 

  eff

1

,
M

j
j

u
Q x y dy

M




    (6) 

where x and y are oriented in the downwind and crosswind directions, respectively. 

Telops and LiDAR Systems, Incorporated (LSI) also use a downwards looking IFTS (Telops 
Hyper-Cam xLW Airborne Mini), but one that operates at much longer wavelengths (7.4-12.5 
m). Instead of relying on transmitted sunlight, the camera exploits the thermal contrast between 
the gas and the background to infer column densities. As already noted, thermal emission over the 
LWIR spectrum is significantly greater compared to the MWIR spectrum used by broadband 
cameras; the spectral resolution of the IFTS makes it possible to disentangle contributions of 
methane and H2O, which cannot be done using broadband cameras. The spectral resolution of the 



12 
 

camera also enables direct calculation of the ground temperature, which is a necessary boundary 
condition for the spectroscopic model.  

In contrast to the Bridger airborne GFL system, which uses a laser to interrogate the plume, the 
GHGSat and Telops systems are entirely passive, but generally have lower detection thresholds. 
The GHGSat system is sensitive to ground reflectance and cloud cover, which affects the incident 
and reflected sunlight. The sensitivity of the Telops system depends on the thermal contrast 
between the plume and the background surface, among other factors.  
 

 
  

Figure 5: (a) Hyper-Cam xLW Airborne Mini; (b) spectral intensity map at 1305 cm-1, which is 
converted into a pixel mass map (colors indicate the grams of CH4 contained within each pixel). 

(a) (b) (c) 
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3. PHASE 2: ANALYSIS OF CANDIDATE EMISSION QUANTIFICATION 
TECHNOLOGIES 

The second project phase focused on an in-depth analysis of a subset of the technologies identified 
in Phase 1. This activity had two components: Phase 2a, led by Arolytics, examined how these 
technologies would perform when incorporated into an alternative fugitive emissions management 
program (alt-FEMP) relative to an OGI-based FEMP. Phase 2b, led by UW, focused on 
understanding the operating parameters of QOGI within a laboratory setting, and the model errors 
associated with the Gaussian plume modeling used to infer emission rates from the truck based 
TDLAS measurements using a computational fluid dynamics (CFD) simulation.  

3.1 Phase 2a: Recommendation of the most viable quantification tools  
Arolytics personnel used Arolytics’ proprietary AroFEMP Monte Carlo simulation code to predict 
the performances of three technologies identified in Phase 1 were they to be incorporated into an 
alternative FEMP (alt-FEMP). These technologies were: airborne TDLAS (Bridger GFL); 
airborne NIR hyperspectral imaging (GHGSat); and truck based TDLAS (Boreal Laser). The 
performance of these technologies was assessed in terms of the reduction that would be realized 
through alt-FEMS based on these technologies compared to what would be obtained from the 
standard OGI-based FEMPs using the FLIR GF320/GL320 system. OGI survey time was derived 
from general time estimates reported by Canadian OGI service providers and the OGI detection 
capabilities were taken from the study conducted by Zimmerle et al. [13]. The detection 
capabilities and time information for the remaining technologies were obtained from each service 
provider. 

This procedure considered various scenarios in which operators would use candidate technologies 
to detect and quantify methane emissions, and then action repairs over a calendar year based on 
the outcome of these surveys. The overall benefit of a given technology, in terms of the reduction 
in emissions (e.g., kg/year), were evaluated through a Monte Carlo simulation. Emission scenarios 
were sampled randomly from probability densities that represent operational conditions, and 
emissions were detected and quantified with probabilities derived from manufacturer-specified 
characteristics of the quantification technologies or previous field trials identified in Phase 1. 
Repeating this procedure multiple times amounted to an integration over the probability densities, 
with the outcome of the expected reduction in emissions. 

Representative fugitive emissions probability profiles were derived from the FEMP-EA study 
dataset [14]. Modelling was performed using an anonymous set of infrastructures, drawn from the 
Petrinex database, representative of a typical Alberta upstream oil and gas producer. The criteria 
used to select the representative infrastructure were facility count, facility subtype distribution, and 
the ratio of facilities requiring triannual and annual surveys (per AER Directive 060 Table 4 [15]). 
A subset of 562 facilities was then chosen such that each of the criteria were equivalent to those 
of Petrinex’s Alberta infrastructure. The FEMPs were modelled for a two-year timespan, which is 
the typical length of an alt-FEMP. 

The OGI system was modelled as one would conduct the default FEMP [15] and the remaining 
technologies were modelled each in their own alt-FEMP. The frequency of screenings and the 
fraction of all facilities that received follow-up surveys were adjusted to design alt-FEMPs that 
were equivalent to or better than the default FEMP in fugitive emissions reductions.  

The model results showed that all three alternative technologies could be used to design alt-FEMPs 
that are equivalent or superior to the default FEMP. These alt-FEMPs employed 2-3 screening 
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surveys each year with OGI follow-ups being conducted at 30% of all screened facilities, selecting 
those with the largest emissions. The alt-FEMP design and performance details are summarized in 
Table 1.  

Table 1: Simulated performance of Alt-FEMPs relative to default FEMP (QOGI). 

Technology Conditions Relative reduction 
Airborne TDLAS 

(Bridger GFL) 
Two screenings per 
year, 30% follow-up 

8% 

NIR HS imaging 
(GHGSat) 

Three screenings per 
year, 30% follow-up 

11% 

Truck-based TDLAS 
(Boreal) 

Three screenings per 
year, 30% follow-up 

15% 

These results demonstrate that these technologies can all be feasibly and practically employed as 
the screening technologies in alt-FEMPs that achieve fugitive emission reductions equivalent to a 
default FEMP for a “typical” Alberta oil and gas producer. In this modelling, each of the alt-
FEMPs was able to perform better than the default FEMP, indicating that the alt-FEMPs could 
potentially achieve fugitive emissions reductions equivalent to the default FEMP using less follow-
up or fewer screenings than were modelled.  

It is important to note that while this modelling was conducted for a “typical” Alberta oil and gas 
producer, the infrastructure of a given oil and gas producer and the properties of that infrastructure 
can vary considerably between producers. In addition, each alternative technology has unique 
capabilities which may be more compatible to certain types of infrastructure and properties 
compared to others. Accordingly, the potential for successful implementation of an alt-FEMP is 
case dependent and should be evaluated for each unique scenario.   

Finally, and crucially, the current Monte Carlo analysis employs a manufacturer-specified 
probability of detection, followed by prioritization based on emission rate and a probability of 
intervention to determine emission repairs and reductions. This analysis does not yet consider the 
emission rate measurement uncertainty, information that is relevant for assessing the compliance 
to regulations, allocating resources to reduce emissions, and for designing the alt-FEMPs 
themselves. The research carried out under this grant is focused on developing defensible 
uncertainties for these emission estimates, which may be incorporated easily into a Monte Carlo 
simulation to deliver an overall uncertainty in the emissions quantification and reductions achieved 
through a given alt-FEMP. This ongoing work is described in Sec. 5.3. 

3.2 Phase 2b: Laboratory trials and development of digital twin system 
In parallel, the UW team conducted laboratory-scale analysis and numerical simulations to further 
investigate the capabilities of the most promising technologies identified in Phase 1. Specifically, 
Phase 2b activities focused on developing and quantifying the performance of spectroscopic and 
optical flow models for QOGI, and the derivation of an inverse Gaussian plume model (IGM) for 
interpreting truck based TDLAS measurements.  

Research into QOGI technology was led by Michael Nagorski, a MASc candidate under Daun. 
Laboratory measurements were carried out using a FLIR GFx320 camera and QL320 tablet 
system, as well as a four-channel Telops multispectral (MS) channel provided by CMC. Nagorski 
developed an “in-house” version of the QL320 tablet based in MATLAB® and validated its 
performance through simulated measurements generated using a CFD Large Eddy Simulation of 
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a methane plume, as well as plumes generated with a heated vent apparatus. The simulated 
measurements were used to validate the spectroscopic model used to infer the species column 
densities, and the optical flow algorithm used to obtain the velocity field [16, 17]. This information 
was particularly useful when interpreting the QOGI performance study carried out in the second 
field trial (Sec. 4.2). 

In the heated vent experiments, infrared images captured using the GFx320 camera were 
interpreted using the QL320 tablet and UW’s in-house code. In most cases, UW’s code matched 
or exceeded the performance of the QL320 tablet with regards to the overall mass flow rate when 
using a bulk velocity estimated from the images, but the framerate of the GFx320 was too low for 
the in-house optical flow algorithm to provide robust velocity fields. A subsequent meeting with 
Providence Photonics, the originator of the QL320 system, held in late 2022, provided further 
insights into the proprietary aspects of this technology [18]. While the exact numerical 
methodology was not disclosed, it is believed that the algorithm is built upon one of the optical 
flow algorithms offered by the open-source computer vision library OpenCV [19], which are 
similar to those tested in-house. 

While the Telops camera could visualize gas plumes at a high frame rate, quantitative emission 
estimates were not possible due to thermal emission from the uncooled filters. Further details of 
both the GFx320/QL320 and Telops test results were provided in the first interim report [20]. 

 

Inverse Gaussian plume model (IGM) research is led by MASc student Daniel Blackmore with 
assistance from Paule Lapeyre, a postdoctoral fellow. The objective of this research is to quantify 
the model error inherent to the IGM. Model error is introduced by the simplifications and 
assumptions needed to derive Eq. (4), and, in most cases, is the main source of uncertainty when 
inferring emission rates from direct concentration and wind measurements. In the case of the IGM, 
the plume is assumed to be stationary (meaning that the wind is perfectly steady) and the plume 
concentration measurements are taken to be time averaged. In reality, both wind speed and 
direction fluctuate, and the methane concentration is measured near-instantaneously as the vehicle 
transects the plume. There are additional uncertainties introduced by the model parameters, 
including the wind speed, U, and plume spread constants, {σx, σy, σz}, which are imperfectly 
known. 

Figure 6: The heated plate apparatus at UW is used to assess the performance of QOGI 
cameras, including the FLIR GFx320 and the Telops Hyper-Cam. 
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To understand these errors and their effect on overall methane emission quantification uncertainty, 
an in-silico experiment was conducted using a computational fluid dynamics-large eddy simulation 
(CFD-LES). Simulations were carried out by Professor Jean-Pierre Hickey at UW using 
OpenFOAM. This ongoing analysis is described in Sec. 5.1 of the report. 

 

  

Figure 7: CFD-LES simulation of a methane plume, which is used to investigate model error 
involved in the truck-based TDLAS measurements. 
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4. PHASE 3: EXECUTION OF THE FIELD CAMPAIGNS 

The main objective of this phase was to quantify the accuracy, precision, and uncertainty of 
emission estimates obtained from the subset of technologies identified in Phase 1. The project plan 
called for two field campaigns to be executed at the CMC Field Research Station (FRS) near 
Brooks, Alberta. The two planned field campaigns were held between April 20-26 and September 
25-October 1, 2022, and were led by Kirk Osadetz, CMC’s Programs Development Manager. The 
technologies deployed, and technology providers who participated in each field campaign are 
summarized in Table 2 and included: two QOGI systems operated by three different providers; a 
truck-mounted TDLAS system (Boreal); a drone-mounted TDLAS system (SAIT); an airborne 
NIR HS system (GHGSat); and an airborne LWIR HS system (Telops/LSI).  

Unfortunately, the Telops/LSI system was unavailable for the first field campaign and was beset 
by technical issues during the second campaign. Accordingly, a third field campaign was held 
between September 19-25, 2023, that focused exclusively on the LWIR HS system. This campaign 
was funded by the Alberta Methane Emissions Program (AMEP) and the NSERC Alliance 
Missions Methane project.   

The outcomes of the first two field campaigns have been presented in detail in the first and second 
interim reports [20, 21], respectively, so they are summarized here only briefly. The results of the 
third field campaign are presented in greater detail. 

Table 2: Technologies and technology providers deployed at each field campaign. Numbers 
indicate the number of measurement events for each technology. Dashes denote no participation. 
Technology/Provider 1st Campaign 2nd Campaign 3rd Campaign 
QOGI (AGAT) 121 - - 
QOGI (Montrose) - 97 - 
QOGI (SAIT/UW) 15 116 - 
TDLAS Truck (Boreal) 152 178 - 
TDLAS Drone (SAIT) 15 - - 
Airborne NIR HS (GHGSat) 80 44 - 
Airborne LWIR HS (LSI/Telops) - 46 2041 
1Multiple data cubes collected for each pass, multiple passes per release condition gives 600 passes and 17,000 independent estimates 

4.1 Equipment, scenarios, and experimental procedures 
Carbon Management Canada’s FRS, located in Newall County AB (50°27'11.6"N 
112°07'06.8"W), consists of a potable ATCO trailer, which serves as an operations center, 
meteorological instrumentation, and equipment for generating gas releases under industrially 
relevant scenarios, along with additional infrastructure focused on carbon sequestration research. 
The facility is in flat, unobstructed terrain, and is located immediately west of a large reservoir and 
south of Highway 539.  

4.1.1 Meteorological equipment 
The facility is equipped with instrumentation to measure wind speed, wind direction, ambient 
temperature, and dew point. Most weather parameters, especially wind speed and direction, were 
measured with multiple redundant systems. Sensors include a Davis WeatherLink Pro+ weather 
station affixed to the ATCO trailer that contains a cup-and-ball anemometer for wind speed; it also 
provides temperature, humidity, and solar irradiation data. Other meteorological data comes from 
a portable 81000-L, RM Young UVW 3D ultrasonic anemometer with a CR3000 measurement 
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and control datalogger set up next to the release locations, and a second 3D ultrasonic anemometer 
from the University of Colorado located next to the FRS ATCO trailer. A third set of wind data 
comes from an ultrasonic anemometer operated by Boreal laser during their truck mounted TDLAS 
measurements. Local meteorological measurements were also compared against predictions from 
Meteoblue.  

