EXECUTIVE SUMMARY

This report presents an assessment of atmospheric emission related to hydraulic fracturing activities, but does not address other potential environmental concerns associated with the use of this technology. Hydraulic fracturing is a stimulation treatment routinely performed on natural gas and oil wells in low-permeability reservoirs to achieve improved flow potential. The process has been used by industry for many years, but has gained increased public attention, most recently with respect to shale gas production.

Hydraulic fracturing involves pumping specially engineered fluids at high pressures into the target reservoir to produce fractures that extend radially outward into the reservoir from the well bore. Specially sized sand (or proppant) is mixed with the fracturing fluid to keep the fractures open once the treatment is completed. After the treatment has been completed, the fracturing fluids are back-flowed from the reservoir. During these back flow events, the fluids brought to the surface are separated into 4 streams: water, sand, hydrocarbon liquids, and natural gas. The hydrocarbon liquids are recovered and produced into storage tanks for eventual treatment and transport to refineries. The natural gas may be conserved if there is available access to a suitable gathering system, otherwise it is generally flared.

In this report, flaring and venting data associated with well-completions were identified for the 1579 well structures that contained one or more well legs (UWIs), which were drilled and fractured in Alberta in 2011. As shown in Figure ES.1, slightly less than one-quarter (371 of 1579, or 23.5%) of the well structures were not identifiable within the available volumetric data as discussed in Section 4.1.2 and were presumed to have been excluded by AER for confidentiality reasons. More than one-third (643 of 1579, or 40.7%) were identified as "green-completions" for which production data were reported that matched battery receipts, and no well-level flaring or venting were reported. Just over one-third (544 of 1579, or 34.5%) of well structures reported some degree of attributable flaring and venting during well-completion. Assuming that the breakdown of the non-confidential wells was consistent with the unknown breakdown of the confidential wells, these results imply that approximately half of all hydraulically fractured well-completions in Alberta in 2011 were green-completions based on zero reported flaring and venting.

Figure ES.1: Percentage breakdown of how flaring and venting data associated with unconventional gas wellcompletions could be tracked within the confines of the available ERCB and PRA data for Alberta in 2011

Historically, wells were drilled vertically and only required a single stage of treatment in cases where fracturing was performed. In recent years, directional drilling has, for most types of production, become the predominant method of opening up and maximizing exposure to a reservoir; this is achieved through the creation of horizontal lateral sections designed to contact more of the productive portions of the formation. In particular, the average length of tight gas UWIs drilled in the year 2000 and actively reporting production in 2011 was 1034.7 m with roughly 2% having a horizontal orientation. By comparison, the average drilled length of tight gas UWIs drilled 2011 and subsequently fractured was nearly three times longer (2958.2 m) with approximately 30% being horizontal. These included 263 tight gas UWIs that extended to lengths in excess of 4000 m. To hydraulically fracture these lateral sections requires that the treatment be done in multiple stages. On average horizontal tight gas UWIs contain 1.8 times more fracture stages than vertical tight gas UWIs. Although horizontal UWIs tend to have a greater overall drilling length, as outlined in Section 5.2, there is no statically relevant correlation between the number of stages and the total well length in the reported data. Typically, it takes 1 to 2 hours to complete a stage of hydraulic fracturing, and up to 40 stages of fracturing may be performed on some natural gas wells.

The primary focus of this study has been to provide a critical review of the available literature, as well as present new data, on the potential amounts and types of atmospheric emissions associated

with hydraulic fracturing operations. Emission contributions from unconventional natural gas well drilling, well completion, and well operations are considered and are based primarily on 2011 data. Specific components of this study included:

- A comprehensive technical analysis of available reported well activity and production data for Alberta in 2011 to track and identify flaring, venting, and diesel combustion emission volumes specifically linked to drilling, completion, and operation of hydraulically fractured natural gas wells;
- Development of a set of unconventional well drilling, well completion, and well
 operational emission factors pertaining to diesel combustion, flaring, venting,
 greenhouse gas emissions, and criteria air contaminants emissions representative of
 current operating practices in Alberta;
- An estimation of the total greenhouse gas and criteria air contaminants emission volumes resulting from well drilling, well completing, and operation of unconventional wells in Alberta for the year 2011; and
- A direct comparison of derived emission factors for unconventional Alberta natural gas wells with those outlined in the literature review as well as some key additional sources that were released during the revision of this report.

