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EXECUTIVE SUMMARY 
This report presents interim results from “Evaluation of Emission Quantification Technologies”, 
a research program undertaken by the University of Waterloo (UW), Arolytics, Inc., and Carbon 
Management Canada (CMC) on behalf of the Petroleum Technology Alliance Canada (PTAC) 
and the Clean Resources Innovation Network (CRIN). The overall objective of this research is to 
survey candidate methane emissions quantification technologies and assess their performance 
under a range of industrially relevant scenarios. A key focus is placed on the estimation of 
uncertainty, which is endemic to emissions quantification.  

Research tasks are divided into four phases: Phase 1 is a survey of candidate emission 
quantification technologies available to industry and their overall capability and suitability for 
various emissions scenarios; Phase 2 assesses the performance of candidate technologies through 
simulations and laboratory-scale measurements; Phase 3 is the planning and execution of field 
campaigns; and Phase 4 focuses on data analysis and detailed uncertainty quantification. 

This report focuses on Phases 3 and 4, specifically the design, execution, and preliminary analysis 
of results from the first field campaign, held at CMC’s Field Research Station in Newall County, 
Alberta, April 20-24, 2022. Five emission services providers or technology developers participated 
in the first field campaign, using four different quantification modalities: handheld quantitative 
optical gas imaging (QOGI), truck mounted tunable-diode laser-absorption spectroscopy 
(TDLAS), drone-mounted TDLAS, and airborne short-wavelength infrared (SWIR) hyperspectral 
imaging. Release rates were blind to the Providers, who were responsible for deriving their own 
emissions estimates from their measurements. In the case of the truck mounted TDLAS, a second 
analysis was carried out on the data by UW personnel using an alternative measurement model. 
Preliminary data analysis reveals that the quantification accuracy and precision of each technology 
is distinct and depends on emission rate and environmental factors in a unique way from the others.  

The report concludes with a discussion of next steps, including planning for the second field 
campaign, planned for Fall 2022, and detailed uncertainty quantification (phase 4), which will be 
complete in 2023. 
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1. INTRODUCTION 
As part of Canada’s strategy to address climate change, the oil and gas sector is obligated to reduce 
methane emissions by 40-45% below 2012 levels by 2025. To meet these goals, and to fulfill their 
obligations under emerging provincial emission regulations, Canada’s oil and gas producers need 
tools that can quantify methane emissions, in order to identify opportunities to reduce their overall 
emissions. Regulators also need methane quantification tools to assess compliance of industry to 
these regulations. Climate modellers need the data from these tools to understand how emissions 
from Canada’s oil and gas industry contribute to climate change, which provincial governments 
and the Federal government will use to inform policy needed to fulfil Canada’s international treaty 
obligations and to avoid the worst outcomes of climate change.  

A diverse suite of candidate methane emission quantification tools is available to Canada’s oil and 
gas industry. There is unlikely to be a “one-size-fits-all” solution: techniques designed to measure 
localized, persistent fugitive leaks from valves or gaskets may not be suitable for diffuse and 
intermittent emissions vented from storage tanks, surface casing vents, and CHOPS wells. 
Persistent emissions are identified reliably using periodic surveys, while highly variable or 
intermittent emissions may require continuous monitoring. Recent advancements in optoelectronic 
hardware (e.g., mid-wavelength infrared cameras, tunable diode laser spectroscopy, hyperspectral 
imaging) have augmented and disrupted the field of traditional concentration-based approaches, 
although their accuracy, precision, and best practices under various measurement scenarios are 
still being refined.  

Choosing the “right tool for the job” depends, to a large extent, on the uncertainty associated with 
the methane emission estimates. This is particularly the case in a regulatory context. For example: 
How certain is it that an operator is complying with emissions? Is it reasonable to impose a limit 
on emissions that cannot be measured with reasonable accuracy? What is the most cost-effective 
technology to deploy for a given measurement scenario?  To make these decisions, operators and 
regulators need to understand the uncertainty with which emissions may be quantified. Climate 
modellers and policy makers also need to understand the uncertainties attached to reported 
emission inventories in order to draft effective regulations that safeguard the environment without 
unduly penalizing oil and gas producers. 

With these goals in mind, the Petroleum Technology Alliance Canada (PTAC) and Clean 
Resources Innovation Network (CRIN) engaged the University of Waterloo (UW), Arolytics, Inc. 
(Arolytics), and Carbon Management Canada, Inc. (CMC) to undertake a three-year research 
program entitled “Evaluation of Emission Quantification Technologies”. The program is funded 
by the Alberta Upstream Petroleum Research Fund (AUPRF) through PTAC, the Government of 
Canada's Strategic Innovation Fund through CRIN, and the Natural Sciences and Engineering 
Research Council (NSERC).  

The UW/Arolytics/CMC team brings together the diverse and complementary range of expertise 
and skills needed to fulfill these objectives. The UW team is led by Professor Kyle Daun from the 
Department of Mechanical and Mechatronics Engineering, an expert in optical gas imaging, laser-
based diagnostics, remote sensing, and uncertainty quantification. Daun is joined by Professors 
Christiane Lemieux and Audrey Béliveau from the Department of Statistics and Actuarial Science. 
Lemieux’s research interests focus on Monte Carlo simulations, while Béliveau studies Bayesian 
statistics and uncertainty quantification. Arolytics personnel working on the project include Julie 
Doan-Prévost, Jack Johnson, and Kevin Fritz. These personnel are experts in methane emissions 
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quantification and fugitive emission management programs (FEMPs); Johnson and Fritz also have 
extensive experience in methane emissions field measurements. Finally, CMC’s participation is 
managed by Kirk Osadetz, a geoscientist and expert in methane emissions from Canada’s oil and 
gas industry. Osadetz is CMC’s Programs Development Manager and also manages CMC’s Field 
Research Station, where candidate quantification technologies will be evaluated under industry-
relevant conditions. 

Research activities are organized into four project phases: 

Phase 1: Quantification tool review interim summary table 

Phase 2: Recommendation of viable quantification tools 

Phase 3: Field campaign and execution 

Phase 4: Data analysis and summary 

These research activities are guided with input and oversight from PTAC, CRIN, and members of 
the Industrial Steering Committee (ISC), a subcommittee of PTAC’s Air Research Planning 
Committee (ARPC). 

Research progress in each of these phases is summarized in the following sections. 
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2. RESEARCH PROGRESS 
2.1 Phase 1: Quantification tool review interim summary table (complete) 
The initial project phase took place between September 2021 and February 2022 and was carried 
out by Doan-Prévost (Arolytics) and Daniel Blackmore, then an undergraduate research assistant 
working in Daun’s lab at UW, with expert advice from Osadetz (CMC). The project commenced 
with a survey of available methane emission quantification technologies and an assessment of their 
cost, detection thresholds, and quantification accuracy. The research team also developed 
taxonomy charts that highlighted the operating principles of the technologies and their 
applicability to various measurement scenarios, and compiled a thorough literature review of 
independent performance studies. In total, 23 technologies were evaluated, and a subset of these 
were selected for more detailed analysis in Phases 2-4. These include truck-mounted tunable-diode 
laser-absorption spectroscopy (TDLAS); quantitative optical gas imaging (QOGI); and aircraft-
based optical technologies.  

The outcomes of this project phase were summarized in an earlier quarterly report. The summary 
table and diagrams are in Appendix A of this report. 

2.2 Phase 2: Analysis of candidate emissions quantification technologies 
This project phase has two components: Phase 2a, led by Arolytics; and Phase 2b, led by UW. 