The facility is surrounded by several feedlots, oil and gas batteries, and water wells, all of which 
are potential methane sources. For this reason, ambient methane was monitored continuously using 
a Picarro cavity ringdown spectrometer, located at the ATCO trailer, throughout the first two field 
trials. The ambient methane was found to be close to expected ambient levels throughout all testing 
except for a brief period during one day of the first field campaign when releases were conducted 
directly upstream of the ATCO trailer. Methane concentrations associated with the controlled 
releases far exceed this level, so the impact of ambient methane on the tests may be safely 
neglected. 

4.1.2 Release rates, scenarios, and procedures 
Liquefied natural gas was obtained from a commercial distributor in Lethbridge and brought to 
site in compressed gas cylinders within a trailer. A gas sample from the first field trial was taken 
offsite and analyzed to reveal a composition of 94.2% methane by volume, with the balance being 
ethane (approx. 3.4%), propane (1.1%) and 1.3% other minor components, predominantly N2 and 
O2 in atmospheric abundances. An assay on gas from the third field trial revealed 91% methane, 
with the balance being ethane (approx. 6%), propane (<1%), and similar minor components. 
Therefore, in general, the natural gas consists primarily of methane (90%). 

The gas was discharged from the tanks through a regulator; as this occurs, the gas temperature 
drops dramatically due to the Joule-Thomson effect. The gas was then flowed through a 
conditioner/heat exchanger, shown in Figure 8, which raises the gas temperature to match that of 
the ambient air temperature. This was confirmed throughout the tests by measuring the gas 
temperature with a thermocouple as it was discharged to the atmosphere.  

The gas was then flowed through an Alicat Model MCR-2000SLPM -D-PAR mass flow controller, 
before finally being vented out of the stack, tank, or shed, depending on the release type being 
investigated. The flow rate was inspected and logged digitally during the releases, revealing very 
little variation in the flow rate. 

Releases ranged from 0.25 kg/h to 80 kg/h, along with some “null releases” to test the susceptibility 
of the quantification to false positives. The minimum release rates for each technology were chosen 
based on the corresponding minimum detection threshold (MDL). For QOGI, truck based TDLAS, 
and airborne LWIR HS imaging, a minimum non-zero release of 0.25 kg/hr was chosen, while the 
minimum non-zero release of the airborne NIR HS system was 5 kg/hr based on conversations 
with the provider. Release rates were quasi-randomized to avoid any consistent trend in release 
rate; this was done to both disguise the release rate from the provider and avoid any unintentional 
covariance between release rate and wind speed.  

In the case of the third field trial, releases were programmed with guidance from the Telops 
minimum detection limit (MDL) tool (discussed in Sec. 4.3.2) to account for how changing wind 
speed and thermal contrast between the ground and air may influence the plume detection. This 
was done for two reasons: first, to “push” the diagnostic, while at the same time avoiding 
conducting a large number of releases that would be unlikely to be detected; and second, to test 
the predictive capability of the MDL tool.  
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Four different release types were used to investigate how different release configurations affect 
quantification accuracy. These included: a short, modular vent stack that could be adjusted to a 
release height of 1.7 m, 3.4 m, and 4.8 m above ground; a 13 m tall unlit flare stack; a 2.79 m tall 
storage tank; and a storage shed. The storage shed release was done through a perforation in the 
wall on the leeward side of the shed, approximately 1.5 m above the ground. 

Most of the releases were performed using the 1.7 m stack and unlit flare. Release height is known 
to affect the quantification accuracy of airborne NIR HS imaging due to the way in which the 
plume interacts with the ground. It may also impact the performance of the truck-mounted TDLAS 
system via Eq. (4) (e.g., if the measurement path is beneath the plume). Release height also impacts 
ambient wind, which generally increases with height above ground. Finally, releases from the 
storage tank and shed were conducted to examine how aerodynamic interactions with the structure 
(e.g., turbulent wakes) and reflection from the metallic surfaces may impact the performance of 
QOGI systems.  

Releases conducted during the third field campaign were done exclusively using the 1.7 m stack 
and the unlit flare. While the first two trials considered a single emission scenario at a given time, 
in the case of the third field campaign, releases took place simultaneously at two sites, each 
equipped with a trailer. The sites were located approximately 250 m apart on an approximately 
ENE-WNW track so that the helicopter could measure two scenarios in a single pass, as shown in 
Figure 9. This distance was deemed sufficient to avoid issues with plume overlap between the two 
sites, which was verified by examining infrared images. The east site releases were conducted with 
a 1.7 m stack while those from the west site were done from either a 1.7 m stack or 14 m unlit 
flare, although this was not known by the technology provider and data analysis team. 

4.1.3 Emission quantification technologies and providers 
Technology providers conducted measurements of the releases as they would in practice. The 
measurements were “semi-blind” in that the operators knew the release locations but did not know 
the release flow rate. Operators then processed the data and reported their release estimates to the 
research team, in most cases within three weeks of the measurement campaign. The operators were 
not provided any ancillary meteorology data from the FRS; instead, they either deployed their own 

Figure 8: Compressed gas was released via a regulator and then conditioned to the ambient air 
temperature using a heat exchanger, before entering the mass flow controller. It was 
subsequently discharged to the atmosphere according to the particular release condition. 
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instrumentation (Boreal) or employed a third-party weather service, e.g., Meteoblue (GHGSat) or 
Meteomatics (LSI/Telops).   

Details of each technology/provider are summarized below:  

Quantitative optical gas imaging (QOGI): QOGI measurements were conducted by three 
participants using two different systems, as summarized in Table 3. During the first field campaign, 
measurements were conducted by an operator from AGAT using a FLIR GF320 camera coupled 
to a Providence Photonics QL320 tablet (v 3.0.0.5), and an operator from UW (Nagorski) using 
SAIT’s FLIR GFx320 camera connected to a FLIR QL320 (v. 1.4.1) tablet. The AGAT operator 
was highly experienced and proficient with their camera, while the UW operator was a novice. 
Notably, the SAIT system was considerably newer than the AGAT system and included key 
upgrades in the quantification software. Unfortunately, the SAIT camera was only available while 
SAIT was on site, so only a small number of simultaneous measurements were carried out by both 
operators at the same time. 

During the second campaign, the UW operator was joined by an operator from Montrose. The UW 
operator used the same system as he used in the first campaign, while the Montrose operator used 
the OPGAL EyeCGas system. While the Montrose operator had extensive QOGI experience with 
the FLIR system, this was the first time they used the OPGAL system, and they reported some 
challenges due to his unfamiliarity with the system during the field trial. This lack-of-experience 
is reflected in some of the results shown in Sec. 5.2. 

Table 3: Summary of OGI operators and equipment 

Operator Experience System Field trial 
AGAT Professional FLIR GF320, Providence Photonics 

QL320 (v 3.0.0.5) 
1 

UW Novice FLIR GFx329, FLIR QL320 (v. 1.4.1) 1 and 2 
Montrose Professional, but 

new to system 
OPCAL EyeCGas (v.1.0.24) 2 

 

Figure 9: Location of releases for the third field trial, and view from the LSI helicopter. The 
helicopter flew repeated east-west and west-east passes, with pauses of 2-3 minutes each time 
the release rate was changed to allow the plume to develop. 
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Drone-mounted TDLAS: The drone flew a descending helical flight pattern around each release, 
as shown in Figure 3. The altitude and radius of this pattern were adjusted heuristically based on 
wind speed and emission height. Raw data consisted of concentration, drone altitude, and GPS 
coordinates. Emission rates were then inferred from mass balance conducted on a control surface 
defined by the helical flightpath of the drone. The drone team remarked that the number of drone 
transits through each plume, which was limited by the interval with which the release rate was 
adjusted, was considerably lower than what they would normally use when conducting 
independent measurements. 

Truck-mounted TDLAS: Methane releases were also quantified using a truck-mounted TDLAS 
system (Boreal Laser GasFinder 3VB). At the beginning of each day, the operators would position 
a 3D ultrasonic anemometer near the release point. During the measurements, the truck would 
search for the plume at distances ranging from 50 to 100 m downwind of the release point, driving 
over both roads and unprepared ground. The TDLAS system returned a path-average concentration 
(ppm) at one-second intervals (see Sec. 2.2), which is recorded along with the truck location, 
obtained from an onboard GPS unit. This information was displayed instantaneously to the truck 
operator and driver as a colored line that shows the truck path and concentration. The operators 
used this information to align their subsequent plume transects, in order to account for wind shift. 

The data was post-processed by the operator using WindTrax [7], a backwards Lagrangian 
stochastic wind model. The operator also provided detailed concentration/GPS location to the UW 
team for subsequent uncertainty analysis. 

Airborne NIR HS: Measurements were done at an altitude of approximately 1500 m AGL and 240 
km/hr using a Piper Navajo equipped with a downward-looking NIR IFTS. The provider had the 
GPS location of the release, and flew repeated passes around the release, as shown in Figure 10. 
The flight path was roughly aligned with the wind direction. The provider used an internal 
algorithm (see Sec. 2.3) with wind speeds obtained from Meteoblue to obtain the emission 
estimates. The measurement swath is approximately 500 m [22]. 

Airborne LWIR HS imaging (LSI/Telops): Measurements were done at an altitude of approximately 
350 m AGL and 35 m/s using a downward-looking LWIR IFTS mounted in a Bell 206-B helicopter 
(Figure 10). At this altitude and speed, the camera has a field-of-view of approximately 30 m  
30 m, which is considerably smaller than that obtained from the airborne NIR HS camera, 
principally due to the higher operational altitude of the GHGSat measurements, but it is more 
similar to the swath of the Bridger Gas Mapping Lidar (GML) system (128 m [9]). The Hyper-
cam mini-LW airborne may be operated in “mapping” or “target” mode. In mapping mode, the 
downward view of the camera is fixed, allowing for a large swath of area to be inspected for leaks. 
In target mode, which was used for these tests, the GPS location of a known facility is entered into 
the system, which “locks” the camera on the target; this allows for multiple data cubes of a leak to 
be collected over a single pass, which is useful for quantification. The IFTS was operated with a 
spectral resolution of 10 cm-1; at this resolution and airspeed, on average 15 data cubes could be 
captured of each site per pass.  The system provides the operator with a real-time view of the 
infrared scene, along with a preliminary real-time mapping of the plume and ground temperature. 
The preliminary mapping is “conservative”, meaning that a plume may not be visible to the 
operator, but may be detected and quantified during data processing after the measurement 
campaign.  



22 
 

Unfortunately, LSI/Telops were unable to participate in the first field campaign due to aircraft 
maintenance issues. During the second field campaign, the aircraft became unavailable for all but 
two days of the field trial, and, unfortunately, the camera targeting mode was set incorrectly, 
resulting in limited measurements for one day, while data from the second day was inadvertently 
deleted during post-processing at Telops. No such system issues were encountered during the third 
campaign, although the UW crew adjusted stack position was moved approximately 10 m to the 
perimeter of the imaging area for 1-2 hours without realizing the small size of the IFTS swath. 
Consequently, for these measurements much of the plume fell outside of the camera swath. These 
measurements were removed from the data set.  

The third field campaign generated an enormous amount of data; approximately 17,000 data cubes 
had to be post-processed manually, which required approximately two months of dedicated 
analysis. 

 

4.2 Key outcomes of the first two field campaigns 
Details of the first and second field campaigns are provided in the previous interim reports [20, 
21]. Key findings include: 

Truck-mounted TDLAS (Boreal): This technique provided the most accurate and unbiased 
estimates and appeared least-susceptible to environmental factors. On average, true emission rates 
were underestimated, and the bias appears to be proportional to the underlying release rate. Both 
the IGM and BLS models provided estimates of similar quality. Estimates from the unlit flare and 
stack were more accurate than emissions from the top of the storage tank. Measurement accuracy 
appeared resilient to changes in wind speeds. 

Drone-mounted TDLAS (SAIT): Only 15 measurements were attempted by the SAIT team, and a 
majority of these were considered “missed detections” due instrument failure or unfavorable 
measurement conditions (e.g., unsteady wind.) The release estimates obtained from the drone were 
the least accurate of those from the first field trial. The SAIT team remarked that the short duration 
of the measurement events differed from the procedures they normally follow, which involved 
making a larger number of measurements per release. 

QOGI: The second field campaign featured an extensive QOGI component, which systematically 
examined how a large set of parameters impact QOGI quantification accuracy. These results are 

Figure 10: (a) Piper Navajo and (b) sample flight path used by GHGSat. (c) Telops Hyper-Cam 
Mini Airborne installed in LSI’s Bell 206B. 
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summarized here, but the reader is referred to the second field campaign report for a more detailed 
discussion [21]. 

QOGI estimates had a slight positive bias at low emission rates, and a negative bias at larger rates. 
In general, the UW QOGI estimates were slightly more accurate than those obtained from AGAT, 
which was attributed to upgrades made to the QOGI software between the Providence Photonics 
and FLIR versions of the QL320 (Table 3). Estimates from the Montrose operator were 
significantly less accurate than the other two operators, which was attributed to the Montrose 
operator’s lack of familiarity with the OPGAL EyeCGas system.  

Estimates of stack releases were more accurate than those made of emissions from the top of the 
tank, and significantly more accurate than those from storage shed. In the case of the tank, this was 
attributed to the distance between the emission location on the tank top and the ground based QOGI 
operator, and the complex aerodynamics at the top of the tank. The QOGI-inferred emission rates 
made on the shed were complicated due to a “pooling” of the gas in the aerodynamic wake of the 
shed, and reflection of the gas from the reflective surface of the shed (Figure 11).  