A summary of the derived emission factors is presented in Table ES.1, which includes crossreferences for sections of the report containing relevant volume and criteria air contaminants (CACs) estimates. The results show that while the use of hydraulic fracturing is widespread among the various types of natural gas wells, the associated emissions potential varies dramatically.

wells III A	ibei ta ui illeu	ili 2011, tileli e		intensities, a	applicab		ns, and fut	ure un ection.			
Samuel	Types of	Duration Emissions Factors (FFs)					Controls &				
Source	Pollutants	Duration	ration Emissions Factors (EFS)					where applicable			
Drilling (See Section 4.3 for methodology for determining drilling lengths and diesel volume estimates the section 4.3 for methodology for determining drilling lengths and diesel volume estimates							nates: Section 5.2				
for calculations of diesel-related CAC and GHG emission factor estimates; and Section 5.2.1 for calculation of											
estimated total	CAC and GHG	emission volun	nes)								
Diesel and	Diesel	Drilling times	Drilling times Emission factors for diesel combustion during								
Dual-fuelled	Engine	directly		well drillin	efficiency engines						
Rig Engines.	Exhaust:	related to well depth	ted to depth can ge from Well rs for type		GHG	EFs [t CO ₂	and low-sulphur				
	CO_2 , with				100-year time horizon‡			diesel.			
	trace	and can		Diesel rig		1	Prorated	It is estimated			
		24 hrs for		fuel use			based on	that roughly 5 to			
	CO PM &	shallow wells		[m'/UWI]	Diesel	Dual-	dual-fuel	6 percent of the			
	VOC.	to as long as			rig	tuel rig	use in	drilling rig fleet is			
		several		_			Alberta	equipped with			
	CAC EFs are	months for	Analysis o	f Alberta Dai 2 for anoma	ta for 201	1 (see Tab	le 5.11 in	dual-fuel engines			
	reported in	very deep	Section 5.	2 for assump	tions)			(i.e., natural gas and diesel) and these are estimated to use natural gas fuel 80 percent of the			
	Section 5.2 and Table	wells.	Tight gas	64.6	182.9	154.5	181.5				
	5.8	Drilling lengths are	CBM hybrid	22.7	64.3	54.3	63.8				
		reported in	СВМ	16.6	47.1	39.7	46.7				
	Section 4.3	CBM					time. Typical				
			shale	23.6	66.8	56.4	66.3	achieve 40-60%			
		4.12	otner	47 5	124.2	142 5	122.2	substitution of			
			Shale	47.5	134.3	113.5	133.3	natural gas for			
			Estimate	es that can b ble 5 22 in Se	e aerivea _.	from otne 1 for assu	r sources mntions)	diesel.			
		CAPP	22.4	63.3							
			(Wood et al., 2011)	14.2-55	40.1- 155.7						
			2011/								
Flaring or	Flaring	Same as drill	n/a – Available data did not permit emission					Disposal of the			
venting of	emissions:	period	estimates	. Although a	ined to be	gases by venting					
entrained gas	$U_{2,} C_{4,}$		relative to	other sour		CAC em	1551011	if they are sweet			
released from	voc allu notentially			other sour	LES			or by thermal			
the drilling	SO ₂ and H ₂ S							oxidation using a			
mud returned	as well as							continuously-			
to the surface	trace			ignited flare if							
for recirc-	amounts of			they are malo-							
ulation.	CO, PM, &							dourous or toxic.			
Drill stem	NO _x	n/a	Emission i	n 2011 are	igible in	Gas produced to					
testing			Section 5.5.1 and Figure 5.5					the atmosphere			
					for a period of						
								time >10 minutes			
						(Province of					
								Alberta, 2013).			