2.2.1: Phase 2a: Recommendation of the most viable quantification tools  
Arolytics personnel will use Arolytics’s proprietary AroFEMP simulation code to predict the 
performance of the technologies identified in Phase 1, were they incorporated into a fugitive 
emissions management program (FEMP). This procedure considers various simulation scenarios 
in which operators would use candidate technologies to detect and quantify methane emissions 
and then action repairs over a calendar year. Emission scenarios are sampled randomly from 
probability distributions that represent operational conditions, and emissions are detected and 
quantified with probabilities derived from manufacturer-specified characteristics of the 
quantification technologies or previous field trials identified in Phase 1. Many simulations are 
carried out via a Monte Carlo (MC) procedure and integrated to provide an expected reduction in 
emissions (e.g., m3/year.)   

In preparation for this project phase, Augustine Wigle, a UW PhD student under the supervision 
of Lemieux, spent a four-month internship with Arolytics to help them verify their code and 
improve its performance. (Wigle was sponsored by a Mitacs Accelerate Internship and paid outside 
of the project budget.) The next step in Phase 2a is to derive probabilities for representative 
emissions probability profiles. This will be done using data from the Fugitive Emission 
Management Program Effectiveness Assessment Study (FEMP-EA), a collection of fully 
randomized QOGI-based bottom-up emission measurements from approximately 200 oil and gas 
producing sites in the Red Deer region [1]. This data has only become available as of July 2022, 
so the AroFEMP simulation will be carried out later this year. 

2.2.2: Phase 2b: Laboratory trials and development of digital twin systems 
In parallel, the UW team is conducting laboratory-scale analysis and numerical simulations to 
further investigate the capabilities of the most promising technologies identified in Phase 1. 
Specifically, Phase 2b activities have focused on developing and quantifying the performance of 
spectroscopic and optical flow models for QOGI, and the derivation of an inverse Gaussian plume 
model (IGM) for interpreting truck based TDLAS measurements.  
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Research into QOGI technology is led by Michael Nagorski, an MASc candidate under Daun. 
Measurements were carried out using a FLIR GF320 camera and QL320 tablet system loaned from 
Professor Matthew Johnson at Carleton University, as well as a four-channel Telops multispectral 
(MS) channel provided by CMC. Nagorski developed an “in-house” version of the QL320 tablet 
based in Matlab® and validated its performance through simulated measurements generated using 
a CFD Large Eddy Simulation of a methane plume, as well as plumes generated with a heated vent 
apparatus in Daun’s laboratory (Figure 1). The simulated measurements were used to validate the 
spectroscopic model used to infer the species column densities, and the optical flow algorithm 
used to obtain the velocity field [2, 3].  

In the heated vent experiments, infrared images captured using the GF320 camera were interpreted 
using the QL320 tablet and UW’s in-house code. In most cases, UW’s code matched or exceeded 
the performance of the QL320 tablet with regards to the overall mass flow rate when using a bulk 
velocity estimated from the images, but the framerate of the GF320 was too low for the optical 
flow algorithm to provide robust velocity fields. These experiments highlighted measurement 
conditions that would be problematic for conducting QOGI emission estimates, especially 
emissive “white” plumes of uncertain temperatures. Since the GF320 camera has a single 
measurement spectrum, simultaneously inferring the methane column density (ppmm) and 
temperature amounts to solving one equation with two unknowns. Consequently, it is necessary to 
assume a plume temperature when calculating emission rates in these scenarios; in cases where 
the plume temperature is uncertain, the corresponding emission rates may be highly inaccurate. 

 

The superior framerate of the Telops MS camera compared to the GF320 camera provided reliable 
velocimetry estimates. In principle it should be possible to infer plume temperature and column 
density simultaneously by comparing measurements made over different spectral windows, since 
the spectral distribution of emitted radiation varies with temperature in a predictable way (i.e., 
Planck’s distribution). Unfortunately, while the single methane filter for the GF320 camera is 
cryogenically cooled, in the case of the Telops camera the filter wheel is uncooled, and blackbody 
emission from the warm filters contaminate the infrared images to an extent that cannot be 
removed through calibration. Multispectral cameras with actively cooled filters are under 
development and poised to dramatically improve the capabilities of QOGI [4].  

Inverse Gaussian plume modelling (IGM) research is led by Blackmore, now an MASc student, 
with assistance from Dr. Paule Lapeyre, a postdoctoral fellow, both under Daun’s supervision. The 

Figure 1: (left) Velocimetry on simulated data generated using a CFD-large eddy simulation. 
(right) Multispectral QOGI on the heated vent apparatus at UW. 
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IGM (Figure 2 [5]) was validated using concentrations from a CFD-Large Eddy Simulation of a 
methane plume, following Caulton, et al. [6]; these simulations were also used to evaluate how 
various factors (e.g., plume height, measurement location, wind speed) affect quantification 
uncertainty using this technique.  

Both the QOGI and IGM measurement models have been deployed to interpret field measurements 
carried out in Phase 3. The IGM is also the basis for initial Bayesian uncertainty quantification 
analysis carried out under Phase 4. 

 

2.3 Phase 3: Field campaign and execution 
In the original research proposal, two field campaigns were planned: one in December 2021-
January 2022, and a second one during the summer of 2022. The intention of scheduling two field 
campaigns at different times of the year was to highlight how different environmental factors (e.g., 
snow, air temperature, wind, moisture) may impact the availability and quantification accuracy of 
candidate technologies. However, due to the delayed start of the project, the first field campaign 
was postponed to April 20-26. The second field campaign is scheduled for September 25-October 
1, with fallback dates of October 17-23. Environmental conditions during these times are expected 
to be similar, which will facilitate a comparison of the technologies between the field trials.  

2.3.1 Location of the field campaigns 
Field campaigns are held at CMC’s Field Research Station (FRS), a 200 Ha site in Newall County, 
Alberta. The site, shown in Figure 3, is equipped with equipment that may be configured to mimic 
industrially relevant emission scenarios. These include tanks, surface casing and annulus vents, 
pneumatic actuators, and compressors, along with hoses, couplings, and emission stacks needed 
to generate the methane releases. A 13 m tall portable flare stack and a combustor were also located 
at the site, as part of a separate CanERIC-sponsored research program between CMC and the 
Southern Alberta Institute of Technology (SAIT).  

The site is equipped with a Davis weather station (wind speed, wind direction, air temperature, 
and dew point) and two 3D ultrasonic anemometers: one attached to a rotating Kuva imaging 
system mounted to a gantry (~16 m above ground), and one belonging to the University of 

Figure 2: Schematic of an inverse Gaussian plume model (IGM) calculation [5]. 
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Colorado (UC). The UC anemometer was inoperable during the first field campaign, but it will be 
used in the second field campaign.  

2.3.2 Planning for the first field campaign 
Planning for the first field trial began in January 2022, led by Arolytics (Johnson) with input from 
Daun (UW) and Osadetz (CMC). Based on the outcome of Phase 1, and after consultation with the 
ISC, 17 candidate service or technology providers were invited to participate in the field trials. 
These providers, summarized in Appendix B, were organized into three classes: the inspection 
class (QOGI, stationary sensors, and drone-based TDLAS); screening class (truck-based 
measurements); and the rapid screening class (aircraft). Of these providers, seven applied to 
participate in the field campaign, and ultimately the five providers listed in Table 1 agreed to 
participate in the campaign. Unfortunately, Telops/LSI had to cancel their participation due to a 
servicing issue with the aircraft. 

Based on these participants and detection classes, and with input from the ISC, a testing matrix 
was developed that captured emission scenarios relevant to Canada’s upstream oil and gas 
industry. Key considerations in the design of the field campaign were as follows: 

Figure 3: Location of CMC’s Field Research Station in Newall County, AB. 

