Quantifying Flare Generated Black Carbon: Sky-LOSA Measurement of a Gas Flare in Campeche, Mexico

PEMEX Workshop Mexico City, Mexico August 26, 2015

Canada's Capital University

Bradley M. Conrad & Matthew R. Johnson

Energy & Emissions Research Lab.
Carleton University, Ottawa, ON, CANADA

BC Emissions from Gas Flaring

- Black carbon (BC) component of soot is an important anthropogenic climate forcer
- Global gas flaring is ~140-170 billion m³ annually
- Emission factor data relating BC emissions, flare conditions, and flared volumes are largely unreliable

Project Objectives

- Quantify BC yield (mass BC per mass of fuel) of an infield flare
 - Field-data for flare generated BC is severely lacking and impedes mitigation efforts
 - Historic inability to quantify BC emissions from flares under field conditions
- Collaborate with CCAC and Petróleos Mexicanos (PEMEX) to conduct some of the global first fieldmeasurements of BC yield from flares
- Identify economic opportunities for BC reductions
 - Valuable global case study data through CCAC
- Improve climate models through the development of field-derived emission factors

Project Challenges

- Field measurements originally planned at the Dos Bocas Marine Terminal (TMDB)
 - Site access precluded at last minute due to unexpected operational upsets
- Vital efforts in the field by PEMEX personnel enabled measurements at an alternative site: Atasta Compressor Station
 - Special thanks to Abril Moreno, Jorge Plauchù, and Benito Mendoza
- No access to flare lines at Atasta to collect flare gas samples for detailed composition analysis
- Field measurements had to be suspended after only a few hours due to protests in the area

Basic Principle of Sky-LOSA

- Sky-LOSA = <u>Line-Of-Sight</u> <u>Attenuation of skylight</u>
 - In-situ, optical quantification of BC mass emission rates from an atmospheric plume
 - Methodology based in Rayleigh-Debye-Gans theory for Polydisperse Fractal Aggregates (RDG-PFA)

Basic Principle of Sky-LOSA

Mathematical basis:

$$\dot{m}_{\rm soot} = \frac{\rho_{\rm soot} \lambda}{6\pi (1 + \rho_{\rm sa}) E_{\rm (m)} \lambda} \int \left\{ \hat{u} \left[-\ln \left(\frac{\tau_{\rm exp} - \frac{B}{A I_{\rm LOS}^0} - \frac{C}{A I_{\rm LOS}^0}}{1 - \frac{B}{A I_{\rm LOS}^0} - \frac{C}{A I_{\rm LOS}^0}} \right) \right] \right\} dy$$

- Measured transmissivity, corrected for scattering effects, relates to BC concentrations in plume
- Simultaneous image correlation velocimetry allows time resolved integration
- Soot properties are incorporated via Monte Carlo analysis to enable quantified uncertainties

Sky-LOSA Processing

- Four major steps
 - Image correlation velocimetry to determine velocity of atmospheric plume
 - Calculation of mathematically complex light-scattering parameters (A,B,C)
 - 3) Reconstruction of background skylight intensity
 - 4) Computation of time-resolved BC emission rate and uncertainties using a brute-force Monte Carlo method

Extremely computationally expensive under overcast or broken skylight conditions

Background Skylight Intensity

$$\dot{m}_{\rm soot} = \frac{\rho_{\rm soot}\lambda}{6\pi(1+\rho_{\rm sa})E_{\rm (m)_{\lambda}}} \int \left\{ \hat{u} \left[-\ln \left(\frac{\tau_{\rm exp}}{1 - \frac{B}{AI_{\rm LOS}^0}} - \frac{\mathcal{E}}{AI_{\rm LOS}^0} \right) \right] \right\} dy$$

For overcast/broken sky conditions:

Artificial advection of cloud structures behind plume

B.M. Conrad & M.R. Johnson, AWMA ACE (2015)

Field Measurements in Mexico

PEMEX's Atasta Compressor Station – June 30, 2015

Objective: Compute Black Carbon Emission Rate and Black Carbon Yield of an In-Field Flare

Site Flaring

Flaring activities occur in the Northwest corner of the site

Active Site Flaring

- 1) Emergency flare system
 - Two vertical (≈50 m) flares

Active Site Flaring

2) Compressor purge flare system

Horizontal pit flare

Horizontal Pit Flare

Sky-LOSA Data Acquisition

- Pit flare selected for BC emission rate analysis
 - Acquired two 10 minute sky-LOSA image sets
 - Totaling 60,000 images (618 GB)

Sky-LOSA Data Acquisition

- Subsequent measurements of the emergency flare system could not be performed
 - Damage to sky-LOSA's power supply system
 - Nearby protest and road blockade

Flare Gas Flow Rate and Composition

- Simultaneous measurement of flare gas flow rate
 - Performed by Clearstone Engineering Ltd.
 - Mass flow rate directly measured via tracer-dilution technique
- Simultaneous measurement of flare gas composition
 - Performed by Clearstone Engineering Ltd.
 - Real-time measurement of C1-C5 hydrocarbon composition
 - Tunable Filter Spectroscopy measurement technique

New / Enhanced Processing Algorithms

- Exceptionally difficult sky-conditions for image processing
- Project outcomes include development of enhanced sky-LOSA processing algorithms:
 - Separate tracking of cloudy sky and plume
 - Measurements
 achieved even though
 BC concentrations are
 quite low and a vast
 range of sky intensities
 exist
 - Work ongoing, but project is helping make sky-LOSA significantly more robust

Preliminary Results

Comparison of BC Emission Rates

Conclusions & Future Work

- Leadership of CCAC and PEMEX is helping tackle the globally significant issue of BC emissions from flares
 - Despite significant access challenges in the field, BC measurements achieved at alternate Atasta site
- Critical need for further measurements on broader range of flares and operating conditions
 - Wide range of field measurement data, including simultaneous composition, flow, and BC, are imperative for developing robust emission factors and inventories
- Continued collaboration with CCAC, PEMEX, World Bank and others fundamental to quantifying and mitigating flare emissions globally

Acknowledgements

Environment Canada

Natural Resources Canada

Questions?