 Table ES.1: A comparison of emission sources associated with different types of hydraulically fractured gas wells in Alberta drilled in 2011, their emissions intensities, applicable controls, and future direction.

wens in mibe	tu urmeu mi	orr, enem enm		mes, applicable (controlis, una future	un ecuon. (cont.)	
G	Types of	D (1		Controls &			
Source	Pollutants	Duration	Emissions I	Factors (EFs)		future direction	
		.7 7 7		<i>(</i>] · · · · ·	1	where applicable	
Completions (S	ee Section 4 fo	or methodology	to determine	flaring and ventu	ig volumes, green col	mpletion rates, and	
reporting modes; Sections 5.1 and 5.1.1 for calculation of flaring and venting CAC and GHG emission factors;							
Transport of	Diesel	Days to	Available da	<i>males)</i> Ita did not nermit	emission estimates	Industry is	
hydraulic	Engine	several	specific to A	lherta However	transportation	moving toward	
fracturing	Englic	weeks	greenhouse	gas emissions ar	estimated by	using field-based	
fluids to site	CO. & trace	depending	(Wood et al	2011) soo Socti	on 2/15	treatment	
and	amounts of	on transport	(0000 ct al	., 2011), 300 3001	011 2.4.3.	processes to	
subsequent	SO ₂ NO ₂	distances				reuse water	
disposal of	CO. PM. &	unstances				and/or use lower	
the fluids.	VOC.					quality water	
						sources.	
Hydraulic	Diesel	Varies with	Emission fa	actors for diesel	combustion during	Use of high-	
, Fracturing of	Engine	the number	hydrauli	ically fractured v	vell-completions	efficiency engines	
stages –	Exhaust:	of stages			GHG FFs	and low-sulphur	
emissions	CO ₂ , with	from several		Diesel	[t CO2e /UWI]	diesel.	
from diesel	trace	hours to a	Well type	consumption	100-year time		
fuel use by	amounts of	full day			horizon‡		
the pump	SO ₂ , NO _X ,		Analysis of A	lberta Data for 201	1		
trucks used to	CO, PM, &	Although					
pressurize the	VOC.	norizontal	Tight gas	30.1	85.3		
fracturing		wells tend to	0 000				
fluids used.		nave a	Shale	4.6	13.1		
Note that		overall	Available	stimates that can b	a dariugd from other		
moderate		drilling	AVUIIUDIE ES				
amounts of		length as	500/000				
fuel used may		outlined in	Tight gas				
be associated		Sections 4.3	Dawson	36	101.9		
with the		and 5.2.	Creek, BC				
hauling the		there is no	(Wood et	13.7	38.8		
fluids to and		correlation	al., 2011)	2017	0010		
from the site		between the					
(i.e., if it is a		number of					
multi-stage		stages and					
fracturing		total drilling					
event, and/or		length in the					
the site is		reported					
remote) as		data.					
well as on site		Typical					
equipment,		numbers of					
see Section		stages are					
2.1.1 and		reported in					
Table 2.2		Section 3 2 3					
		and Table					
		3.13 and					
		Table 3.14					

 Table ES.1: A comparison of emission sources associated with different types of hydraulically fractured gas wells in Alberta drilled in 2011, their emissions intensities, applicable controls, and future direction. (cont.)