Figure 4: Participants of the first field campaign included two QOGI systems, truck- and drone-
mounted TDLAS, and airborne SWIR hyperspectral imaging.  
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1. Tank emissions, e.g., from thief hatches, represent a significant component of overall emission 
inventories, and are also very difficult to measure using QOGI due to the difficulty of accessing 
the release and the complex flow patterns in the wake of the tank. Accordingly, a subset of 
releases took place from the top of a storage tank. 

2. Emission rates inferred using plume models and truck mounted TDLAS are sensitive to 
emission height. Moreover, wind speed, which varies with height above ground, is also known 
to play a significant role in quantification accuracy. Therefore, emissions were planned from a 
range of release heights. 

3. Smaller emissions from individual components may be quantifiable using inspection- or 
screening-class technologies, but airborne-based sensors generally have higher detection 
thresholds. Accordingly, emission rates were different for the ground-based and airborne 
platforms. 

4. The US EPA recently proposed a 10 kg/hr minimum detection threshold for candidate methane 
detection technologies under Section 111 of the Clean Air Act [7]. 

5. While the focus of this study is on quantification uncertainty of known emissions, detection is 
a key concern and is a significant factor in the uncertainty of overall emission inventories [8]. 
Therefore, several releases are “null releases” in which no methane was released. The 
technology providers were unaware of these null releases. 

Technology providers were responsible for all ancillary information needed to construct emissions 
estimates from their measurements (e.g., wind speed, ambient temperature), and were not provided 
any additional information other than the emission location.  

2.3.3 Execution of the first field campaign 
Testing was scheduled for five days, April 20-24, with April 25 and 26 reserved for weather days. 
Due to favorable weather conditions, testing was completed on April 24. As noted in Table 1, the 
truck and AGAT QOGI were only available on the first three days, while the SAIT drone, GHGSat 
aircraft, and UW QOGI were available on the final two days.  

Table 1: Technology providers for the first field campaign.  
Class Technology Provider Dates 
Inspection QOGI (FLIR GF320/QL320) AGAT1 Sep 20, 21, 22 

SAIT/UW1,2 Sep 22, 23, 24 
Drone-mounted TDLAS SAIT Sep 23, 24 

Screening Truck-mounted TDLAS Boreal Sep 20, 21, 22 
Rapid Screening Airborne SWIR HS GHGSat Sep 23, 24 

Airborne LWIR HS Telops/LSI Did not attend 
1. The SAIT and AGAT QOGI systems were both FLIR GF320/QL320, but different software versions of the tablet. 
2. The SAIT QOGI system was operated by UW personnel (Nagorski)   

Ambient conditions 
Meteorological conditions may have a pronounced influence on the effectiveness of most 
quantification technologies. In the case of QOGI, for example, high winds both dilute a methane 
release and may confound the feature tracking used to infer plume velocity, while uncertain plume 
temperature can affect the performance of the spectroscopic submodel used by QOGI systems to 
determine column densities. Uncertainty in wind conditions is also a leading source of error for 
truck- and drone-mounted TDLAS measurements and airborne measurements, since, unlike 
QOGI, these techniques use wind speed as an input to the advective transport model that converts 
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concentrations or column densities to a mass flow rate. The situation is particularly acute for the 
airborne measurements, since they do not generally have access to ground-based anemometry and 
instead must rely on weather models [8, 9]. Accordingly, wind speed, wind direction, temperature, 
and dew point were recorded throughout the tests; this instrumentation is summarized in Table 2. 
Whenever possible these parameters were measured by multiple independent sensors and 
compared with predictions from the Meteoblue weather model to provide an indication of 
uncertainty. This information will be crucial to the uncertainty quantification accuracies that will 
be undertaken in Phase 4. 

Weather conditions at the FRS during the field trials are summarized in Appendix D. In general, 
all instrumentation produced consistent results. For the remainder of the analysis, wind speed is 
taken to be from the Kuva 3D ultrasonic anemometer since it was available throughout the field 
campaign and is more sensitive than the Davis cup-and-ball anemometer. Wind speeds were 
typically between 0-10 m/s, with a median value of 4 m/s. Air temperature ranged from 5C to 
20C. An analysis of 10 years of historical meteorological data at the FRS shows that conditions 
during the field campaign were typical of what one would expect at this location and this time of 
year. 

Since the airborne SWIR imager used by the GHGSat team infers methane column densities from 
the attenuation of sunlight reflected from the ground, sky condition is expected to be a significant 
factor in the effectiveness of this technology. Sky coverage is taken from the Meteoblue model 
and compared with observations from nearby airports made every three hours. 

Temporal variations in both regional and local background methane concentrations can also affect 
inferred emission rates, sometimes significantly. Both regional oil and gas operations and several 
feedlots and water wells, most of which are in the Lethbridge coal zone, could contribute to 
significant and temporally-varying background methane concentrations at the FRS. Accordingly, 
the local background methane concentration was monitored continuously during the tests using a 
Picarro cavity ring-down spectrometer (CRDS), rented from the FluxLab at St. Francis Xavier 
University. The CRDS was located in the ATCO trailer (Figure 3), and sampled air via a hose 
through a window. Additional local background concentrations are obtained from TDLAS 
measurements from the Boreal truck and the SAIT drone when these vehicles were outside of a 
methane plume release. Previous measurements of local background methane concentrations and 
their variations were available from 2019 and 2020 observations using a dual frequency comb laser 
spectrometer constructed by Longpath Technologies LLC, of Boulder Co. and the Université 
Laval, QC.   

The observed local backgrounds during these tests were mostly consistent with dual comb laser 
attenuation measurements, which observed normal local methane backgrounds to vary between 
about 1.85 ppm and 2.10 ppm. Background methane concentrations remained near regional 
average atmospheric abundance (~2 ppm) except for April 23, when the concentration rose 
abruptly to 3-4 ppm, with a maximum reading of 7 ppm. An accompanying rise in background 
ethane concentration recorded by the CRDS suggests that the local background anomaly was likely 
associated with upstream petroleum operations [10]. However, intermittent emissions from 
upstream petroleum equipment and agricultural water wells in the immediate vicinity of the FRS 
were observed to produce background methane concentration anomalies of approximately 0 to 120 
ppb in 2019 and 2020. Instead, given the wind direction on April 23, and methane composition 
used in our test it is likely that this detection was caused by our own tests.  
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Table 2: Instrumentation used to characterize ambient conditions 
Instrument Data Availability Notes 
3D ultrasonic anemometer Wind speed and direction Throughout campaign Attached to Kuva station, 

near ATCO trailer. 
Rotating, so wind 
direction is uncertain 

3D ultrasonic anemometer Wind speed and direction April 20-22 Stationary, part of Boreal 
(truck) measurement 
system 

Davis weather station 
(cup anemometer, 
hygrometer, RTD sensor) 

Wind speed and direction, 
temperature, relative 
humidity 

Throughout campaign Mounted on ATCO trailer 

Picarro cavity ring-down 
spectrometer 

Background CH4 

CH4/C2H6, isotopes 
Throughout campaign Located at ATCO trailer 

TDLAS  Background methane 
concentration  

April 20-22 Mobile, part of Boreal 
(truck) measurement 
system 

TDLAS Background methane 
concentration 

April 23-24 Attached to SAIT drone 

 
Release schedule and measurements 
Methane was released from pressurized gas cylinders located in a trailer, through a heat exchanger 
(Figure 5), and subsequently through a mass flow controller (Alicat Model MCR-2000SLPM-D-
PAR, calibrated March 29, 2021). The methane temperature dropped significantly as it was 
released from the pressurized cylinders due to the Joule-Thomson effect and so the heat exchanger 
was used to return the methane to ambient air temperature. Periodic measurements of the methane 
discharge temperature at the nozzle exit carried out throughout the tests confirmed that the 
discharge temperature matched that of the surrounding air. The composition of the released gas 
was determined, as the average of five samples analyzed by gas chromatography, to be 94.2% 
methane, 3.4% ethane, 1.1% propane and 1.3% other minor components, predominantly N2 and 
O2 in roughly relative atmospheric abundances [11]. 