There was no clear relationship between QOGI quantification accuracy and windspeed. This was 
a surprising result, since QOGI operators often use a wind-speed cutoff of 4.5 to 16 m/s as an 
operational limit beyond which the QOGI-inferred emission rate may be suspect [13]. In some 
specific measurements, an abrupt increase in wind speed led to a pronounced drop in measurement 
accuracy. However, very low wind speeds may also lead to “pooling” of the methane at the 
emission point, which also impacts quantification measurements. In general, the complexity and 
opacity of the feature tracking model used to connect the spectroscopically derived column 
densities to the emission rates made it difficult to develop a simple relationship between wind 
speed and accuracy, which motivates the development of empirical uncertainty quantification 
techniques (Sec. 5.2). 

The effect of measurement distance on QOGI accuracy was examined systematically during the 
second field campaign (Figure 12). In general, increasing the distance between the emission source 
and camera impairs accuracy because it becomes more difficult to resolve the turbulent features 
that are tracked by the velocimetry algorithm. Emission accuracy also drops at very short distances 
to the release because: (1) it becomes difficult to contain the entire plume across the quantification 

Figure 11: QOGI images of emissions from (a) the top of a tank and (b) the side of a shed. 

(a) (b) 
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control line (Figure 12 (b)); and (2) the rate at which flow features travel across the scene 
approaches the limitations imposed by the camera framerate.  

Plume background and thermal contrast were also found to impact QOGI accuracy. Cloud cover 
may degrade thermal contrast relative to clear sky, and the velocimetry algorithm may be impacted 
by cloud motion. Under some conditions, nearly horizontal measurements made with a clear sky 
background also gave poor thermal contrast, presumably because the effective sky background is 
due to emission along a long atmospheric path length, which, on average, is close to the local air 
temperature. 

Airborne NIR HS imaging (GHGSat): The operator reported conditions during the first field 
campaign as marginal due to partial cloud cover; 32 out of 80 measurements were reported by the 
provider as “missed detections”. Overall, the technology mostly underestimated the true emission 
rates, and bias was generally proportional to emission rate. There was no apparent correlation 
between wind speed and estimate accuracy; rather, cloud cover appeared to be the main factor that 
limited accuracy. The provider reported that cloud cover can affect the estimate by attenuating the 
incident sunlight used to measure the methane, and by casting a “mottled” pattern on the ground 
that confounds plume identification. In contrast to the other providers, GHGSat provided 
uncertainty estimates for their emission rates, although these underestimated the true error in the 
estimates. 

Conditions during the second field campaign were nearly ideal for the airborne NIR HS imaging 
system, and it performed markedly better; only 2 of 46 measurements were reported as “missed 
detections”. The estimates had an average error of 62% and, in contrast to the first field campaign, 
systematically overestimated the true emission rate.  

  

Figure 12: Procedure for measuring QOGI accuracy as a function of distance. (a) Blue flags 
denote various measurement radii from the stack base. (b) The blue circle shows the control 
surface used to measure the emission rate. 

(a) (b) (a) (b) 
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4.3 Third field campaign 
The third field campaign, which took place between September 18-23, 2023, focused exclusively 
on the airborne LWIR HS system. The objective of this field campaign was twofold: first, to assess 
the predictive capability of the Telops MDL tool, which is used to plan and execute missions (e.g., 
identify conditions where measurements should not take place or inferred detections may not be 
reliable); and second, to assess the accuracy of the emission estimates obtained from the data 
cubes. The aircraft operated at its nominal flight condition (~350 m AGL, ~35 m/s) for the first 
five days and the first half of the sixth day. On the second half of the sixth day the helicopter 
operated at different altitudes and airspeeds to explore how these parameters affected the MDL 
and quantification accuracy. These results are excluded from this report. 

The total flight time of the Bell 206 was dictated by its fuel capacity, which depended on payload. 
With a pilot, equipment operator, and hyperspectral camera, the mission flight time was 
approximately 3 hours (excluding required factor-of-safety). The helicopter was based out of 
Brooks Airport, about a 10-minute flying time from the FRS, giving a useful measurement time of 
approximately 2 hours and 40 minutes. On each day, except for Sep 18, Sep 20, and Sep 23, the 
helicopter flew two missions: one in the AM, and one in the PM, with a lunch break and refueling 
between missions. A total of 204 individual release scenarios were considered during this time; 
for each scenario the helicopter flew five overhead passes, and collected, on average, 15 data cubes 
per pass for a total of 16,883 data cubes.   

Table 4: Measurement times for the Telops HyperCam Mini-LW Airborne. Start and end times 
refer to the first and last measurement times for each mission in MST. 

Date First Mission Second Mission 
Start End Start End 

Sep 18 10:14 12:42 Scrubbed (high wind) 
Sep 19 8:30 10:57 11:45 14:33 
Sep 20 8:55 11:25 Scrubbed (poor thermal contrast) 
Sep 21 8:24 11:09 11:54 14:43 
Sep 22 10:00 12:50 13:53 16:03 
Sep 23 10:07 12:10 End of campaign 

The procedure for quantifying emissions from the hyperspectral data has been detailed in Sec. 2.3, 
but the MDL tool merits some further discussion. The LWIR HS camera detects methane based 
on the intensity measured from the spectral bin corresponding to the 1306 cm-1 methane line to 
that of neighboring spectral bins (Figure 13). Methane may only be detected when the difference 
between these two spectral bins is sufficiently larger than the noise equivalent spectral radiance 
(NESR) of the camera, which is due to a combination of photonic, thermal, and electronic noise. 
The difference between the spectral intensities is predicted by a spectroscopic model that accounts 
for the methane column density (i.e., the number of methane molecules between the camera and 
the ground, in ppmm), the thermal contrast between the air and ground, and the relative humidity, 
which affects the intensity of the neighboring pixels due to the instrument line-shape of the 
spectrometer, which “smears” the methane line with neighboring water lines at nearby 
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wavenumbers. The methane column density, in turn, is related to the leak rate and wind speed 
through a Gaussian plume dispersion model.  

4.3.1 Weather conditions and emission rates 
The weather conditions during the field trials are summarized in Table 5. In general, a wide range 
of conditions were encountered, which elucidated how meteorological conditions affected both 
MDL and quantification accuracy. The weather conditions were generally favorable except on 
Monday, September 18, when measurements were suspended due to wind speeds outside of the 
safe operating envelope of the aircraft.  

Table 5: Weather conditions during the third field campaign, taken from the Davis WeatherCenter 
located at the FRS. Minimum and maximum conditions pertain to operational times.  

Date Min/Max Temp [C] Min/Max Wind [m/s] General weather conditions 
Min Max Min Max 

Sep. 18 20.4 27.1 1.8 8.5 Poor (high wind at noon) 
Sep. 19 8.1 16.7 0.9 6.3 Good 
Sep. 20 7.3 11.1 1.8 6.7 Poor (low thermal contrast) 
Sep. 21 2.4 18.3 0 3.6 Mixed 
Sep. 22 11.4 22.3 0.4 5.8 Good 
Sep. 23 14.9 19.8 4.5 9.4 Good (morning only) 

 

As noted in Sec. 4.1.2, the MDL tool was used to inform the choice of emission rates to ensure 
that the system was “pushed to its limits” without having too many scenarios in which it would be 
impossible to detect emissions. Accordingly, in addition to the meteorological instrumentation 
described in Sec. 4.1.1, the UW team used a FLIR T650sc LWIR infrared camera to measure the 
ground temperature throughout the tests, which changed continuously with solar irradiation, cloud 
cover, and wind. The team then input the temperature into the MDL tool and obtained a real-time 
estimate of the MDL throughout the tests. The ground temperature was found to vary significantly 

Figure 13: (a) Methane plumes are identified based on the spectral intensity at 1306 cm-1, 
which is aligned with a strong CH4 line. The plume outline is shown in red. (b) Brightness 
temperature (scales with spectral intensity) highlights the presence of methane corresponding 
to the red dot in (a).  

(a) (b) (a) (b) 
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in a single image due to differences in ground cover, e.g., bare earth versus grass (Figure 14). The 
UW team interpreted the ground temperature as the average within the measurement box. 

The hyper-cam operator may also calculate the MDL in real time but using the radiometric ground 
temperature found from the hyper-cam. Periodically the hyper-cam operator would report his 
ground temperature estimate, which the UW team would compare with their measurements 
(without sharing the results with the hyper-cam operator.)  

The technology providers remarked that they normally started their missions at around 10 AM, to 
maximize the amount of useful measurement time in the context of the MDL. As indicated in Table 
4, measurements started between 8:30 and 9 AM on Sep 19, 20, and 21 to explore how the MDL 
varied throughout the day. As an example, Figure 15 shows how the ground temperature, air 
temperature, wind speed, and predicted MDL varied throughout the measurements during Sep 19, 
based on ground temperature measurements from the hyperspectral camera. The MDL is initially 
very large due to the low thermal contrast between the ground and air temperatures. The thermal 
contrast initially grows as the ground temperature increases with solar heating, and the air 
temperature lags due to less efficient heat transfer between the ground and the air. As the ground 
is heated by sunlight the thermal contrast increases, although it lags, and the MDL generally drops 
as the day progresses. The increase in MDL in the afternoon is attributed mainly to a temporary 
drop in ground temperature, caused by cloud cover. Wind speed can also affect the MDL, as a 
higher wind speed dilutes the plume and lowers the column density for a given pixel, although in 
our tests the thermal contrast appeared to be the most significant factor affecting MDL. 

  

Figure 14: Example infrared image of the ground taken by the UW team during testing. 



28 
 

4.3.2 Predictive performance of MDL tool 
During post-processing, Telops recalculated the MDL based on the radiometric ground 
temperature, along with air temperature, wind speed, and relative humidity from the Meteomatics 
website. After analyzing all 16,883 data cubes, Telops detected more than 93% of the emission 
rates, and, overall, the detection capabilities of the system met or exceeded what was predicted 
using the MDL tool. Notably, there were no “false positive” detections (i.e., detecting methane 
during a null release).  While Telops considered all 16,883 data cubes individually, Figure 16 
shows detected releases vs. missed releases for each measurement event, assuming that a 
“detection” constitutes detected methane for 50% of the data cubes for that release. The results 
clearly demonstrate the predictive capability of the MDL tool. A more detailed summary of the 
performance of the Telops MDL tool will be made available via the AMEP program. 

4.3.3 Quantification accuracy of the airborne LWIR HS system 
While the Telops MDL tool appears to predict the minimum detectable limit, Figure 17 shows that 
the quantification tool systematically underpredicts the true emission rate, by a factor of 
approximately 2.5. The UW team is currently working with Telops to understand what aspect of 
their measurement model is responsible for this underprediction. While there is clearly a 
systematic bias, it should be noted that this performance is not atypical of other instrumentation, 
as discussed in Sec. 5. Future work regarding the airborne LWIR HS system is discussed in Sec. 
6.   

  

Figure 15: (left) Wind speed, ground temperature, and air temperature; and (right) temperature 
contrast and minimum detection limit (MDL) for September 19. On this day, the MDL was 
effectively infinite due to low thermal contrast before 10 AM MST. 

0

1

2

3

4

5

6

5

10

15

20

25

30

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

W
in

d 
sp

ee
d 

(m
/s

)

T a
ir
, T

gr
ou

nd
(°

C
)

September 19 (MDT)

Air

Ground

Wind speed

0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

14

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

M
D

L
 (

kg
/h

r)

T
gr

ou
nd


T
ai

r
(K

)

September 19 (MDT)

thermal contrast

MDL



29 
 

 

  

Figure 16: Predictive performance of the MDL tool. An emission is considered detected if it is 
detected in over 50% of the data cubes collected for that scenario. Emissions above the solid 
line should be detected, according to Telops’s MDL tool. 
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Figure 17: Performance of the quantification tool for the detected emissions. 
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5. PHASE 4: DATA ANALYSIS AND SUMMARY 
The overarching objective of this project is to understand the uncertainty attached to emission 
estimates from the systems identified in Phase 1, and, more generally, develop generalized 
techniques that can be applied to any methane emissions quantification technology. This research 
phase has three main directions: (1) device-specific uncertainty quantification from a detailed 
instrument model; (2) a generalized uncertainty analysis using empirical models derived from the 
field campaign data; and (3) implementation of uncertainty estimates in a Monte Carlo model (e.g., 
AROfemp or LDAR-Sim [23]) to assess the expected uncertainty in overall emissions reductions 
and the cost-effectiveness of various FEMPs.  

5.1 Instrument-level uncertainty estimation 
In scenarios in which a detailed instrument model is available, as is the case for the truck based 
TDLAS, it may be possible to derive uncertainty estimates by accounting for measurement noise, 
model parameter uncertainty, and model error within the Bayesian framework. An instrument 
model has the general form 

  meas true true noiseQ b b δb  (7) 

where bmeas is a vector of measurements collected from the instrumentation, btrue is the true but 
unknown parameter, that is related to the quantity-of-interest Q by some problem physics. While 
the true physics is unknown, a simplified model is used in its place, but with some additional model 
error  

    true model model,Q Q b b Φ δb  (8) 

where Φ is a vector of additional unknown model parameters. The overall measurement equation 
becomes 

    meas model noise model modelQ Q    b b ,Φ δb δb b ,Φ δb  (9) 

A key observation is that the modeled data is not expected to “exactly” match the measurements 
due to the δb term, even if the “true” model parameters are known, due to two factors: (1) the 
measurement error, δbnoise, e.g., sensor noise; and (2) the model error, δbmodel, which come from 
the simplifying assumptions and approximations needed to derive the model equations, which 
causes the model to differ from “the real world.”   

Both measurement noise and model error may be envisioned as “random variables” that obey 
underlying probability density functions (PDFs). This treatment is obvious in the case of the 
measurement noise, which comes from a random process, but is less clear for the model error, 
since the difference between the model and true physics should be systematic, i.e., a bias. However, 
the analyst’s state-of-knowledge about this error may be considered as random, which justifies this 
treatment. The model parameters, Φ, are also imperfectly known, and are therefore treated as 
random variables that obey PDFs. In conventional analysis these parameters are often specified, 
but in Bayesian inference they are treated as nuisance variables and inferred from the 
measurements along with the leak rate. 