Source	Types of Pollutants	Duration	Emissions Factors (EFs)					Controls & future direction		
Woll cloanup	Elaring	Highly	Emission factors for floring and venting					Currently the		
and flowback	Amissions.	variable and	Linssion ia	majority of						
to remove C hydraulic V fluids - p S	CO_2 , CH_4 , VOC and potentially SO_2 and H_2S ,	gas formation dependent Can range from 24	Well type	Flaring [1000 m ³ / UWI]	Venting [1000 m ³ / UWI]	GHG 100 hori [t CO ₂ e	6 EFs time zon‡ 2 /UWI] Venting	emissions that are not captured are flared. In Alberta in 2011,		
	trace		Analysis of Alber	ta Data f	for 2011			reported		
	amounts of	hours to	Tight gas	112.2	0.2011	271.6	8.0	flowback		
	CO PM &	potentially	Tigrit gas	113.2	0.0	271.0	8.9 n/a	volumes from		
	NO.	30 days.		0.9	n/a	2.1	11/d	tight gas wells		
	NO _X	Typically	CBIVI	2.7	n/a	0.5	n/a	were flared.		
		time scales are, 7 to 10 days	Available estima sources (see Tab assumptions)	tes that o le 5.24 in	can be der Section 5	ived from .5.2 for	other	Best practice is to separate the gas		
			CAPP (CAPP, 2004a)	18.8	0.4	43.4	5.3	and hydrocarbon		
				L L (2	US EPA <i>unconventional</i> (US EPA, 2013a)	296.1	1.6 ^g	710.8	23.1	water and solids that flow back from the well,
			US EPA <i>conventional</i> (US EPA, 2010)	1.2	0.006	2.9	0.1	gas into a gathering system		
			(Allen et al., 2013a)	270	1.4	633.3	20.8	(referred to as a "Green		
								Completion"). This requires that the gathering system be completed before the well is completed In Alberta in 2011, ~50% of natural gas wells used green completions, see Section 4.2.6.		
Well Tests	Flaring emissions: CO_2 , CH_4 , VOC & potentially SO_2 and H_2S , as well as trace CO, PM, & NO _x	Shallow Gas Well in new reservoirs: usually 24hrs if a test is per- formed. Deep Gas Wells: typically 48- 72 hrs.						Best practice is to test the wells by producing them into an existing gathering system wherever possible,		

Table ES.1: A comparison of emission sources associated with different types of hydraulically fractured gas wells in Alberta drilled in 2011, their emissions intensities, applicable controls, and future direction. *(cont.)*

Source	Types of	Duration	Emissions Factor	Controls &				
Bource	Pollutants	Duration	Emissions Factor	where applicable				
<i>Liquid Unloading</i> (See Section 5.4 for methodology to derive venting emission factor estimates; Table 5.21 for estimated totalGHG from liquid unloading; and Table 5.22 for estimated total GHG from liquid unloading using API/ANGA emission factors and activity data)								
Some shallow wells with high water	Venting of gas may	Typically less than 1 day. See Section	A comparison o emission fact hydraul	Typically, the volumes of gas involved are too				
production may have a coiled tubing string installed for use in	(typically, in proportion to the well pressure)	5.4for activity factors	Unconventional wells	Vented Gas Volume [1000 m ³ / well-month]	GHG EFs 100-year time horizon‡ [t CO ₂ e /well- month]	small for flaring or recovery of the gas to be practical and may fall under the reporting		
periodically			Current Analysis			minimum in directive 60		
accumulated			Estimate for Alberta tight gas	0.009-0.026	0.13-0.38	directive 60. However, over the lifetime of a well these emissions have the potential to		
water from the well-bore.			Estimates of that c (see Table 5.25in S	an be derived fron Section 5.5.3 for as	n other sources ssumptions)			
See Section			US EPA 2011	0.23-6	3.4-87.5			
5.4 for methodology			Inventory (US EPA, 2013a)	0.009-3.53 (plunger lift)	0.1-51.4	be the primary GHG contributor.		
			API/ANGA	1.15	16.7	see Section 5.4,		
			(Shires and Lev- On, 2012)	0.59 (plunger lift)	8.61	Table 5.21 and Table 5.22.		
			(Allen et al., 2013a)	0.0048-3.29	0.07-47.9			
			See Section 5.5.3 a comparison of con liquid unloading e					
Production (See Section 4.5 for gas production, fuel use , and production flaring and venting statistics)								
engines and possibly line heaters or dehydrators.	Fuelled Engine and Heater Exhaust: CO ₂ with CO, NO _x , THC and trace amounts of	variable & formation dependent Shallow Gas Wells: From a few to 20yrs or more. Some wells may produce	(excluding volume completions) from well gas batteries, between January 2 2011 revealed tha nature gas fuel usa nature gas fuel usa month was found volume use as fue	s attributable to tight gas wells t which had fract 1, 2000 and Dece t 56% of these w age data. The cal age rate of 2200 and the total na I was equivalent	efficiency. standards for NO _x control have been increasing in recent years. Fuel use per unit of production tends to increase as the well			
	PM.	for up to 40yrs. Deep Gas Wells: often 20yrs or more	production of thei See Section 4.5 an		matures, due to decline in reservoir pressures and increasing water production.			