Four distinct measurement scenarios were considered: emissions from the top of a 2.79 m storage 
tank, a 1.42 m tall stack, a 3.18 m tall tack, and a 13 m tall unlit flare (Figure 6). Release rates 
ranged from 0.25 kg/hr (5.81 SLPM) to 50 kg/hr (1164 SLPM); this range was chosen based on 
industrially relevant emission scenarios and the manufacturer-specified capabilities of the 
instruments. The combination of emission scenarios and release rates corresponded with 47 
distinct release events, summarized in Table 3, with several duplicated conditions. A subset of 
these emissions were null emissions. Most releases lasted approximately 10-50 minutes (longer 
releases for the airborne measurements), with an interval of at least 5 minutes between releases to 
ensure that any residual methane from the previous release had been conveyed from the area by 
the wind. The emission rates were chosen quasi-randomly, to disguise the emission rate from the 
provider and avoid artificial correlations between release rate and wind speed, since the latter 
quantity tends to increase or decrease monotonically with time.  

Service or technology providers carried out measurements throughout the releases, although care 
was taken to ensure that the release rate was not adjusted during the measurements. Table 4 
summarizes the number of detections/measurement events per provider. Figure 7 (a) shows a 
histogram of the ground truth release rates for the 383 measurement events, while Figure 7 (b) 
shows that these emission rates were generally uncorrelated with wind speed. 
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Table 3: Release scenarios for the first field campaign. 
April 20 April 21 April 22 April 23 April 24 
AGAT QOGI, 
Truck 

AGAT QOGI, 
Truck 

AGAT QOGI, 
Truck 

Aircraft, Drone, UW 
QOGI1 

Aircraft, Drone, UW 
QOGI 

1.42 m stack  
(0, 1, 2.46, 5, and 
10 kg/hr) 
 

Storage tank  
(0, 1, 2.46, 5, and 
10 kg/hr)  
1.42 m stack  
(20 and 30 kg/hr) 

1.42 m stack  
(0, 0.25, 0.5, 1, 
2.46, 5 kg/hr) 
 

3.18 m stack  
(20, 30, 40 50 kg/hr)  
1.42 m stack 
(5 kg/hr) UW QOGI 
and drone 

Unlit flare  
(0, 10, 20, 30, 40, 
50, 80 kg/hr) 
 

 

  

Figure 5: Methane was released from compressed cylinders in a trailer, through a heat exchanger,
and then into a mass flow meter, before exiting a nozzle, stack, or the unlit flare. 

Figure 6: Methane release scenarios included a 2.79 m tall storage tank, a 1.42 m tall stack, a 3.18
m tall stack, and a 13 m tall flare. The flare was unlit for methane emission measurements. 
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Table 4: Number of measurement events per technology for the first field campaign.  
 April 20 April 21 April 22 April 23 April 24 Total 
AGAT QOGI 36 48 37   121 
UW QOGI    9 6 15 
Truck 36 (2) 77 39 (2)   152 (4) 
Drone   1* 8 (6) 6 (2) 15 (8) 
Aircraft    44 36 80 
Total 72 (2) 125 77 (2) 61 48 383 (4) 
() denote missed detections, * denote missing measurement event 
 

Providers were responsible for converting their field measurements (QOGI images, TDLAS 
concentrations, wind speeds, or SWIR hyperspectral images) into methane release rates. The 
research team asked the providers to provide their estimates within 2-3 weeks of the measurements, 
which, with one exception, was satisfied. Specific comments for each provider are provided below: 

QOGI: QOGI measurements were carried out by AGAT personnel using a FLIR GF320 camera 
(24° fixed lens) and a Providence Photonics QL320 Tablet (Version 3.0.0.5). UW personnel 
conducted additional QOGI measurements using a FLIR GFx320 (24° fixed lens) and a FLIR 
QL320 tablet (Version 1.4.1). Both the camera and the tablet used by the UW team are newer than 
the ones used by AGAT. The AGAT surveyor also measured plume temperature using a Thomas 
Scientific hygrometer-thermometer-barometer probe, which was then input into the QL320 tablet 
to calculate the methane flow rate. Both teams carried out measurements in a manner consistent 
with FLIR QOGI training, i.e., using tripods, avoiding non-uniform clouds, measuring temperature 
and distance. Raw data consisted of mp4 files and radiometric video files that were post-processed 
with the QL320 tablet and the UW in-house algorithm. An example of the methane releases 
captured using the SAIT GFx320/QL320 system is shown in Figure 8. 

Figure 7: (a) Histogram of ground truth release rates for the measurement events; (b) plot of wind
speed vs. ground truth release rate. 
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Truck-mounted TDLAS: The truck carried out several plume transects at various distances from 
the release point; an example measurement path is shown in Figure 9 (a). The provider set up a 
GPS ground station and a 3D anemometer at the beginning of each testing day. Raw data consisted 
of TDLAS-derived concentrations, GPS tracks, and wind speed and direction recorded at intervals 
of every 15 minutes. Plume transects were conducted over three days, with concentration and GPS 
measurements taken every one second during the transect, and anemometry data being recorded at 
15-minute intervals.  

The provider analyzed the data using Wind-Trax, a backwards Lagrangian stochastic (BLS) 
dispersion model developed at the University of Alberta [12, 13]. The Wind-Trax model is based 
on a reduced transport equation: 

 0
c

c
t


  


u  (1) 

where c(x) is the point concentration of methane at a location x = [x, y ,z]T, and u = [u, v, w]T is 
the wind vector with components in the x-, y-, and z- direction [14]. The model assumes idealized 
wind conditions for undisturbed terrain, and requires inputs including the measured methane 
concentration, background concentration, and meteorological data such as the average wind speed 
and the measured sonic temperature [15]. The emission rate from a particular source location is 
estimated by determining the trajectories of particles, and projecting these trajectories backwards 
in time to an emission source to infer a leak rate. This method is described in detail in Ref. [16]. 

The provider also gave the raw data to the UW team, who conducted an independent analysis using 
the IGM approach [6]. The IGM is based on a Gaussian plume model, which assumes that the 
time-averaged concentration field from a steady release is given by 

      2 2 2

2 2 2
exp exp exp

2 2 2 2x y z z z

z h z hQ y
c

                                
x  (2) 

where x = [x, y, z]T refers to a specific downwind (x) and crosswind (y) location, and height (z) 
relative to the source location, Q is the mass emission rate of the gas, μ is the wind speed at the 
release height, h is the effective release height, and σy and σz are coefficients relating to the 
atmospheric conditions. In the IGM procedure, Equation (2) is inverted to solve for Q using 
concentration measurements obtained by the technology. By using the raw data provided by Boreal 

Figure 8: Methane plume as viewed using the GF320 camera (left) and the QL320 tablet (right).
Note the curved control surface used for mass flux calculations. 
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Laser, the performance of IGM and BLS was compared using the same concentration dataset and 
supporting anemometry data. 

Drone-mounted TDLAS: The drone flew a descending helical flight pattern around each release, 
as shown in Figure 9 (b). The altitude and radius of this pattern were adjusted heuristically based 
on wind speed and emission height. Raw data consisted of concentration, drone altitude, and GPS 
coordinates. In principle, wind speed and wind direction can be inferred from the drone flight 
parameters and the plume direction. Emission rates were then inferred from mass balance 
conducted on a control surface defined by the helical flightpath of the drone. The drone team 
remarked that the number of drone transits through each plume, which was limited by the interval 
with which the release rate was adjusted, was considerably lower than what they would normally 
use when conducting independent measurements.  