Since bnoise and bmodel are random variables, both the measurement data, bmeas, and the estimated 
emission rate, Q, are also random variables described by PDFs. These PDFs are related by Bayes’ 
equation 
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      
 

     
 

pr pr prp Q p Q p Q p Q p
p Q

p p
 

b ,Φ ,Φ b ,Φ Φ
,Φ b

b b
 (10) 

where p(b|Q, Φ) is the likelihood of observing the instrument data for a given leak rate and set of 
model parameters (i.e., the “likelihood”), p(Q, Φ|b) is the posterior probability of a leak rate and 
set of model parameters given the observed data (the “posterior”), and ppr(Q) and ppr(Φ) are PDFs 
that define what is known about the leak rate and model parameters before the measurement takes 
place (the “priors”). The denominator in Eq. (10) is called the “evidence”, and is used to normalize 
the numerator so that the posterior probability satisfies the Law of Total Probability, 

   1
Q

p Q dQd
,Φ

,Φ b Φ   (11) 

Note that, in the absence of prior information, ppr(Q, Φ) = 1 and p(Q, Φ|b) = p(b|Q, Φ), which 
means that the likelihood of observing the data conditional on Q and Φ equals the posterior 
probability of a given Φ and Q conditional on the observed data. More specifically, the set of (Q, 
Φ) that maximizes the likelihood of observing the data also maximizes the posterior probability 
density; this is the maximum likelihood estimate (MLE), and, for independent and identically-
distributed noise, the MLE is often found by least-squares minimization of the residual between b 
and bmodel(Q, Φ). Importantly, however, the uncertainty in these variables is conveyed by the width 
of the posterior distribution, which can be very large for ill-posed models. Accordingly, additional 
information about Q and Φ should be incorporated via prior PDFs, which narrows the posterior 
PDF compared to having an uninformative prior, ppr(Q, Φ) = 1. 

If Φ contains m parameters, p(Q, Φ|b) is a multidimensional joint PDF having m+1 dimensions. 
A univariate PDF for Q may be found by “marginalizing out” the nuisance variables in the PDF, 

    p Q p Q d
Φ

b ,Φ b Φ   (12) 

which may be interpreted as the probability density function for the leak rate given a set of 
measured values, for all possible model parameters. This distribution is a comprehensive 
description of what is known about the emission rate conditional on the measured data and prior 
information. The marginalized posterior may be summarized using Bayesian credibility intervals,  

    
b

b

Q

a b

Q

Q Q Q s t p Q dQ α , . . b  (13) 

where α is some probability, e.g., 90%. Accordingly, this interval is interpreted as containing the 
“true” leak rate with 90% probability. A representative marginalized posterior PDF and credibility 
intervals is shown in Figure 18. 

In order to derive the likelihood PDF, p(b| Q, Φ),  the model for b(Q, Φ) must be available, and 
the probability density function of the model error, δbmodel(Q, Φ), must also be known. The first 
condition is difficult to satisfy for many commercial quantification systems, since the model 
equations are often highly complex and proprietary; as a case in point, the velocimetry model in 
most QOGI systems is proprietary and opaque, as is the technique used to convert the TDLAS 
column densities into emission rates used by Bridger and GHGSat. On the other hand, the truck-
mounted TDLAS system used an open-source backwards Lagrangian solver (BLS) to convert 
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concentration measurements into emission rates, and for this reason we focus on this system for 
developing an instrument-specific uncertainty quantification methodology. For similar reasons, 
Zhou et al. [24] used the BLS model as a basis for developing a Bayesian uncertainty estimate for 
methane emission rates inferred from drone-based TDLAS concentration measurements. In this 
work we use the inverse Gaussian plume model, derived from Eq. (4), which was also used as a 
basis for the Bayesian uncertainty quantification in Ref. [25].  

In this scenario b contains concentration measurements provided by the onboard TDLAS system 
at one second intervals, while the model parameters in Φ consist of {σx, σy, σz}, which depend on 
the atmospheric stability class, and the wind speed, U. (In this semi-blind measurement, the release 
height and location are perfectly known, as is the relative location of the truck from the onboard 
GPS sensor.) These parameters are treated as “unknowns”, but with prior PDFs that are developed 
from the literature for σx, σy, and σz, and, in the case of the wind speed, from meteorological data. 
Notably, the wind speed prior can be chosen depending on the source of the wind speed; in the 
case of an on-site ultrasonic anemometer, it may be very narrow, while if an online data source is 
used (e.g., Meteoblue) it would be broader, reflecting the fact that this parameter is known with 
less certainty.  

It is also possible to derive a prior PDF for the release rate, the form of which depends on the 
specificity of prior information. At a bare minimum, it is known that Q must be strictly non-
negative, and oftentimes there is an estimate of how large the release could be, Qest. In this case, 
an appropriate prior (one that satisfies the maximum entropy criterion [26]) is 

  pr
est est

1
exp

Q
p Q

Q Q

 
  

 
 (14) 

which is defined so that there is a 50% probability that Q [0, Qest] and 50% probability that Q 
[Qest, ). 

A second challenge concerns the underlying distribution of δb, which is dominated by the 
difference between the Gaussian plume model and the true turbulent advection physics. The 
Gaussian plume model is often a reasonable approximation of the time-averaged concentration 
profile of a plume emanating from a point source, provided the wind is constant and steady, and 
the terrain is homogeneous and flat. However, the truck measures a near instantaneous 
concentration distribution, and even were the wind to be constant, meandering and relative 

Figure 18: Calculation of 90% Bayesian credibility intervals from marginalized posterior PDF. 
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dispersion creates a complex instantaneous picture of the concentration profile [27] (Figure 19). 
The situation becomes even more complex when accounting for changes in wind speed and 
direction over the timescale of the plume transect.  

Zhou et al. [24] assume that δb obeys either a normal or lognormal distribution, giving rise to a 
normal or lognormal likelihood function 
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 (15) 

where b is cross-plume integrated mass concentration. The parameters σe
G and σe

LN are estimated 
from the residual between measured concentration and modeled concentration obtained under 
controlled-release experiments. Zhou et al. then estimate the posterior PDF using concentration 
measurements obtained through sequential plume transects by a drone equipped with a TDLAS 
sensor; the posterior PDF derived from each transect becomes the prior for the one estimated from 
next transect through a Bayesian updating process [24]. In this way, the posterior PDF becomes 
progressively narrower from successive transects.  

In this ongoing work, we will derive the likelihood function using the CFD-LES results shown in 
Figure 7, and then apply the results to truck-based concentration measurements obtained from 
isolated transects conducted during the first and second field campaigns. The success of this 
technique will be gauged based on whether the true release rate lies within the derived credibility 
intervals with the expected probability. 

5.2 Generalized empirical uncertainty estimation using field campaign data 
In most cases, however, the detailed information needed to derive a model-based likelihood PDF 
is unavailable, particularly to third-parties who may wish to construct their own, independent, 
uncertainty estimates for emissions measurements. Accordingly, we developed a flexible empirical 

Figure 19: Instantaneous snapshot of tracer smoke from the first field campaign, highlighting 
that the instantaneous concentration field differs from the time-averaged profile, even under 
constant wind conditions. 

(a) (b) (a) 
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framework that can be applied to any “black box” technology provided there is sufficient 
controlled release data for this technology. 

We begin by asking the question: for a given true emission rate, what range of measurements could 
be expected given the observed controlled release data, considering model error and measurement 
noise? Let Qi

true be the true emission rate corresponding to the ith observation in the field 
campaign, and Qi

est be the estimated emission rate for the ith observation. As indicated in the field 
campaign data, the relationship between Qi

true and the bias and variability usually change with the 
emission rate, and not necessarily in a linear way. Also, any empirical model must account for the 
fact that all technologies may report a “false positive”, that is, a non-zero Qi

est when Qi
true is actually 

zero.  

A flexible likelihood that allows the bias and variance of Qi
est to vary with Qi

true and incorporates 
the possibility of false positive is given by  

    estlog logi i iQ     (16) 

where 

  20,i i    (17) 

and 

  estmediani iQ  (18) 

This likelihood is normal on the log scale, which makes it lognormal on the measurement scale. 
The piecewise function i has the form 
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

   
 (19) 

which transitions from a quadratic function for values of Qi
true below a threshold  to a linear one 

above this threshold. Continuity at this threshold is imposed by enforcing 0 = α221. The model 
parameters are adjusted to give the best prediction results and fit to the data, following a Bayesian 
procedure. The likelihood function covers the expected or “average” behavior of the estimates 
given a true emission rate; in a perfect scenario all the coefficients in Eq. (17) equal zero except 
for 𝛼ଵ, which should equal unity. However, this is never the case due to systematic offsets and 
biases in the measurements caused by imperfectly known model parameters, and real-world 
physical phenomena that are not captured by the model. For example, α0 accounts for “false 
positives”, in which the technology detects an emission rate when the true emission is zero. The 
variance represents random errors that include measurement noise and random aspects of the 
model error, e.g., time-dependent turbulent fluctuations in the plume. 

In many cases, the true emission rate may be related to the median measured emission rate by a 
linear function, quadratic function, or blended linear-quadratic function. In this context, α1 and α2 
are the coefficients for Qi

true and (Qi
true)2, describing the quadratic measurement between the 

median measurement and the true emission rate when the true emission rate is less than the 
threshold, , and sums α0 + 0 and α1 + 1 are the slope and intercept between the median 
measurement and true emission rate when the true emission rate exceeds .  
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The physical interpretation of this model is aided by exponentiating both sides of Eq. (16), leading 
to  

  est expi i iQ    (20) 

where i is the median measurement of Qi
est. Thus, in general the random error manifests as a 

multiplicative error that may arise from an error in the advection sub-model, the sub-model used 
to infer concentration or column density, and measurement error. A similar scheme was recently 
proposed by Conrad et al. [28], although they assume that the error term has a constant variance 
for all release rates. In this work, the model defined by Eqs. (16)-(19) accounts for the fact that the 
variance may (and usually does) change with release rate and accommodates false positives: 
specifically, we either assume that the variance in Eq. (17) is either constant, 

 2 2
i    (21) 

following Conrad et al. [28], or 

   12 true
i iQ


     (22) 

A constant variance means that the expected randomness in the measured release rate should be 
proportional to the true release rate via Eq. (20), while the model in Eq. (22) means that the 
randomness increases sub-linearly with the release rate.  

As a concrete example, consider the problem of recovering the emission rate from a downwind 
concentration measurement at a precisely known location and one instant in time, c(t). In principle, 
the concentration may be related to the emission rate as  

  c Q D U   (23) 

where D is an advection model that depends on the wind speed, U, which is idealized as constant. 
The inverted measurement model is then  

  est 1 measQ D U c   (24) 

which is the product of a concentration measurement and an advection term. In the case of the 
Gaussian plume model, for example, D-1 would be found by inverting Eq. (4) to solve for Q 
explicitly. In principle, there is a “true” but unknown advection model that relates the true release 
rate to the downstream concentration, 

    true true true ,c t Q D t U t     (25) 

and, furthermore, the measured downstream concentration is related to the true downstream 
concentration by an error term, cmeas = ctrue(t) + δc, e.g., instrument noise. Substituting this result 
into Eq. (24) gives a relationship between the true and estimated emission rates 

      est true 1 true 1,Q Q D U D t U t D U c       (26) 

In an ideal world, Dtrue and D would be identical, and D-1Dtrue would equal unity. However, the 
simplifications used to derive D(U) introduce both a bias and a random error, e.g., the turbulent 
fluctuations of the unsteady plume, wind gusts, and variations in surface roughness. In this 
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scenario, and assuming that δc is small, the median estimate should be related to the true release 
rate by  

 true
0 1i iQ     (27) 

and Eq. (21) would hold for the variance.  

Deviations from this model may arise when the advection model error or concentration 
measurement error are functions of leak rate; for example, in many cases the accuracy and 
precision of spectroscopic concentration measurements may be influenced by the total column 
density of methane, which depends on the emission rate. In this scenario, δc would depend on Qtrue, 
which would introduce a nonlinear dependence in the variance, and possibly the median.  

The complete set of model parameters is then  

  0 1 2 0 1, , , , , , ,
T

Φ           (28) 

A subset of model classes may be realized by setting some of these parameters equal to zero. 

The model classes, and PDFs for the model parameters are estimated from a set of controlled 
releases. Suppose the measurements are contained in M, where Mi = Qi

est, and the true emission 
rates are in Q, where Qi = Qi

true. In this case the relevant form of Bayes’ equation is 

      
 

prp p
p

p

M Φ Φ
Φ M

M
  (29) 

where p(Φ|M) is the posterior probability density for the model parameters based on the 
measurements obtained from the technology in question, along with any prior knowledge of the 
parameters as specified by ppr(Φ). The likelihood PDF, p(M|Φ), specifies how likely it is to 
observe the measurements conditional on the set of model parameters as well as the true emission 
rates, {Qi

true}. Finally, p(M) is the marginal distribution of the data, which is fixed and allows 
p(Φ|M) to satisfy the Law of Total Probability. Details about how the prior PDFs are chosen for 
the parameters, and the way in which a model is chosen from a set of candidate model classes, is 
discussed in detail in Appendix A. 

We exemplify this technique by considering QOGI measurements on controlled releases made 
during the second field campaign. Figure 20 and Figure 21 shows the uncertainty quantification 
model results for the Montrose and UW operators, respectively. The shaded areas denote a 
specified probability of measuring a given leak rate given a true release rate. For example, Figure 
20 shows that there is a 50% probability that the UW operator would observe an emission between 
5 and 13 kg/h for a true emission rate of 20 kg/h.  