 Table ES.1: A comparison of emission sources associated with different types of hydraulically fractured gas wells in Alberta drilled in 2011, their emissions intensities, applicable controls, and future direction. (cont.)

wens in moe	wens in Alberta di neu in 2011, then emissions intensites, appreable controls, and future direction. (com.)							
Types of		vnes of		Controls &				
Source	Pollutants	Duration	Emissions Factors (EFs)	future direction				
	Tonutants			where applicable				
Venting by pneumatic	Venting Emissions:	Highly variable &	n/a – see National inventory for list of emission factors	Current practice is to use low-				
devices (e.g.,	CH₄ and	formation		bleed				
instrument	lesser	dependent		pneumatics. Also,				
control loops	amounts of	Shallow Gas		there is a trend				
and chemical	CO_2 and	Wells: From a		towards using				
injection	VOCs.	few to 20yrs		electric power (if				
pumps),		or more.		available) to				
where natural		Some wells		injection numps				
the supply		may produce		Conversion to				
medium.		for up to		compressed air				
		40yrs.		may be a				
		Deep Gas		practicable				
		Wells: often		option if the well				
		20yrs or more		is located on the				
				site of a larger				
				production				
				facility.				
Fugitive	Leakage:		n/a – Available data did not permit emission	These emissions				
Equipment	CH _{4,} CO ₂ ,		estimates. Note that unless there is more than a	are managed				
Leaks	VOCs and		wellhead and basic separation equipment at the	through				
	potentially		site, there are relatively few potential leakage	regulated				
	H₂S if the		points, and these generally have low leak	directed				
	gas is sour.		potentials.	inspection and				
				maintenance				
				programs.				

Table ES.1: A comparison of emission sources associated with different types of hydraulically fractured gas wells in Alberta drilled in 2011, their emissions intensities, applicable controls, and future direction. *(cont.)*

[‡] Calculated using data from the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (IPCC, 2007), which specifies 100- time horizon GWP values for methane of 25 and for N₂O of 298 respectively.

The use of hydraulic fracturing to stimulate production is not currently as prevalent in tight oil developments relative natural gas developments. The fracturing rate of oil UWIs drilled in Alberta in 2011 was 37%, which was roughly 2.5 times less than the fracturing rate of natural gas UWIs. The majority of fractured oil wells (99%) were classified by AER as crude oil; in general heavy oil UWIs were not fractured. In 2011, roughly 70% of fractured crude oil UWIs were horizontal. The challenge in many of the tight oil developments has been the lack of existing gas gathering pipelines to allow conservation of the gas. Indeed, the duration of emissions from fractured crude oil and fractured natural gas wells are fundamentally different, based on distinct trends observed in the reported volumetric data for Alberta in 2011. For