Airborne SWIR HS: Aircraft measurements were done at an altitude of approximately 1500 m 
(5,000 ft.). The provider had the GPS location of the release, and flew repeated passes around the 
release, as shown in Figure 9 (c). The provider was not aware of the release height. The flight path 
was roughly aligned with the wind direction, which was southerly during April 23 and April 24; 
this also coincides with the FRS access road, which is aligned to grid north. The provider used an 
internal algorithm (similar to the one described in Ref. [9]) to extract column densities from the 
SWIR measurements, based on the attenuation of reflected sunlight. This data is then combined 
with wind speeds obtained from Meteoblue to obtain the emission estimates.  

A preliminary analysis of this data is presented in Section 3 of this report. 

2.3.4 Planning for the second field campaign 
The Arolytics/UW/CMC team started planning for the second field campaign shortly after the 
completion of the first field campaign. This activity is led by Arolyics (Fritz, Johnson), with 
assistance from Daun (UW) and Osadetz (CMC). The second campaign is currently scheduled for 
September 25-October 1, with fallback dates of October 17-23. The team is currently in discussion 
with several service or technology providers to participate, including three aircraft-conveyed 
technologies (GHGSat, LSI/Telops, Bridger) and a truck-based provider (Montrose). The team 
also intends to conduct additional QOGI measurements, either via a commercial provider or by 
having UW personnel operate a FLIR GF320/QL320 system.  

The inclusion of the three aerially-conveyed technologies is particularly exciting since they all 
operate according to different spectroscopic principles and have anticipated strengths and 
weaknesses. As already described, GHGSat uses a short-wavelength infrared (SWIR) 
hyperspectral camera to image sunlight reflected from the ground to calculate the methane column 
density between the ground and the aircraft. LSI/Telops also uses a hyperspectral camera, but one 
that operates in the long-wavelength infrared (LWIR), and measures thermal radiation emitted by 
the methane plume. Both approaches are fully passive, in that the aircraft does not actively 
illuminate the plume, but otherwise they are quite different and have contrasting strengths and 
weaknesses: GHGSat is susceptible to overcast conditions and ground having low reflectance (e.g., 
covered in snow or water), while the Telops system relies on the emitted plume having a detectable 
temperature difference from that of the background (e.g., the terrain). 

The third system, provided by Bridger, uses a scanning airborne TDLAS system. In contrast to the 
drone-based TDLAS, in which the optical path is contained within the instrument, the Bridger 
system scans the ground with the laser in an elliptical pattern, and infers the methane column 
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density  from the reflected laser light. This active illumination system contrasts with the GHGSat 
and Telops systems, which are purely passive.  

In all three cases, the optical data is interpreted with a spectroscopic model (similar to the one used 
for QOGI cameras) to produce a 2D column density map, or, in the case of the Bridger system, a 
3D plume concentration map, by exploiting the change in angle as the aircraft overflies the plume. 
The column densities/concentrations are then combined with an advection model informed from 
local wind estimates to find the mass flow rates.  

A key lesson learned from the first field campaign concerns wind speed and emission rate, two of 
the leading factors that affect quantification accuracy. As shown in Figure 7 (b), the strategy of 
assigning emission rates following a random pattern to avoid correlations with wind speed was 
largely successful, although there are “gaps” in the wind speed/emission rate map. These gaps will 
be filled during the second field campaign as allowed by the weather conditions by scheduling 
emission rates according to projected diurnal wind variations. Furthermore, analysis of the 
Meteoblue sky coverage model showed significant differences between predicted and observed 
cloud coverage. Sky condition will also be photographed at hourly intervals throughout the 
airborne measurements during the second field campaign. 

  

Figure 9: Typical measurement paths of the (a) truck, (b) drone, and (c) aircraft. 
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2.4 Phase 4: Data analysis and summary 

2.4.1: Overview of results 
Emissions Service Provider-reported emission estimates are summarized in Figure 10, along with 
the ground-truth emission rates and wind speeds from the Kuva anemometer. The results show no 
obvious overall trend in emission quantification accuracy versus wind speed, nor emission 
quantification accuracy versus emission rate, although, as one may expect, larger emission rates 
correspond to larger emission residuals. Provider-reported emission rates, on average, 
underestimate the true emission rates. Estimates from the drone are excluded from this figure for 
reasons explained later in this report.  

Figure 10: Summary of emission quantification accuracy and wind speed. (All technologies). 
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2.4.2 Quantitative Optical Gas Imaging 
The accuracy of emission estimates obtained from the GF320/QL320 systems are shown in Figure 
11. Estimates from the AGAT QOGI are summarized in Figures 12 (a) and (b) for emissions from 
the stack and from the top of the tank, respectively. 

Overall, the performance of QOGI for measuring methane plumes emitted from the tank was 
slightly worse than the emissions from the stack. We suspect that this difference is largely due to 
the fact that the QOGI measurement of the tank release was carried out on the ground, as shown 
in Figure 5 (for safety reasons) and thus the measurement distance between the camera and the 
plume was much greater than in the case of the stack releases. It is well known that measurement 
distance is one of the major factors in QOGI quantification accuracy [17, 18]. The effect of 
measurement distance will be explored via a more rigorous test procedure in the second field 
campaign.  

Figure 11: Performance of QOGI technologies. (a) All emission rates; (b) Emission rates less than
250 SLPM (11 kg/hr); (c) Emission rates less than 25 SLPM (1.1 kg/hr). Symbol color denotes 
wind speed. Hollow symbols denote stack measurements, while “*” indicates tank measurement. 
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AGAT QOGI: Measurements were carried out on April 20-22 on emissions from the 1.42 m stack 
and the storage tank. For emission rates of 236 SLPM (10 kg/hr) and greater, the QL320 
consistently under-predicts the actual emission rate by 50% to 97%. It is unlikely that the camera 
has an upper detection limit in terms of the column densities produced by large emission rates; a 
more plausible explanation is that the QOGI hardware or software is unable to accurately estimate 
the velocities at these higher rates.  

As seen in Figure 11 (b), at the 236 SLPM emission rate, increasing wind speed led to lower QOGI 
estimates and larger errors. This supports the hypothesis that the GF320/QL320 system has an 
upper limit for the velocities it can estimate accurately. Larger emission rates and higher wind 
speeds lead to faster gas velocities which require a higher camera frame rate to fully capture the 
plume motion. Higher wind speeds also result in greater plume dispersion and smaller column 
densities which may approach the sensitivity limit of the camera, but more in-depth analysis of the 
radiometric sequence files obtained and discussed in the following section showed this is not the 
primary source of error.  

For emission rates below 236 SLPM (10 kg/hr), the QL320 still tends to under-predict the actual 
emission rate but at the lowest rate of 6 SLPM (0.25 kg/hr) the estimates almost entirely over-

Figure 12: Quantification estimates from the AGAT-operated QOGI for (a) emissions from the
stack and (b) emissions from the top of the tank. 
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predicted the actual rate. This testing regime includes a number of null releases, which were 
identified correctly by the AGAT QOGI operator. 

UW QOGI: Measurements were made on methane releases from the 1.42 and 3.18 m tall stacks 
and the 13 m unlit flare; these results are summarized in Table 5. The GFx320/QL320 system only 
became available to UW on April 23, so no head-to-head comparison was possible between the 
UW and AGAT systems and operators.  

The release rates from the 3.18 m tall stack were amongst the largest used in the current field trial. 
QL320 estimates from the UW operator were slightly more accurate (45% lower) than the 
estimates from AGAT (68% lower) for these large release rates. This result may appear 
counterintuitive since the AGAT QOGI operator is considerably more experienced than the UW 
operator, and a recent study highlighted that operator experience is a key factor in the accuracy of 
QOGI performance [18]. However, the AGAT QOGI tablet is a much earlier version compared to 
the SAIT tablet, and it appears that the manufacturer made significant improvements to the 
velocimetry algorithm between these versions.  