These results provide valuable insight into the bias and variability of the measurements, as well as 
some of the underlying causes. For example, in the case of the UW operator the posterior mean 
prediction (the “most likely” prediction) is a nonlinear function of the true emission rate at low 
emission rates, and transitions to a linear function of the true emission rate at higher emission rates. 
The initial nonlinearity is common to many quantification technologies, and may be due, in part, 
to the prevalence of false positive detections at low release rates.  

In contrast, Figure 21 shows a much larger bias in the inferred emission estimates, which is atypical 
of other QOGI measurements. This is indicative of a problem in the measurements and is likely 
due to the operator’s lack of familiarity with the OPGAL system. 
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Figure 20: Uncertainty quantification model results for the UW QOGI operator. Results from the
first and second field campaigns are denoted by triangles and circles, respectively. The results
from the first field campaign are used as external data to verify the adequacy of the model. 

Figure 21: Uncertainty quantification model results for the Montrose QOGI operator. The low
slope highlights a systematic problem with the technology, likely due to the operator’s
inexperience with the camera. 
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While this analysis provides key insights into the relative performance of quantification 
technologies, it can also be adapted to develop an uncertainty estimate for a new measurement 
made in an operational context. Suppose that Qnew represents the unknown true emission rate 
associated with a new measurement, Mnew, made during a leak detection and repair survey, and we 
have available controlled release measurements made during a field campaign in vector M.  We 
wish to obtain p(Qnew|Mnew, M), which through Bayes’ equation is given by 

      new new new new new
pr, ,p Q M p M Q p QM M  (30) 

where p(Mnew|Qnew, M) is the likelihood of observing the new measurement conditional on a 
hypothetical true release rate and the set of controlled release measurements, and ppr(Qnew) is the 
prior probability of that emission rate, e.g., what is typical for a given piece of equipment. The 
likelihood is found by marginalizing out the influence of the model parameters in Φ,  

      new new, , ,new newp M Q p M Q p d
Φ

M Φ Φ M Φ   (31) 

where p(Φ|M) is the posterior PDF for the model parameters found from the controlled release 
data and p(Mnew|Qnew, Φ) comes from the likelihood model in Eq. (16). Further details on this 
procedure are in Appendix A. 

As an example, suppose that the UW QOGI operator measures an emission, which is expected to 
lie somewhere between 0 and 200 kg/hr with uniform probability. Further suppose that the true 
(but unknown) release rate is 25 kg/hr. Five sample measurements are drawn from the 
corresponding likelihood model shown in Figure 20, which are shown in Table 6. The posterior 
PDFs obtained from Eq. (31) are shown in Figure 22, for the case of a single measurement and 
using five measurements and reflect the complete state-of-knowledge about the releases, given the 
measurements, the prior information, and the set of controlled release data. Notably: (1) even 
though the estimates shown in Table 6 are significantly less than 25 kg/hr, because the QOGI 
technology systematically underestimates the release rate, the controlled release information 
“corrects” this bias, leading to a PDF that is roughly centered on the true release rate; (2) the 
posterior PDF obtained using five measurements is considerably narrower than the one found using 
a single measurement, since the additional measurements act to reduce the underlying variance of 
the measurements.  

Table 6: Simulated QOGI-inferred emission rates, given a true emission rate of 25 kg/hr. 

Measurement, i Mi
est (kg/hr) 

1 19.7 
2 11.6 
3 8.4 
4 18.1 
5 17.0 
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5.3 Incorporating uncertainty models into Monte Carlo FEMP simulations 
One of the original goals of this study was to use the emission measurement models developed for 
different quantification technologies to study and compare different FEMPs using Monte Carlo 
simulation. A further goal was to incorporate measurement uncertainty for the different 
quantification technologies, in order to obtain an uncertainty estimate for these comparisons.  Since 
several of the management decisions in a FEMP rely on emission measurements, incorporating 
uncertainty on those measurements allows for more realistic and informative comparisons and, 
eventually, better decision-making. 

With the general empirical uncertainty model detailed in Section 5.2, we are now in a position to 
reach this goal. This work is currently being led by the UW team, with an expected completion 
date of May 2024. More precisely, we plan to compare a default FEMP (as per Alberta Energy 
Regulator Directive 060) and various alternative FEMPs involving different quantification 
technologies. We plan to simulate leaks and corresponding noisy measurements based on the 
models developed for the different quantification technologies, and then observe how this 
additional noise affect the deployment of the FEMP. In addition, we can propagate this uncertainty 
in the estimate of overall emission reductions. This approach allows one to perform comparisons 
between FEMPs that include a statistical assessment of the differences in emissions reduction 
observed and whether they are significant or not. In particular, using this approach, results such as 
those reported in Table 1 would be accompanied with an uncertainty estimate for the expected 
emission reduction. 

Additionally, we can evaluate how the uncertainty in the measurements will affect the estimated 
cost and emission reductions of the various FEMPs being evaluated, compared to an idealized 
scenario where measurements are assumed to be exact. In turn, this may lead to the development 
of alternatives FEMP that are more robust to measurement uncertainty. 

Figure 22: Posterior PDFs for the true emission rate, given the QOGI measurements, the prior 
information, and the controlled release data shown in Figure 20. One PDF corresponds to using 
the first measurement in Table 6, while the other uses all five measurements. 
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6. CONCLUSIONS AND ONGOING WORK 

6.1 Conclusions 
Canada’s oil and gas industry urgently needs new technology that can detect and quantify methane 
emissions from its upstream operations. While considerable attention has focused on detection 
probability, the ability to quantify emissions is assuming new importance, particularly in the 
context of emerging policies and regulations and a growing understanding of how methane emitted 
by upstream oil and gas operations is accelerating climate change. However, these emission 
estimates can only be interpreted properly in the context of their uncertainty. 

This research project focused on analyzing six existing and emerging methane quantification 
technologies: QOGI; truck-, drone-, and aircraft-based TDLAS; and airborne near-wavelength and 
long-wavelength hyperspectral imaging. The expected performance these technologies, were they 
to form the basis of an alternative fugitive emissions management plan (alt-FEMP), was estimated 
through a Monte Carlo simulation over two years of simulated emission events typical of an 
upstream site in Western Canada. The outcome of this simulation showed that alt-FEMPS based 
on airborne HS as well as airborne and truck-based TDLAS systems would realize significant 
emission reductions relative to a standard QOGI-based FEMP. 

In parallel, the operational characteristics of the FLIR GF320 QOGI system was explored through 
a laboratory study using a heated vent apparatus. This study demonstrated the underlying 
measurement principles, capabilities, and limitations of this system, and shed light on how various 
real-world measurement conditions may impact the reliability of the inferred emission rates. 

A subset of the technologies was then assessed through three measurement campaigns at CMC’s 
field research station in Newall County, AB. Campaigns featured semi-blind controlled releases 
from stacks of various heights, an unlit flare, the top of a storage tank, and the leeward side of a 
structure. These measurements provided insight into the overall accuracy and precision of the 
technologies for a range of measurement scenarios, and their susceptibility to environmental 
parameters like wind speed and ground temperature. 

The measurement campaign data was used to develop statistical models of the uncertainty attached 
to the emission estimates obtained from the technologies. In general, data from the measurement 
technologies, the underlying emission rate, and auxiliary measurement parameters are viewed as 
random variables that obey probability density functions (PDFs) related by Bayes’ equation. In 
scenarios where a detailed measurement model is available, as is the case for truck based TDLAS 
measurements, the measurement noise, uncertain model parameters, and model errors may be 
propagated via Bayes equation to develop a posterior PDF for the true emission rate conditional 
on the measurement data and any prior information about the expected emission rate. 

More generally, however, the measurement model may be highly complex or unavailable to the 
analyst. In this case, a likelihood function for observing an indicated emission conditional of an 
underlying true emission may be developed through using controlled release data obtained under 
relevant conditions. This likelihood may then be inverted and combined with any available prior 
information about the expected emission rate to obtain a posterior PDF for the emission rate. The 
posterior PDF amounts to a comprehensive statement about what is known about a given emission 
rate based on the measurement, uncertain model parameters, and any prior information.   
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6.2 Ongoing work 

6.2.1 Incorporating uncertainty estimates into Monte Carlo simulations 
Ongoing work is focused on incorporating the empirical statistical model in Sec. 5.2 into the Monte 
Carlo simulations used to develop emission inventories. For example, most Monte Carlo FEMP 
simulations only consider the emission rate, detection probability, and the probability and 
effectiveness of repair/intervention as statistical parameters to generate an expected emission 
reduction (e.g., kg/yr). Incorporating the uncertainty attached to the emission estimate into these 
simulations would provide an uncertainty in the expected emission rate over the duration of the 
simulation. This information is crucial when designing a FEMP, enabling the designer to determine 
an acceptable tradeoff between cost and the certainty with which the emissions will be reduced.  
Similarly, measurement uncertainty should be incorporated into Monte Carlo estimate of overall 
emission inventories, in a manner similar to Johnson et al. [29]. This information may partially 
explain disagreements between “bottom up” and “top down” inventories. 

6.2.2 Development of the LWIR HS measurement system 
While most of the technologies considered in this study have been deployed commercially for at 
least three years, this is not the case for the LWIR HS measurement system. The outcome of the 
third field trial (Sec. 4.3) highlight the capability of this system for detecting methane emissions, 
but also that the estimated emission rates are highly biased. UW personnel are currently working 
with Telops to understand and correct the origin of this bias, which could be due either to the 
spectroscopic model used to infer the methane column density (or “pixel mass”) from each 
spectrum, or the advection model that combines the pixel mass map and wind speed into an overall 
emissions estimate.  

6.3 Recommendations for future research 
Further controlled release campaign data could also elucidate how some of the uncontrolled 
experimental parameters impact uncertainty. The controlled release data developed from the field 
campaigns was “pooled” to provide an overall likelihood estimate for a given measurement 
system, which amounts to marginalizing over the environmental conditions encountered at the site. 
Further field measurements could be used to develop narrower conditional PDFs, since, in general, 
incorporating more information into the estimate, e.g., a specific wind speed, should act to reduce 
the uncertainty interval.  

While this study endeavored to generate industrially relevant scenarios, there were still significant 
differences between the controlled releases that could be conducted at CMC’s Newall County 
facility and what may be encountered at an upstream site. Most importantly, the releases were 
“single-blinded” in that the emissions had a single source, and the operators knew where the source 
was located. More realistic and challenging scenarios could be developed at other facilities, 
including the METEC facility in Fort Collins CO, and the NGIF Emissions Testing Centre in 
Edson AB. 
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APPENDIX A 

“Emission and Applications of Uncertainty in methane Emissions Quantification 
Technologies: A Bayesian Approach.” 

 

This is a draft of a journal manuscript that defines the empirical uncertainty quantification 
technique described in Sec. 5.2. 
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Abstract

An accurate understanding of uncertainty is needed to properly interpret
methane emission estimates from the upstream oil and gas sector in a variety of
contexts, from component-level measurements to yearly industry-wide invento-
ries. One possibility is to derive an uncertainty estimate from the physical model
that connects the measurement data to the emission estimates directly, but this
information is often proprietary and thus unavailable to end users. Instead, we
provide a method to develop probability distributions of measurements given
a true emission rate empirically using controlled release data. This method is
completely technology-agnostic, and provides a route to summarise uncertainty
without the need to release proprietary modelling or data. To demonstrate the
wide applicability of the method, we introduce an algorithm that can be used
to synthesize the uncertainty model and measurement-based surveys to produce
an uncertainty range for new measurements in the field.

Keywords: methane, uncertainty quantification

1. Introduction

Deep and rapid reductions in methane emissions from leading anthropogenic
sources, especially upstream oil and gas activities, are crucial in order to avoid
the worst outcomes of climate change [1], but doing this requires instrumentation
that can reliably detect and quantify these emissions. Technologies for doing
this include: quantitative optical gas imaging (QOGI) using mid-wavelength
infrared (MWIR) cameras [2, 3, 4]; stationary [5] and mobile [6, 7, 8] methane
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concentration sensors; and airborne [9, 10] and satellite-based [11] measure-
ments. All of these systems utilize a measurement model that relates direct
observations and auxiliary inputs to the methane emission rate. Often the
measurement model consists of a spectroscopic sub-model that connects some
radiometric measurement to a column density (ppm×m) or path-averaged con-
centration estimate (ppm), and an advection sub-model, usually informed using
anemometry data. The output of the inversion procedure is typically a point
estimate of the methane emission rate from the source (e.g., kg/hr).

Emissions estimates can only be interpreted properly in the context of un-
certainty. This aspect is particularly important in view of existing and emerging
methane emissions regulations and reduction commitments [1, 12, 13], e.g., to
answer the question “with what probability is this facility compliant with a
particular regulation?” Methane leak detection and repair (LDAR) programs
should also be optimized with quantification uncertainty in mind to give the
best trade-off between cost and emissions reductions, as it has been shown that
high quantification uncertainty contributes to certain types of LDAR programs
being less cost effective [14]. Further, methane emissions measurements are used
to develop broader jurisdiction-wide and global inventories [15, 16, 9], which are
needed to assess progress towards emissions reduction targets and to inform
policies and regulations, but these decisions can only be made in the context of
uncertainty. Therefore, there is a need for transparent techniques for estimating
emissions uncertainty that can be applied consistently in different contexts.

Approaches for quantifying methane emission uncertainty may be catego-
rized as either physics-based or data-driven. Physics-based approaches address
uncertainty associated with measurement noise, uncertain model inputs, and,
especially, the model errors induced by the approximations and simplifications
needed to derive a tractable measurement model, in an explicit way. As an
example, Montazeri et al. [17] derive formulas for different error components of
QOGI estimates, with the aid of virtual data generated from a computational-
fluid dynamics large eddy simulation (CFD-LES). Caultron et al. [8] developed
uncertainties for emission estimates obtained from a truck-mounted concentra-
tion sensor and inverse Gaussian plume model by accounting for uncertainty
in the Gaussian model diffusion coefficient, emission source and height, and
wind speed and stability class. Cambaliza et al. [18] developed uncertainties
for emission estimates inferred from aircraft-based concentration measurements
using different values for the background carbon dioxide and methane, depth,
changes in the convective boundary layer height, and perpendicular wind speed
parameters.