fractured natural gas wells, major flaring and venting events are confined to a 1-month period from the fracture date, and therefore are directly attributable to well-completion operations. By contrast, flaring and venting occurs on a nearly continuous basis with oil production for fractured crude oil wells, with nearly 70% reporting flaring and/or venting in every month of production. Current regulations in Alberta, Canada specify that "venting is not an acceptable alternative to conservation or flaring", and require that combustible waste gas volumes from flowback in excess of 2000 m³ be flared rather than vented. In addition, flared and vented volumes in excess of 100 m³/month from must be reported, except in cases where "production submissions are not routinely submitted for a facility, as is sometimes the case for well completions", in which case all volumes in excess of 500 m³/month must still be reported (see Section 10.3 of AER Directive 60, (ERCB, 2011a)). Once production commences, any waste associated gas volumes at oil wells in excess of 900 m³/d must be conserved except where this is more than marginally uneconomical to do (see Section 2.8 of AER Directive 60). Current regulatory direction is toward requiring the development of natural gas gathering infrastructure to keep pace with rate of development of the oilfield.

In accordance with the Clean Air Act, the United States (US) Environment Protection Agency (EPA), has implemented federal air standards (Code of Federal Regulations, 40 CFR Part 60 and 63, effective October 15, 2012) specifically targeting emissions from hydraulically fractured natural gas well completions, plus new performance standards for storage tanks, pneumatic controllers, and small dehydrators used in upstream oil and natural gas production (US EPA, 2012a). The well completion regulations are expected to dramatically reduced volatile organic compounds (VOCs) emission, and are currently in phase one of a two phase transitional period The VOC emissions will primarily be achieved through a proven process known as "reduced emissions completions" or "green completions". In a green completion, special separation equipment is used to direct natural gas and hydrocarbon liquids from the flowback fluids to inline gathering systems or storage tanks. Phase one mandates that, prior to January 1, 2015, all flowback emissions from a natural gas well completion must be collected and either flared using a "completion combustion device (unless combustion is a safety hazard or is prohibited by state or local regulations)", or conserved (i.e., through a green completion). After this date, phase two allows only green well completions, except in the following cases (US EPA, 2012b):

- New exploratory ("wildcat") wells or delineation wells (used to define the borders of a natural gas reservoir), because they are not near a pipeline to bring the gas to market;
- Hydraulically fractured low-pressure wells, where natural gas cannot be routed to the gathering line. Operators may use a simple formula based on well depth and well pressure to determine whether a well is a low-pressure well; or
- Owners/operators must reduce emissions from these wells using combustion during the wellcompletion process, unless combustion is a safety hazard or is prohibited by state or local regulations.

These regulations apply to both new and existing natural gas wells that are re-fractured to stimulate production and/or to produce natural gas from a different production zone within the formation. To comply with these rules companies will need to ensure that gas gathering lines are installed up to the well sites prior to the well completions being performed. Such requirements do not currently exist in Canada.

Overall, as conventional sources of oil and gas decline there will be increased development of unconventional oil and natural gas, particularly tight oil and natural gas reserves. The emissions contributions from completions will increase in importance as this occurs. This will place increasing pressure on industry to not only apply green completions but to find more efficient means of performing completions (for example, through the reuse of fracking fluids). The derivation of the new emission factor data presented in this report represents a significant accomplishment that should help clarify many of the controversial data issues raised in the detailed literature review presented in Chapter 2. However, it is also noted that a fair assessment of the significance of Canadian unconventional gas production emissions using these data will ultimately require knowledge of estimated ultimate recoverable volumes of natural gas for each contributing UWI. This knowledge of total recoverable volumes is important if emissions are to be compared on a unit of delivered energy basis factored over the lifetime production and emissions of a well. Although estimated ultimate recovery data are not presently available, the specific procedures developed and detailed in this report could be readily extended in future work to estimate the necessary production decline curves by tracking these UWI in past and future volumetric reporting, enabling the creation of a robust, data-backed, specific inventory estimate for unconventional gas production in Alberta.