Measurements of releases from an unlit flare (which have been shown to be an unexpectedly large 
contribution to overall methane emissions [19]) were also made and the QL320 estimates ranged 
from 47% lower to 175% higher than the actual release rate. Overestimates of measurements 14 
and 15 are likely due to the very low wind speeds, which required the operator to wait for the 
plume to develop and cross the control surface (see Figure 8) while it meandered. This behaviour 
would lead to momentarily higher column density estimates compared to that expected for a steady 
plume of the same emission rate. 

The UW team also analyzed raw radiometric files from the GF320 camera using their own 
spectroscopic model. The retrieved column densities were plausible and consistent with the 
ground-truth emission rates when they were combined with a bulk velocity inferred from the 
apparent plume motion between successive frames. 

Table 5: QOGI measurements conducted by UW 
Measurement Estimated 

emission rate 
(SLPM) 

Actual 
emission rate 

(SLPM) 

Error (%) Wind speed 
(m/s) 

Distance (m) Setup 

1 14 118 -88% - 3.23 1.42 m stack 
2 60 118 -49% 6.6 3.83 1.42 m stack 
3 550 944 -42% 6.6 4.88 3.18 m stack 
4 700 944 -26% 6.0 4.01 3.18 m stack 
5 240 472 -49% 5.7 4.01 3.18 m stack 
6 270 472 -43% 6.6 3 3.18 m stack 
7 550 1181 -53% 5.6 4.01 3.18 m stack 
8 540 1181 -54% 4.5 3 3.18 m stack 
9 390 708 -45% 5.1 3 3.18 m stack 

10 0 24 N/A 4.0 11 Unlit flare 
11 320 472 -32% 5.8 11 Unlit flare 
12 790 1181 -33% 3.6 11 Unlit flare 
13 630 1181 -47% 2.9 11 Unlit flare 
14 650 236 175% 1.2 11 Unlit flare 
15 910 708 28% 2.2 11 Unlit flare 
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2.4.3 Truck-mounted TDLAS 
Truck-mounted TDLAS measurements were performed from April 20-22 on emissions from the 
1.42 m stack and the top of the storage tank. Emission estimates obtained by the technology 
provider using the BLS measurement and wind speeds measured using a ground-based ultrasonic 
anemometer are summarized in Figure 13 and Table 6. Overall, the BLS method had an average 
absolute error of 57% for all emissions, with an average bias of +19%.  

On the whole the estimates obtained from the truck mounted TDLAS/BLS measurements were the 
most accurate and least biased of all techniques. Estimates were less accurate for smaller release 
rates. It is also apparent that estimates of emissions released by the stack were much more accurate 
than those from the top of the tank. It can be seen through the highly positive average bias that the 
emission rates from the tank were systematically overestimated. The origin of these trends is 
currently under investigation. 

 

Figure 13: Performance of truck-mounted TDLAS using backwards Lagrangian stochastic (BLS) 
model. (a) All emission rates; (b) Emission rates less than 250 SLPM (11 kg/hr); (c) Emission 
rates less than 25 SLPM (1.1 kg/hr). Symbol color denotes wind speed. Hollow symbols denote 
stack measurements, while “*” indicates tank measurement 
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Table 6: Emissions obtained using truck mounted TDLAS 
Release Type/Rate BLS IGM 

 Average Error1 Average Bias2 Average Error1 Average Bias2 
Stack 47.06% 5.87% 45.90%  35.14%  
Tank 72.06% +44.56% 53.47%  35.06%  

<250 SLPM 59.51% +15.28% 45.59%  33.78%  
<25 SLPM 62.27% +2.99% 46.64%  36.62%  

>250 SLPM 41.09% +6.82% 58.29%  46.19%  
ALL 56.89% +18.77% 46.97%  35.13%  

1Defined as the average absolute relative error, ave(||) 
2Defined as the average relative error, ave() 

 

Preliminary emission estimates from the IGM are shown in Figure 14. The IGM analysis 
performed on the same dataset is comparable in accuracy with the BLS analysis (IGM: 50.21%, 
BLS: 56.89%). On the other hand, there was a stronger bias associated with the IGM analysis, with 
an average bias of -36.12% across all emission estimates. In total 87% of the IGM estimates 
underestimate the true emission rate, compared to 53% of the BLS estimates.  

Ongoing work is focused on understanding why the IGM analysis consistently underestimates the 
emission rates. One explanation is the coarse meteorological data used in the analysis. 
Meteorological data from the Boreal anemometer was available in 15-minute increments, while 
concentration measurements used in the analysis were taken every second. During the 
measurements, the wind direction was observed to change during a plume transect, leading to 
inaccurate wind data for the IGM analysis. This is of particular importance to IGM, as the wind 
direction is key in determining the downwind distance from the source location to the measurement 
location. This downwind distance is used to calculate the dispersion parameters y and z in 
Equation (2), which sensitizes IGM-derived emissions to wind-direction. Conversely, the BLS 
analysis does not explicitly include the downwind distance, and instead relies on the backwards 
trajectories of particles to determine a source location, which may make BLS-derived emission 
rates less susceptible to errors in wind direction.  
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Figure 14: Performance of truck-mounted TDLAS using the inverse Gaussian plume model 
(IGM). (a) All emission rates; (b) Emission rates less than 250 SLPM (11 kg/hr); (c) Emission 
rates less than 25 SLPM (1.1 kg/hr). Symbol color denotes wind speed. Hollow symbols denote 
stack measurements, while “*” indicates tank measurement 
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2.4.4 Drone-mounted TDLAS 
As noted in Section 2.3, the drone flies a descending helical path around the release, and the local 
methane concentration is measured with an onboard open-path TDLAS sensor. These 
concentrations are combined with GPS and barometric altimeter telemetry and wind speeds to 
obtain an emission rate estimate. Figure 15 shows an example of the data collected from the drone, 
while emission rates derived from the drone are plotted in Figure 16.  

  

Figure 16: Performance of drone-mounted TDLAS. (a) All emission rates. (b) Emission rates 
below 50 SLPM (2.14 kg/hr). 

Figure 15: Example concentration and telemetry data obtained from a drone flight for a release
from the unlit flare (13 m). 
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In total 15 measurements were attempted by the SAIT team, but only 14 emission events were 
reported. (One emission event, on April 22, appears to have been missed in the analysis.) As shown 
in Table 7, of these measurements, the majority (8) were considered as missed detections. Reasons 
for missed detections included: “no data,” which we interpret as a failure in telemetry between the 
drone and the data logger; “unstable wind,” which we interpret as a plume that moved appreciably 
during the helical flight path shown in Figure 9 (b); and “too low plume to measure with drone”, 
which referred to the fact that the emission leaving the stack was driven into the ground by the 
ambient air motion, so that most of the plume was missed by the drone. 

To support the last observation, SAIT personnel conducted several smoke releases tests to 
visualize the methane plume. In these tests, a smoke canister was placed on the top of the 1.42 m 
stack and activated. While smoke particles are heavier than methane, the smoke is hot, so a smoke 
plume and a methane plume should have similar buoyancies. These tests, one of which is shown 
in Figure 17, revealed that the wind conditions appear to be pushing the smoke downwards, which 
supported the SAIT’s contention that, in some cases, the plume was too close to the ground to be 
measured effectively by the drone. 