While physics-based approaches provide key insights into the uncertainty
of methane emission estimates obtained from various technologies, and how
they should be deployed to minimize these uncertainties, they also have several
key drawbacks. First, they require detailed knowledge of the measurement
model, which may be very complex or unavailable due to proprietary aspects
of the technology. Second, the results of a physics-based uncertainty analysis
are specific to a given technology and will not be broadly applicable, requiring
cumbersome effort for every technology of interest. Third, results of a purely
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physics-based uncertainty estimate may not agree with what is observed in real-
world scenarios due to missing or inadequate modelling of uncertainty sources.
Moreover, existing physics-based uncertainty analyses do not include methods
or procedures for how the results should be applied in practice, and there is a
lack of consistency in reporting of the results [8]. For example, most physics-
based approaches do not show how their results should be used to derive a 95%
confidence interval based on a given measurement from the technology.

Empirical approaches to uncertainty quantification rely on a statistical model
which compares true and measured emission rates from controlled-release data.
The statistical model can then be used to predict future measurements given a
true emission rate, or inverted to give a confidence interval for the true emission
rate given a measurement. Empirical approaches have two key benefits over
physics-driven approaches: 1) they are data-driven, meaning the results will
likely resemble what is actually observed in the field, and 2) the statistical
framework can be leveraged to provide unified and consistent guidelines for how
the results of the uncertainty analysis should be used in practice.

Empirical approaches require data from controlled-release field trials. To
this end, many single-blinded or double-blinded field trials have been conducted
with the goal of assessing the performance of methane emissions quantification
technology, e.g., [19, 20, 21, 10, 22]. However, empirical approaches employed
on these data have mainly been limited to simple linear regression approaches
which do not allow for quantification uncertainty to vary with the emission rates
[19, 20, 21, 10], with the exception of [22], who provide an approach to derive
the distribution of the true emission rate given a measurement from an airborne
methane detection and quantification technology.

In this work, we introduce a flexible empirical framework to elucidate quan-
tification uncertainty that can be applied to any technology modality and illus-
trate its use using field trial data from two campaigns carried out using four
methane detection and quantification technologies as well as controlled release
data reported by [22]. The empirical framework allows for the derivation of
two important probability distributions: 1) the distribution of measurements
given the true emission rate and 2) the distribution of the true emission rate
given a measurement. The first distribution is a building block to the sec-
ond distribution, and has the potential to be incorporated into simulation soft-
ware that models LDAR programs such as FEAST, LDAR-Sim, and AROFemp
[23, 24, 25]. The second distribution is an important input to simulation meth-
ods used to derive measurement-based inventory estimates such as [26]. Our
approach to deriving the second distribution also provides the opportunity to
incorporate context-specific information into the analysis, such as knowledge of
the emission rate distribution in a given region. The results of the analysis are
data-driven and the design of the field trials allows for the assessment of the
potential real-world effectiveness of the uncertainty quantification results.
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Figure 1: Technologies studied in the field trials. Top row, left to right: QOGI A, QOGI B,
QOGI C. Bottom row, left to right: airborne NIR HSI, truck-based TDLAS.

2. Materials and Methods

2.1. Methane Quantification Technologies

We demonstrate the analysis procedure using controlled release data from
four methane quantification technologies, three of which were evaluated in the
field trials described in Sec. 2.2: QOGI; truck-mounted tunable diode laser-
absorption spectroscopy (TDLAS); and airborne near-infrared hyperspectral
(NIR HS) imaging. We also consider an airborne TDLAS system (“Gas Map-
ping LiDAR™ ” (GML) from Bridger Photonics, Inc.) based on data reported
in Conrad et al. [22]. Examples of the technologies investigated in the field
trials are shown in figure 1.

2.1.1. Quantitative Optical Gas Imaging (QOGI)

QOGI systems are almost exclusively based on a mid-wavelength infrared
(MWIR) camera that contains a cold filter centered on the 3.34 µm methane
vibrational-rotational band. The intensity entering the camera aperture is im-
aged through the cold-filter and onto a focal plane array (FPA) that produces
a pixel intensity. The cameras are usually calibrated to generate a spectrally-
averaged absolute intensity along each pixel line-of-sight. The camera data is
then analyzed in near real-time by software on a peripheral tablet. The measure-
ment model is composed of a spectroscopic sub-model that generates a column
density map of the gas, and an advection model that infers a 2D projected ve-
locity field from the apparent plume motion between successive images. These
quantities are then combined to obtain a mass flow rate (e.g, kg/s).

The reliability of QOGI-derived emission estimates depends on factors that
include measurement distance between the plume and the camera, thermal
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contrast between the plume and the background, wind speed, and leak rate
[27, 19, 28]. Identifying favorable measurement scenarios draws considerably on
operator experience [29]. Three QOGI systems were deployed by three operators
of varying experience, as summarized in Table 1.

Table 1: QOGI operators and equipment

Operator Experience System Field Trial
A Professional FLIR GF320 with Providence

QL320 (v. 3.0.0.5)
1

B Professional,
new to system

OPGAL EyeCGas (v. 1.0.24) 2

C Novice FLIR GFx320 with FLIR
QL320 (v. 1.4.1)

1 & 2

QOGI Operator A used a FLIR GF320™ camera with a Providence QL320™
tablet (v. 3.0.0.5); QOGI Operator B used the OPGAL EyeCGas™ (v. 1.0.24)
and QOGI Operator C used a FLIR GFx320™ camera with the FLIR QL320™
Tablet (v. 1.4.1). Notably, while Operator B was an experienced QOGI opera-
tor, they were unfamiliar with the OPGAL system during the field trial. QOGI
Operator A was highly experienced and familiar with their equipment, while
QOGI Operator C was a novice, having less than six months of experience with
the system.

2.1.2. Truck-mounted TDLAS

Methane releases were also quantified using a truck-mounted TDLAS sys-
tem (Boreal Laser GasFinder 3 VB™). The absorptance, and therefore methane
column density (e.g., ppm·m), is inferred through wavelength-modulation spec-
troscopy (WMS) [30] and then converted to a path-average concentration (ppm).
The truck traversed the plume at distances ranging from 50 to 100 m downwind
of the release point. Methane concentrations were measured at one second
intervals; these concentrations and wind speeds obtained from an ultrasonic
anemometer operated by the service provider were then processed using a back-
wards Lagrangian stochastic quantification algorithm [31, 32] to obtain a release
estimate for each plume transect.

2.1.3. Airborne NIR HS imaging (GHGSat-AV™)
The airborne NIR HS system (GHGSat-AV™) consists of a downward-looking

wide-angle Fabry-Perot imaging Fourier transform spectrometer that operates
between 1630-1655 nm [33], mounted inside an aircraft [34]. The aircraft over-
flew the releases at an approximate altitude of 250 m above ground level and
airspeed of 240 km/hr. Thermal emission from the gas and ground is negligible
over this wavelength range; instead, the camera images sunlight transmitted
through the atmosphere, reflected from the ground, and transmitted back to
the camera. The methane column density is inferred from the attenuation of
the transmitted light via a multi-layer spectroscopic model, and then combined
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with an advection model [35] using wind data from an online weather model to
find the emission rate.

2.1.4. Airborne TDLAS

Bridger’s airborne GML™ system consists of two tunable diode lasers, and a
sensor that detects the ground-reflected laser light. One laser is used for range
finding and determining ground reflectivity, while the other scans the 1651 nm
CH4 absorption line to determine column density. The lasers move in a conical
pattern, which forms an ellipsoidal swath on the ground. Reflected light from
the range-finding and methane-absorbing lasers are combined to form a column
density via WMS. The column density estimates across the swath are used to
form a 3D plume concentration map, which is combined with an advection model
using wind speed from online weather data to obtain a release rate [20].

2.2. Field Trial Design and Execution

The QOGI, truck-mounted TDLAS, and airborne NIR HS imaging sys-
tems were evaluated through two controlled release field campaigns executed
at Carbon Management Canada (CMC)’s Newall County Research Station near
Brooks, Alberta, the first during April 20-26 2022 and the second during Septem-
ber 25-October 1, 2022. Technology developers and service providers were in-
vited to attend the field trials and quantify emissions of natural gas in a variety
of industrially relevant scenarios, including 1.7 m, 3.4 m, and 4.8 tall stacks,
and a 14-m tall unlit flare, following their standards-of-practice.

An assay showed that the natural gas consisted of 94.2 % methane, 3.4 %
ethane, 1.1 % propane, and 1.3 % minor components, predominantly N2 and O2

in roughly atmospheric abundances. The gas was released from a compressed
cylinder via a regulator valve and flowed through a heat exchanger to condition
the gas to atmospheric temperature. The conditioned gas then passed through
a mass flow controller (Alicat MCR-2000SLPM - D-PAR) and discharged to
the atmosphere in a manner that depended on the release scenario as shown in
figure 2.

Local meteorological conditions were measured using a portable 81000-L RM
Young 3D ultrasonic anemometer and a Davis WeatherLink Pro+™ weather
station. The portable anemometer was located 2.25 m above the ground. Back-
ground measurements of methane and other relevant species were monitored
throughout the tests using a Picarro cavity ringdown spectrometer located in a
structure approximately 250 m from the release locations. Background methane
measurements were between 2 to 2.5 ppm throughout the tests. Meteorology
and controlled release data for these field trials are provided in the supplemental
information (SI).

Service providers did not have access to meteorology data; instead, they con-
ducted their own on-site measurements or relied on third-party weather models,
as they would when deploying the technology in a practical scenario. Service
providers then compiled their own estimates and provided them to the academic
team.
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Figure 2: Controlled release set-up including heat exchanger and mass flow controller.

Additional data was taken from controlled release studies reported in the
literature: Bridger GML system was taken from the controlled, fully-blinded
release study reported by Conrad, et al. [22].

Table 2: Summary of technologies, providers, and available data from the field trials and ex-
ternal sources. N1 and N2 refer to the number of observations collected for a given technology
during the first field trial and second field trial, respectively.“Other” refers to data from Ref.
[22].

Technology N1 N2 Other
QOGI Operator A 117 0 NA
QOGI Operator B 0 71 NA
QOGI Operator C 14 106 NA
Truck TDLAS 142 125 NA
Aerial TDLAS NA NA 405
Aerial NIR HSI 46 37 NA

3. Uncertainty Quantification

3.1. Models for Uncertainty Using Controlled Release Data

We propose a statistical model that answers the following question: For a
given true emission rate, what range of measurements could be expected, given
the observed controlled release data, in the context of model error and measure-
ment noise? We take a Bayesian approach to fitting the model and thus in Sec.
3.1.2 we give a brief overview of Bayesian analysis, followed by technical details
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that include the prior distributions, Sec. 3.1.3, and model selection methods,
Sec. 3.1.4.

3.1.1. Novel Flexible Model

Let Qi be the true emission rate corresponding to the ith observation in the
field trial, and Mi be the emission rate estimated by the technology for the ith
observation, i = 1, . . . , n where n is the total number of observations for the
given technology. The relationship between Qi and the bias and variability of
Mi can be complicated, since both the bias and the variability may change over
the range of Qi. Additionally, the relationship between Qi and Mi may not
be strictly linear, as shown in e.g. figure 3. The model must also account for
the fact that all technologies may report a “false positive”, that is, estimating
a non-zero Mi when Qi = 0.

A flexible likelihood which allows the bias and variance of Mi to vary with
Qi and incorporates the possibility of false positives is given by

log(Mi) = log(ϕi) + ϵi, (1)

where
ϵi ∼ N(0, σ2

i )

and
ϕi = median(Mi).

A specification for ϕi is

ϕi =

{
α0 + α1Qi + α2Q

2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.

To ensure that the function is continuous at Qi = γ, we impose the restriction
that β0 = α2γ

2 − β1γ. In this likelihood, there is a quadratic relationship
between ϕi and Qi for values of Qi smaller than a threshold γ and a linear
relationship for larger values of Qi. This likelihood is normal on the log scale,
which corresponds to a log-normal likelihood on the measurement scale.

The specification of ϕi can be modified to give the best prediction results
and fit to the data. For example, the threshold parameter γ, β0 and β1 could
be removed, which would give a quadratic relationship over the whole range of
Qi. Table 3 summarizes the parameters that may be removed and Section 3.1.4
shows how the likelihood is chosen.

The model can be rewritten to facilitate interpretation by exponentiating
both sides of Eq. (1):

Mi = (ϕi)× eϵi , (2)

where ϕi is the median measurement for a true emission rate of Qi.
The likelihood in Eq.(1) is an extension of the scheme proposed by Conrad

et al. [22]. That is, their model is a special case of our likelihood where α0 = 0,
α2 = 0, β0 = 0, β1 = 0, and σ2

i = σ2 for all i = 1, . . . , n. Briefly, they as-
sume the median value of Mi has a multiplicative relationship with Qi, that is,
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ϕi = α1 × Qi, and the multiplicative error term has a constant variance over
the range of Qi. Our model expands on this in three ways. First, we allow
for linear and quadratic relationships between the median measurement and
Qi rather than a strictly multiplicative one. This is useful in modelling more
complex relationships. Additionally, it allows false positives to be modelled via
α0. Second, the inclusion of the threshold parameter t allows more flexibility
in modelling the relationship between the median of Mi over the range of Qi

rather than assuming a common median function for all Qi. Third, we investi-
gate different variance structures for ϵi which can allow the variance to change
with Qi to more accurately model the patterns observed in controlled data from
some instrumentation rather than assuming a constant variance. Another dif-
ference between this approach and that of [22] is that they investigate different
distributions for the error term, whereas we restrict ourselves to the log-normal
distribution, but investigate different forms for the median and variance which
are motivated by the data. Finally, we take a fully Bayesian approach to esti-
mation and inference discussed in section 3.1.2 whereas [22] uses a (frequentist)
maximum likelihood approach.