Table 7: Summary of SAIT drone measurements. 
Number of 

Measurements 
Emission 
Reported 

Technology Provider Comments 

8 No No data 
1 Yes No aerial data. Inverse Gaussian plume 

estimate – slightly unstable wind 
1 Yes Poor aerial data – most of plume too low 

to measure with the drone 
1 Yes Insufficient data 
3 Yes None 

 

Figure 17: Example smoke release test. The dispersion of smoke suggested that the ambient wind
was pushing the methane towards the ground. 
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2.4.4 Airborne SWIR HS 
Airborne SWIR emission rates were carried out by GHGSat on April 23 (3.18 m stack) and April 
24 (13 m unlit flare). On both days the Provider remarked that the weather conditions were 
suboptimal due to partial cloud cover. This was particularly the case on April 24, and 
measurements were terminated at approximately 2:30 PM due to excessive cloud cover. A detailed 
discussion of cloud cover is provided in Appendix D.  

Figure 18 compares the GHGSat estimates with ground truth releases. The results show that the 
emissions estimated from the airborne SWIR imaging systematically under-predict the true 
emission rates. There are two reasons why this may be so: (1) methane column densities may be 
under-predicted due to cloud cover; (2) wind speeds used to derive the emission rate may be 
underestimated.  

Cloud cover: Since methane column densities are inferred from the attenuation of sunlight 
reflected from the ground and imaged by the airborne SWIR imaging spectrometer, it is possible 
that cloud cover may cause a portion of the plume being missed. As detailed in Appendix D, the 
Meteoblue cloud cover model was found to be inaccurate during the measurements, and no 
systematic sky observations were made during the tests. This hypothesis could be explored by 
examining visible and SWIR images taken by the Provider during the measurement campaign, 
should they decide to provide this data.  

Inaccurate wind speed: Our present understanding is that GHGSat obtains the wind speed from 
the Meteoblue model. These wind speeds are combined with column densities via a plume 
advection mode and transformed into an overall emissions estimate. It is therefore possible that 
the emission rates could be systematically underestimated because the wind assumed by the 
technology provider is lower than the true wind speed. 

 

  

Figure 18: Performance of Airborne SWIR HS (GHGSat). 
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The wind speed could be inaccurate for two reasons. First, it may be that the modeled wind speed 
corresponds to a different height than that of the release height. Meteoblue wind speeds are taken 
at a height of 10 m, while the actual releases occurred at heights of 3 m and 13 m. The provider 
was not provided the release height, and it is unclear whether the Provider adjusted the Meteoblue 
wind speed to a presumed emission height (e.g., using a logarithmic scaling function [8]), so, it 
may be the case that the assumed wind speed is significantly lower than the true wind speed due 
to release height. Second, the limited accuracy of Meteoblue winds is known to be the leading 
source of error in other airborne emission measurements [8].  

To explore this possibility, Figure 19 shows residual emission of the measurements, with colors 
corresponding to the difference between the Meteoblue and Kuva wind speeds. There is no 
apparent trend between the accuracy of the recovered emissions and the residual between the local 
and Meteoblue wind speeds. Indeed, on April 24, estimates corresponding to larger differences 
between the Kuva anemometer and the Meteoblue wind speed appear to be more accurate, 
suggesting that emission accuracy may be due to a different factor. Therefore, the influence of 
cloud cover appears to be the most likely cause for the systematic underestimation of the emission 
rate, although further discussion with the service provider/technology developer is needed to 
confirm this. 

 

 
 
  

Figure 19: Possible influence of inaccurate wind speed on accuracy of emissions derived from
airborne SWIR imaging (GHGSat).  
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2.4.5 Impact of wind speed on emission accuracy 
This section highlights the impact of wind speed on the emission estimates using box plots. Wind 
speeds are categorized by three wind speed levels, summarized in Table 8, that were derived from 
even quantiles of all wind speeds recorded over the measurement events. Wind speeds were taken 
to be those measured using the Kuva ultrasonic anemometer (~16 m above ground), and have not 
been adjusted for height. Accuracy is represented in terms of the residual emission rate (estimated 
– actual) as well as the relative emission rate (estimated – actual)/actual. Drone results are excluded 
due to the low number of measurements carried out using this technology. Note that not all 
technologies were evaluated over all wind conditions.  

Table 8: Wind speed categories 
Category Wind speed range (m/s) 

Low 0-2.95 
Medium 2.95-5.13 

High 5.13-11.52 

Box plots are interpreted as follows: the box extends between the first and fourth quartiles of the 
data (i.e., the box contains 50% of the estimates) while the red line within the box indicates the 
median value. The ends of the lines indicate the maximum and minimum values of the data, with 
outliers denoted as symbols. 

Figures 20 summarizes performance of AGAT QOGI estimates of releases from the 1.42 m stack 
and the top of the 2.79 m tank, while Figure 21 shows UW OGI estimates from the 3.18 m stack. 
Generally, the QOGI technology tends to underestimate the true emission rate, and the error 
increases with wind speed. As discussed in Section 2.4.2, this trend is attributed principally to the 
limit imposed by the framerate of the camera. 

Figure 22 shows that the Boreal truck measurements (BLS) are highly accurate in low wind 
conditions, but the variance of estimate error increases significantly with wind speed.  

Figure 23 shows the accuracy of emissions from the airborne SWIR hyperspectral imager, which 
consistently underestimated the ground-truth methane emission rates. This effect is more 
prominent from the 3.18 m stack versus the 13 m unlit flare stack. As discussed in Section 2.4.4, 
this may be due to partial cloud cover, although we must consult with the Provider to confirm this 
hypothesis.   

 

Figure 20: Influence of wind speed on AGAT QOGI emission estimates from the top of the 2.79
m tank and the 1.42 m stack. 
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Figure 21: Influence of wind speed on UW QOGI estimates of emissions from the 3.18 m stack. 
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Figure 22: Influence of wind speed on the truck-mounted TDLAS (BLS) emission estimates from
the top of the 2.79 m tank and the 1.42 m stack. 

Figure 23: Influence of wind speed on the truck-mounted TDLAS (BLS) emission estimates from
the top of the 3.18 m stack and the 13 m unlit flare. 
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2.4.6: Uncertainty quantification using Bayesian analysis  
Data collected from the first field campaign highlights that some experimental parameters (e.g., 
wind, emission rate, distance) have a considerable influence on the estimated emission rate.  

The impact that each parameter, and its associated uncertainty, have on the estimated emission rate 
can be quantified through Bayesian inference. In this approach the measured data, model 
parameters, and the quantities-of-interest (methane emission rate, QL) are interpreted not as fixed 
numbers, but random variables that are defined by probability densities.  

The first step in this procedure is to define a measurement model. The emission rate indicated by 
a technology, QL,d, is related to the true emission rate by 

  L,d L ,Q b Q b    (3) 

where vector  contains n ancillary model parameters (e.g., camera, truck, or drone location), while 
the error term b represents both measurement noise as well as model error arising from the 
incomparability of the presumed model and the true physics. While emission models vary by 
technology class, they have a general form 

    L, ,b b Q u   c    (4) 

where c is a vector of concentration measurements (typically from a spectroscopic model) and u 
is an advection model, e.g., from wind speed measurements, a Gaussian plume model, or, in the 
case of QOGI, an optical flow algorithm.  

Because the error term b in Equation (3) is unknowable, it is treated as an unbiased normally 
distributed random variable having a standard deviation b that depends on the leak rate, i.e.  b ~ 
(0, b). The width of this distribution reflects both the “precision” and “accuracy” of the 

measurement, since a bias arising from a systematic model error is considered unknowable and 
thus enveloped into the distribution.   

Consequently, the detected emission rate is also normally distributed according to 

    
 

2

L,d L

L,d L 2

L

,
, exp

2 b

Q b Q
p Q Q

Q

      
    


  (5) 

Equation (5) is the likelihood function, which describes the probability density function (pdf) of 
observing a measured emission rate QL,d given the true emission rate QL and a set of ancillary 
parameters . The probability density has units inverse to those of QL (e.g., hr/kg).  