It is important to note that in this model the errors are additive on the log
scale, which implies multiplicative errors on the raw measurement scale as shown
in Eq. (2). The simplest way to model the variation is to set the variance of ϵi to
a constant, σ2

i = τ−1 for all i, where τ is referred to as the precision parameter.
Multiplicative errors may be suitable for lower and moderately-sized emission
rates, but for large values of Qi purely multiplicative errors may overestimate
variability for some technologies. A possible explanation for this is that for
smaller emission rates, both the error in raw concentration or column density
estimates and error in the advection model are significant, leading to product
uncertainty. For larger emission rates, however, either raw measurement error
or advection model error dominates, leading to sub-multiplicative errors in this
range. To accommodate this, we also propose using σ2

i = (τ + Qi/η)
−1 as an

alternative variance structure for ϵi which allows the variability of the error
terms to decrease with increasing Qi. The approach to choosing an appropriate
likelihood, including the variance specification, is described in Sec. 3.1.4.

This section concludes with interpretations of the parameters in the likeli-
hood. Threshold parameter γ allows the linear relationship to change for larger
values of Qi. α0 represents the median measurement when the true emission
rate is zero, which accounts for false positives. Parameters α1 and α2 are the
coefficients for Qi and Q2

i , describing the quadratic relationship between the
median measurement and the true emission rate when the true emission rate is
less than the threshold. Sums α0 + β0 and α1 + β1 are the slope and intercept
of the linear relationship between the median measurement and Qi when Qi

exceeds the threshold. Some technologies exhibit simpler relationships between
Qi and the median of Mi, in which case some or all of γ, α2, β0, and β1 may be
dropped from the model. Finally, two different variance specifications were used
in the likelihood: either σ2

i = τ−1 or σ2
i = (τ + Qi/η)

−1. In the former case,
τ−1 is the variance of all measurements on the log scale. In the latter specifica-
tion, τ−1 is the variance of the measurements when Qi = 0 and c controls how
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much the variance changes as Qi increases from zero. A larger value of η corre-
sponds to a milder reduction in variance as Qi increases. Table 3 summarizes
the parameters in the likelihood, their units, and scenarios in which they may
be included or removed.

3.1.2. Bayesian Analysis

The model parameters are estimated using a Bayesian approach. This is
done for several reasons: (i) the method is flexible, allowing the likelihood to
be tailored to the data; (ii) data can be synthesized seamlessly from multiple
sources (e.g., multiple measurement campaigns or different measurement modal-
ities); (iii) it explicates the use of prior information; and (iv) it provides the full
probability distribution of measurements given a true emission rate, amounting
to a comprehensive definition of what is known about the emission rate (see
Sec. 4.2).

Let the unknown parameters of a statistical model for the measurement Mi

given a fixed true emission rate Qi be represented by vector θ. In the Bayesian
framework, these parameters are envisioned as random variables defined by
probability distributions that are related by Bayes’ equation,

p(θ | M) =
p(M | θ)p(θ)

p(M)
, (3)

where M = (M1,M2, . . . ,Mn)
′. The probability distribution of interest is the

posterior distribution, p(θ | M), which summarises the information about θ in
the observed measurements along with any external or “prior” knowledge we
may have about θ. The likelihood distribution, p(M | θ), is the probability
distribution of the set of measurements for a fixed value of θ and is also a
function of the true emission rates Q, which is fixed and thus suppressed in the
notation in Eq. (3). It describes how likely it is to observe M for a given value
of θ and Q in the context of measurement noise and model error. Under the
assumption that measurement errors are independent between measurements,
we also have that p(M | θ) =

∏n
i=1 p(Mi | θ). The prior distribution, p(θ),

describes what is known about the unknown parameters before data is collected.
Prior distributions for the proposed models are discussed in Sec. 3.1.3. Finally,
p(M) is the marginal distribution of the data, which is constant for fixed data.

The posterior p(θ | M) is estimated using Markov Chain Monte Carlo
(MCMC) sampling, which generates a set of samples from the posterior distri-
bution of θ [36]. These samples are readily used to derive quantities of interest,
such as credibility intervals. MCMC sampling is done using Just Another Gibbs
Sampler (JAGS)[37] via the runjags R package [38].

We wish to understand the distribution of a measurement given a fixed
value of Qi. Let M̃i represent a new, unobserved measurement and Qi be an
accompanying true emission rate. Then we wish to find the posterior predictive
distribution of M̃i, given by p(M̃i | M,Qi) =

∫
p(M̃i | θ,Qi)p(θ | M)dθ, which

is the integral over θ of the likelihood of Mi given fixed θ and Qi times the
posterior distribution of θ. This distribution can be obtained via simulation
using samples from the posterior.
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3.1.3. Prior Distributions

As with any Bayesian model, an appropriate prior distribution depends on
the context of the problem at hand, including pre-existing knowledge and the
scale of the data. We summarise the units of each parameter in Table 3.

Parameter Units Exclusion criteria
α0 [Mi] *
α1 Unitless None
α2 [Mi]

−1 †
β0 [Mi] *,†
β1 Unitless †
γ [Mi] †
τ Unitless None
η [Mi] †

Table 3: Summary of the units for each parameter in the likelihood, important to keep in mind
when specifying prior distributions. Exclusion criteria: * = may be removed if technology
does not have false positives in controlled release data, † = may be removed if its removal
leads to a simpler model which has adequate fit and predictive performance.

The parameters of the likelihood to be estimated are α0, α1, τ , along with
optional parameters α2, γ, β1, and/or η. All parameters are assumed to be
independent, that is,

p(θ) = p(α0, α1, τ, α2, γ, β1, η) = p(α0)p(α1)p(τ)p(α2)p(γ)p(β1)p(η), (4)

so we can specify individual prior distributions for each parameter.
We can derive empirical prior distributions by considering the role of each

parameter in the model and their units. Since α0 is the median measurement
when the true emission rate is zero, it should be small and non-negative. It
is parameterized by a gamma distribution, where the shape and rate parame-
ters can be chosen so the mean of the distribution is similar to the mean false
positives observed in the data. For example, for the data reported by QOGI
Operator A, the average false positive is 0.27 kg/h so we use a gamma distri-
bution with shape parameter = 0.5 and rate parameter = 2, which has a mean
of 0.25 and variance of 0.125. Note that β0 is a function of other parameters
to ensure that the piece-wise function is C1 continuous. A prior is not specified
for this parameter.

In a simple linear model, α1 is the slope of Qi so for every one unit increase in
Qi, the median measurement increases by α1 units. A perfect technology would
have α1 = 1. Thus we use a prior for α1 which has a median of 1 and is non-
negative. Further, we seek a distribution with the property that for any constant
k > 1, the probability that α1 > k should be the same as the probability that
α1 < 1/k, or in other words, the probability that the technology over-estimates
by a factor of k is the same as the probability that it under-estimates by a factor
of 1/k. This property is desirable in the prior because information about under-
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or over-estimation should only come from the data. Thus we use a standard log-
normal distribution (shape parameter equal to one, location parameter equal to
zero, and scale parameter equal to zero [39]) because it has this property. For
example, if α1 follows the standard log-normal distribution the probability that
α1 < 1/2 = probability that α1 > 2 = 0.244.

Coefficient α2 is associated with Q2
i when Qi ≤ γ. Similarly to α0 and α1,

we restrict this parameter to be non-negative to avoid taking the log of zero or a
negative number. Due to the units of α2, we use a prior with a relatively small
variance. For example, if we wanted the variance to be equivalent to 10 kg/h,
that equals 0.1 [kg/h]−1. Thus we use a half-normal distribution with variance
parameter equal to 1.

Parameter β1 (unitless, nonnegative) represents the change in α1 when Qi >
γ. As with α1, we use a standard log-normal distribution as a prior for β1.

The threshold parameter γ represents the value of Qi for which the rela-
tionship with Mi changes from quadratic to linear. The parameter γ must be
somewhere in the range of the Qi data. We use a uniform prior distribution on
(0, max) where max is determined by the largest value of Qi observed in the
data for a given technology.

Parameter τ represents either the inverse of the variance of measurements
on the log scale in a constant variance model, or the inverse of the variance of
measurements when Qi = 0 on the log scale and is referred to as the precision
parameter. We use a vague non-negative prior of a half-normal with variance
parameter set to 100 on τ−1/2, as suggested in [40].

Finally, if the more complicated variance model is used, a prior must be
chosen for η. Little external information is known about η except it must be
non-negative. We use a half-normal with variance set to 100.

The sensitivity of results to prior specification was checked for all models.
Results were obtained for the stated priors. Next, the model was refit with
priors where the range and/or variance was changed for some parameters. The
posterior distribution of each parameter was then compared between the two
models. The resulting 90% prediction bands were also compared between the
models. Unless otherwise stated in the results section, the model results were
insensitive to the prior specification.

3.1.4. Model Selection

As discussed in Sec. 3.1.1, a variety of candidate models may be formed by
adding or removing likelihood parameters, each of which may result in differ-
ent implications for measurement bias and variability. For example, removing
Qi/η from the variance expression leads to a simpler model which has constant
variance on the log scale. In general, a model with more parameters will fit the
controlled release data better but may also be prone to over-fitting, which can
result in poor predictive performance. Therefore, we use a combination of De-
viance Information Criteria (DIC), prediction bands, and residual plots to select
a model that provides a good trade-off between goodness of fit and complexity.

The Deviance Information Criterion, or DIC, combines goodness-of-fit to
the training data and model complexity to provide an overall assessment of the
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model [36]. It is analogous to the AIC, a frequentist model selection tool used
by Conrad et al. [22] in the context of uncertainty modelling of methane quan-
tification technologies. When comparing multiple models, a lower DIC value
indicates a better balance between model fit and complexity, with differences of
two or more considered meaningful [41].

We are also guided by plotting prediction bands derived from the posterior
predictive distribution of measurements for different values of Qi over a scatter-
plot of the data used to fit the model. If the prediction bands show a much wider
or narrower spread than the data used to fit the model, this is an indication that
the variance is not modelled well. Prediction bands can also be compared to
additional data that was excluded from the model fit (“external data”), which
indicates the generalizability of the model predictions. If the model predictions
look similar to the external validation data, this is an encouraging sign that
the model is suitable to be used under different conditions. Investigating the
residuals, defined as the difference between the model-predicted value (M̂i) and
the observed data point (Mi), that is, residuali = Mi − M̂i provides still more
insight into areas of improvement for the model.

The DIC, prediction bands, and residual plots were used for model selection
as follows: First, the simplest model possible with constant variance was fit to
the data (a multiplicative model with α1 if there are no false positives in the
data or a linear model with α0 and α1 otherwise). The DIC was calculated using
JAGS. Prediction bands were compared to the data used to fit the model and
residual plots were inspected. If the prediction bands were much wider or nar-
rower than the spread of the data, this indicated that the variance model should
be explored. If the residual plots showed systematic problems, this indicated
that the median specification should be explored. Models were then augmented
as suggested by the diagnostic plots, refit, and DIC was re-calculated. This
process was repeated until the diagnostic plots were satisfactory and the DIC
was at least three less than that of the previous model.

4. Results and Discussion

4.1. Uncertainty Results

In this section, we present the selected likelihoods for five different methane
quantification technologies/operators, discuss the performance, and comment
on the generalizability of the model if applicable. The chosen models are sum-
marized in Table 4.

4.1.1. QOGI Technologies

Prediction bands and posterior median predictions are shown for QOGI Op-
erators A, B, and C in Figures 3, 4 and 5, respectively. All QOGI technologies
underestimate emissions on average. The likelihoods from QOGI Operators B
and C are best modelled using a quadratic function for the median below a small
threshold, then a linear function. QOGI Operator A is best modelled using a
quadratic function for the median. Data provided by Operator A has a more
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Table 4: Summary of selected models for each methane quantification technology provider.

Technology
Selected likelihood
ϕi σ2

i

QOGI A α0 + α1Qi + α2Q
2
i (τ +Qi/η)

−1

QOGI B

{
α0 + α1Qi + α2Q

2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.
τ−1

QOGI C

{
α0 + α1Qi + α2Q

2
i Qi ≤ γ;

α0 + β0 + (α1 + β1)Qi Qi > γ.
(τ +Qi/η)

−1

Truck TDLAS α0 + α1Qi (τ +Qi/η)
−1

Aerial TDLAS α1Qi (τ +Qi/η)
−1

Aerial NIR HSI α0 + α1Qi τ−1

limited range than the other QOGI technologies - with a max Qi value of 30
kg/h, compared to 80 kg/h for Operator C and 50 kg/h for Operator B. For
QOGI technologies in general, the likelihood has more curvature in the lower
range of Qi while a linear relationship on the log scale is suitable for higher
release rates.

The results for QOGI Operator B are quite distinct from those of Operators
A and C. This may be attributed to this operator’s lack of familiarity with
the camera settings during the testing, as reported by the operator. This lack-
of-familiarity manifests as an additional factor that influences (broadens and
biases) the likelihood.

QOGI Operator C was present for both field trials. Only 14 measurements
were made for this technology at the first field trial, which we use as external
data. These data points fall within the 95% prediction band, suggesting that
the model is generalizable.

4.1.2. TDLAS

Results from the selected models for truck and aerial TDLAS systems are
shown in Figs. 6 and 7. The truck-based TDLAS tends to underestimate
emissions, while the aerial technology overestimates on average.

For truck-based TDLAS, the model was fit using data from the second field
trial, while data from the first field trial was used as external data to assess the
model’s generalizability. Most of the external data points fall within the predic-
tion bands. However, the median trend appears different for the external data.
A possible explanation for this is that weather conditions may have differed
between trials one and two in such a way that estimates were systematically
larger during the first trial than the second.

Figure 8 shows the predictions resulting from the Bayesian uncertainty model
derived for the airborne TDLAS compared to the one presented by Conrad et al.
[9]. The Bayesian model gives narrower prediction bands than the other model,
which is particularly noticeable in the upper range of Qi. This is likely due to
the different variance specifications used in the models; the model in Ref. [22]
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Figure 3: Uncertainty quantification model results for QOGI Operator A. The model was fit
to data from the first field trial. No external data were available.
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Figure 4: Uncertainty quantification model results for QOGI Operator B. The model was fit
to data from the second field trial. No external data were available.
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Figure 5: Uncertainty quantification model results from QOGI Operator C. The model was
fit to data from the second field trial. Controlled release data from the first field trial was
used as external data.
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Figure 6: Uncertainty quantification model results for truck-based TDLAS data. The model
was fit to data from the second field trial. Controlled release data from the first field trial was
used as external data.

uses a constant variance whereas the selected model from our proposed Bayesian
approach allows the variance to change with Qi. The median predictions (solid
black line) are very similar between the two models.

4.1.3. Airborne NIR HS Imaging

The prediction bands from the selected model for the airborne NIR HS
imaging technology are shown in Fig. 9. The technology tends to overestimates
emissions. The model was fit to data from the second field trial, while data from
the first field trial were used as external data. There appear to be systemic dif-
ferences between the data from the two field trials, with the data from the first
field trial underestimating emissions more often, and data from the second field
trial overestimating emissions more often. However, most of the external data
points still fall within the 95% prediction bands, which is a positive indication
of the applicability of the model. During the field trials, the operator remarked
that the conditions were considered marginal due to excessive cloud cover and
would not be typical of those under which commercial measurements were con-
ducted, while those of the second field trial were nearly ideal. This could explain
the lack of implausibly large estimates calculated during the first trial, as com-
pared to the second field trial, where there two estimated measurements that
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Figure 7: Uncertainty quantification model results for airborne TDLAS data provided by [22].

Figure 8: Side-by-side comparison of Bayesian model proposed in table 4 and that presented
in [22] for airborne TDLAS.
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Figure 9: Uncertainty quantification model results for airborne NIR HS data. The model was
fit to data from the second field trial. Controlled release data from the first field trial was
used as external data.

are so large they fall outside the 95% prediction band.

4.2. Application: Quantifying Uncertainty in New Measurements

4.2.1. Algorithm

Finally, we describe a possible downstream application of the distributions
derived in section 4.1. Suppose we wish to calculate a credible interval for the
true emission rate based on methane measurements made in the field where the
true emission rate is not known. Let Qnew represent the unknown true emission
rate associated with the new measurement and Mnew be the measurement made
in the field. We wish to know the distribution of Qnew given Mnew and our
uncertainty model derived from controlled release data. The distribution of
interest is p(Qnew | Mnew,M). Using Bayes equation, Eq. (3), we can say that

p(Qnew | Mnew,M) ∝ p(Mnew | Qnew,M)p(Qnew | M)

= p(Mnew | Qnew,M)p(Qnew), (5)

where the true emission rate is modeled as independent of the measurements
from the controlled release trials. Computational techniques can be used to
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obtain p(Mnew | Qnew,M). We can say that

p(Mnew | Qnew,M) =

∫
p(Mnew | Qnew, θ,M)p(θ | Qnew,M)dθ

=

∫
p(Mnew | Qnew, θ)p(θ | M)dθ. (6)

The distribution p(Mnew | Qnew, θ) is the likelihood given by the uncertainty
model from 3.1.1 where Qi = Qnew. p(θ | M) is the posterior distribution of θ
given the controlled release data. This integral can be approximated as follows:

1. Sample θj j = 1, . . . , J times from p(θ | M)

2. For j = 1, . . . , J , calculate p(Mnew | Qnew, θj)

3. The integral in (6) ≈
∑J

j=1 p(Mnew|Qnew,θj)

J

This process can also be performed for repeated measurements of the same
source, that is, where Mnew is a vector, Mnew = (Mnew

1 , . . . ,Mnew
n ). Under

the assumption that the uncertainty in each measurement is independent of
previous measurements, conditional on Qnew, at step two, p(Mnew | Qnew, θj) =∏n

i=1 p(M
new
i | Qnew, θj).

The distribution p(Qnew) in Eq. (5) is the prior distribution of Qnew, where
we assume the new measurement is independent of the controlled release data.
This distribution can be informed using relevant pre-existing data, such as sur-
vey data on leak rates in the region where the measurement was made. This
facilitates the natural synthesis of external data with controlled release data and
the new observed measurement.

The posterior distribution of interest p(Qnew | Mnew,M) can be sampled as
follows:

1. Draw a sample of size L from the prior distribution p(Qnew): S = {Qnew
1 , . . . , Qnew

L }
2. For l = 1, . . . , L, approximate p(Mnew | Qnew

l ,M) using the previously
described algorithm

3. Calculate weights

wl =
p(Mnew | Qnew

l ,M)∑L
k=1 p(M

new | Qnew
k ,M)

(7)

4. Resample from S with sampling probabilities wl for l = 1, . . . , L to get a
sample of size K from the posterior distribution p(Qnew | Mnew,M).

4.2.2. Set-up

The algorithm described in the previous section is demonstrated using the
model selected in Sec. 4.1 for QOGI Operator C. We consider two data scenar-
ios: one where a single measurement of a source is made, and one where five
independent measurements of the same source are made. We also investigate
two different prior distributions, p(Qnew), to show how information flows from
the prior to the posterior distribution.
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We simulate the process of performing measurements in the field (e.g., as
part of a LDAR survey program) as follows: First, we choose a hypothetical
true value for the source we will measure, which we set to Qi = 25 kg/h.
Then, we simulate “measurements” by drawing from the posterior predictive
distribution defined in Sec. 3.1.2, p(M̃i | Mi, Qi = 25 kg/hr). This is done
five times to produce five independent “measurements” of the same source. Let
Mnew

1 , . . . ,Mnew
5 represent the five simulated measurement values: 20.3 kg/h,

11.7 kg/h, 8.9 kg/h, 16.2 kg/h, and 16.4 kg/h.
To understand how prior information impacts the estimates, we use two dif-

ferent prior distributions. The first prior is a uniform distribution where we
only impose the upper limit of 200 kg/h, while the second is a log-normal distri-
bution, as this distribution has been suggested to model leak rate distributions
[42].

To summarise, we investigate four different scenarios:

1. Only Mnew
1 is used, and p(Qnew) is a uniform distribution from 0 to 200

kg/h.

2. All of Mnew
1 , . . . ,Mnew

5 are used, and p(Qnew) is a uniform distribution
from 0 to 200 kg/h.

3. Only Mnew
1 is used, and p(Qnew) is a log-normal distribution with shape

parameter 1, location parameter equal to zero, and scale parameter equal
to 2.6 [39]

4. All of Mnew
1 , . . . ,Mnew

5 are used, and p(Qnew) is a log-normal distribu-
tion with shape parameter 1, location parameter equal to zero, and scale
parameter equal to 2.6 [39]

4.2.3. Results

The different information expressed in the two priors can be visualized by
comparing the histograms in Fig. 10. The uniform prior expresses that all
values between 0 and 200 kg/h are equally likely. This may be a naive choice,
because surveys have shown that extremely high emitters are much less likely
than lower emitters [43, 42]. The log-normal prior expresses that there is about
a 50% chance that the emission rate is less than 13.6 kg/h and 75% chance that
the emission rate is less than 26.2 kg/h, with very large values being rare.

Also, posterior distributions are not centred around the measured values,
which were all less than the “true” value of 25 kg/h. This is a reflection of
the results shown in Fig. 5, where it is clear that the technology systematically
underestimates the true emission rate. The algorithm presented in this section
allows the information captured in the model derived from Sec. 3.1 to be inverted
and produce estimates that are equal to the true emission rate, on average.

4.3. Discussion

As highlighted by Figs.3 - 9, relying solely on measurements without consid-
ering uncertainty can lead to significant misinterpretations of the emission rate.
The methods presented in Sec 3.1 provide a way to summarise both the vari-
ability and systematic bias of a technology. They are situated in the Bayesian
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Figure 10: Comparison of histograms for the two different prior distributions p(Mnew) inves-
tigated in the analysis.

statistical framework which facilitates probabilistic inference, the derivation of
credible intervals, and downstream approaches, as exemplified in Sec. 4.2.

Specifically, the algorithm presented in Sec. 4.2 provides a distribution of
the true emission rate given all available information, including a measurement
or set of measurements, controlled release data, and external prior knowledge,
e.g., what is a believable leak rate for a given scenario? This prior knowledge
strongly informs the posterior when the measurement data is limited, but its
influence diminishes as more measurements becomes available. This is beneficial
because it formalises an informal process: in the absence of data, we must rely
more on previous knowledge, whereas when more data are available, we rely less
on our previous knowledge. The results also show that increasing the numbers
of measurements reduces uncertainty in the posterior; that is, as we collect more
data, we can be more certain about the true value of the emission rate. The
models presented here could be used to determine how many measurements
should be performed for a certain technology and emission rate to ensure that
the credibility intervals are within a certain value. This algorithm in tandem
with the models described in Sec. 3.1 could be used in the future to help plan
or assess the effectiveness of LDAR programs, e.g., by identifying the optimal
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Table 5: Summary of 90% credible intervals (CrI) for the four different data scenarios, and
their lengths.

Prior Number of Values 90% CrI Length of CrI
Unif(0,200) 1 (12.3, 71.0) 58.7
Unif(0,200) 5 (14.9, 37.3) 22.3

LogNormal(2.6, 1) 1 (3.1, 47.9) 44.8
LogNormal(2.6, 1) 5 (13.9, 35.5) 21.6

Figure 11: Posterior distributions for the true value of the emission rate given the observed
measurement(s), prior distribution, and controlled release data.

combination of technologies that achieve a certain credibility interval.
Although extensive meteorological data were collected during the field trials

(as detailed in the SI), we refrain from incorporating them in the statistical
models. This is because the goal of the models is to summarise the performance
of a technology over a variety of conditions. To this end, the field trials were
conducted at different times-of-year and each trial over multiple days, so that the
results could be used to assess the performance of the technologies over a variety
of conditions. This also enabled the use of external validation - checking to see if
data collected under one set of conditions can be used to predict data collected
under a different set of conditions. However, it may be possible to improve the
predictive performance of the models by incorporating meteorological data into
the likelihood, discussed further in the Conclusion section.
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5. Conclusions

A wide range of quantification technologies have been deployed to measure
methane emissions from the upstream oil and gas sector, including ground-based
infrared cameras, airborne hyperspectral imaging, and truck and airborne laser
absorption spectroscopy. However, measurements from these technologies can
only be interpreted properly in the context of uncertainty, which arise from
measurement noise, uncertain model parameters, and, especially, the approxi-
mations and simplifications that must be made to render the models tractable
(model error).

This paper presented a formalism for developing uncertainty estimates from
controlled release data within the Bayesian framework. The outcome of this
analysis are posterior probability density functions that comprehensively define
what is known about an emission rate, based on the measurement data, con-
trolled release data, and prior information. This approach is entirely technology-
agnostic, does not require knowledge of the underlying physical model, and may
be adapted to a wide range of scenarios.

The probability density functions may be summarized as credibility intervals
(e.g., the range of emission rates that correspond to a given probability) and
may be used for other purposes, such as the input to probabilistic simulations to
assess the effectiveness of alternative fugitive emissions management plans (alt-
FEMPS) or the in calculating the uncertainty attached to inventory estimates.
This study demonstrates clearly the importance of multiple measurements dur-
ing any particular emission survey study. Two implications of this result are
immediately of significance for regulation and policy. Currently the structure
and schedule of regulations tends to specify only the annual frequencies of site
and equipment emission monitoring surveys (cite the Alberta or BC regulations
if you wish). A key result of this study is that the uncertainty of a given sur-
vey is dependent on the number of measurements made. Due to the relatively
large uncertainties observed for different technologies in this study, it is likely
that multiple measurements would be required to achieve a desired emission
rate uncertainty. Therefore, regulators would be advised to specify the mini-
mum number of observations at any emission source in addition to the annual
emissions survey frequencies. Alternatively, and perhaps more appropriately
due to the relationship between uncertainty and true emission rate, a desired
uncertainty range per emission source should be specified and the number of
measurements required to achieve this uncertainty should be made.

An important aspect of methane detection and quantification technologies
not covered by the methodology so far is the detection probability, that is, how
likely it is that a technology will detect a given emission source under a set of
conditions. Work has been done to characterise probability of detection and
uncertainty separately, e.g., [22]. An advantage of the Bayesian approach taken
in this paper is that it lends itself well to model extension. Modelling of detection
probability could be done simultaneously to uncertainty modelling by using a
hierarchical Bayesian model. Extending the model to simultaneously consider
detection probability and measurement uncertainty is an important avenue of
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future work.
Another area of further exploration lies in the incorporation of meteorologi-

cal data into the likelihood. Given a large amount of controlled release data, it
may be possible to narrow the posterior probability by incorporating the meteo-
rological data into the likelihood. For example, the likelihood could be modified
so that the median function is

ϕi = α0 + α1Qi + β1(wind speedi).

In other words, the meteorological data becomes an additional observable. An-
other caveat to the inclusion of covariates is that more controlled release data
would be needed to accurately estimate the increased number of model parame-
ters. However, it has the potential to improve the predictive performance of the
models. Incorporating meteorological data into the model could be investigated
further.
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