In the absence of prior information about the emission rate, and assuming that the ancillary 
parameters are perfectly known, we can show that  

    L L,d L,d L, ,p Q Q p Q Q   (6) 

where p(QL|QL,d, ) is the posterior pdf. The posterior pdf defines what is known about the QOI 
after the measurement. It indicates the certainty of the measured emission rate, provided that: (1) 
the ancillary model parameters are perfectly known; and (2) nothing else is known about the 
emission rate beforehand.  
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However, the ancillary model parameters (e.g., wind speed) are imperfectly known. Accordingly, 
the parameters in  are treated as additional “nuisance” parameters to be inferred along with the 
emission rate. Obviously, adding these unknowns to the list of inferred variables “diffuses” the pdf 
and increases the uncertainty in the inferred QL estimate, so it is important to incorporate any 
information about both  and QL that is available before the measurement into the inference 
procedure. This information is encoded as a prior probability density for each variable, and, 
assuming that these parameters are mutually independent, an overall prior pdf is given by 

      pr L pr L pr
1

,
n

j
j

p Q p Q p


    (7) 

The likelihood, prior, and posterior pdfs are related by Bayes’ equation 

      
 

L,d L pr L

L L,d

L,d

, ,
,

p Q Q p Q
p Q Q

p Q


 
  (8) 

where the evidence 

      
L

L,d L,d L pr L L

,

, , d d
Q

p Q p Q Q p Q Q 


    (9) 

ensures that the posterior pdf satisfies the Law of Total Probability.  

The outcome of Equation (8) is an n+1 dimension joint pdf that defines what is known about both 
QL and  after the measurements. In practice, however, we are interested only in a pdf for QL, 
which can be found through marginalizing over the nuisance parameters  

    L L,d L L,d,p Q Q p Q Q d 


   (10) 

It may be further simplified by defining a credible interval that may be interpreted as containing 
the “true” emission rate with a specified probability, e.g., 90%, as shown in Figure 24.  

The Bayesian approach presents several key benefits for quantifying methane emissions:  

1. It provides a comprehensive definition of what is known about an emission rate given an 
indicated emission rate and uncertain model parameters. This information is particularly 
important when allocating resources to reduce emissions, or in a regulatory context. 

2. The width of the credible intervals is a ready measure of the accuracy/reliability of a 
measurement technique, which may then be used to compare the performance of 
technologies and design cost-effective FEMPs. 

3. It explicates the role of prior information and other assumptions in deriving the flux 
estimates. This prior information may be revised as more information becomes available. 

While the above framework may be applied to any technology, preliminary work has focused on 
truck mounted TDLAS measurements using the IGM because: (1) the IGM measurement model 
is the simplest of the approaches evaluated to date: (2) the Technology Provider has provided the 
raw data needed to define appropriate priors and the likelihood function.  
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Preliminary results were presented at the Joint Congress of the Canadian Meteorological and 
Oceanographic Society (CMOS), Canadian Geophysical Union (CGU), and the Eastern Snow 
Conference (ESC), held on June 1-3, 2022 [20]. This analysis relied on synthetic concentration 
measurements and wind speeds derived from a CFD large eddy simulation of a methane plume. 

Ongoing work is focused on developing the required prior pdfs and measurement model needed 
to interpret the truck mounted TDLAS data, through a combination of theoretical analysis and 
empirical studies. Finally, the emission rates reported in Sec. 2.4.3 (Table 6) will be compared 
with the marginalized posterior pdf, Eq. (10), to confirm the veracity of the Bayesian analysis. 
(E.g., one expects that 90% of the measurements to lie within the 90% credibility interval.) If time 
permits, this approach will be extended to other measurement technologies. 

 
 
 
 

  

Figure 24: Posterior probability density function of the estimated emission rate QL knowing a 
set of concentration measurements, c. The maximum a posteriori (MAP) estimate for the 
emission rate is 18 kg/hr (red vertical line) and the credible interval (black vertical lines) is 
[6.2 kg/hr – 26.1 kg/hr] so that the estimated emission rate has 90% probability of being 
contained in that interval. This plot was generated based on a numerical simulation of a stack 
natural gas emission of 20 kg/hr and a virtual truck-based measurement. The IGM method 
was used to infer QL and only the wind speed was considered as an uncertain parameter with 
uncertainty of 0.5 m/s. 
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3. PRELIMINARY CONCLUSIONS 
To date, research activities have focused on: developing a comprehensive list of methane emission 
quantification technologies (phase 1); evaluating these technologies through laboratory-based 
measurements (phase 2); design and execution of the first field campaign (phase 3); design of the 
second field campaign (phase 3); a preliminary statistical analysis of the data from the first field 
campaign (phase 4); and establishing a Bayesian framework for uncertainty quantification (phase 
4). 

Results from the first field campaign highlight the different capabilities of the measurement 
techniques and their susceptibility to various environmental factors. For example, QOGI 
technologies are best suited to measure smaller releases, while the airborne SWIR imaging works 
well for larger releases. The truck mounted TDLAS system performed well for all release rates.  

The truck mounted TDLAS system provided the most unbiased estimates and appeared least 
susceptible to environmental factors. The accuracy of QOGI estimates degraded at higher wind 
speeds and flow rates, likely due to the limited framerate of the camera. The OGI estimates were 
also significantly less accurate for tank releases, possibly because of the large distance between 
the release and the camera/operator. The airborne SWIR system systematically underestimated 
emission rates. Although the exact cause of this bias is unclear, it may be related to suboptimal 
sky conditions during the measurements. 

When interpreting these results, it is important to understand the context of the measurements and 
how they may depart from real-world conditions. For example, the truck operator knew both the 
location and height of the releases and was therefore able to adjust their plume transits accordingly, 
while, during an actual survey, they may only have a general understanding of the location of a 
candidate emission source, or there may be more than one source. Moreover, the truck will be 
confined to nearby roads, which may not be oriented in a manner conducive to a plume 
measurement. Likewise, the drone operator would likely spend more time than the ~20 minutes 
allotted during the field measurements to characterize a single plume, and, under real-world 
conditions, the aircraft operator may wait for clearer skies to carry out their measurements.  

Crucially, the objective of the field campaign is not to conclude that one technology is “better” 
than the other. Instead, field measurements serve to evaluate performance of candidate 
technologies under industrially relevant yet well-defined conditions on an individual basis, and to 
assess their sensitivity to uncertain environmental factors. These results will be compared with 
statistical models that provide both an emission estimate as well as associated uncertainties. 
Understanding the uncertainties associated with emission quantification technologies is critical 
when making decisions about the cost effectiveness of candidate fugitive emission management 
plans (FEMPs), when compiling an emissions inventory, and when assessing regulatory 
compliance.  

In terms of statistical modeling, work has focused on developing a Bayesian framework for 
estimating methane emissions using truck mounted TDLAS measurements and an inverse 
Gaussian plume model. Preliminary results have been derived from synthetic concentration 
measurements developed from a CFD-large eddy simulation of a methane plume. Ongoing work 
is focused on assessing the experimentally derived TDLAS measurements with the Bayesian 
model, and extending this approach to other measurement systems. 
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4. FUTURE WORK 
Future work is focused on three principal areas: (1) the second field campaign; (2) statistical data 
analysis; and (3) alternative FEMP equivalency modelling.  

4.1 Second field campaign  
The second field campaign is tentatively planned for September 25-October 1, with fallback dates 
of October 17-23. The team is planning to include three aircraft-conveyed technologies, a truck-
based provider, as well as additional QOGI team. Several of the technology providers who 
participated in the first field campaign have been invited to participate in the second field 
campaign. The second campaign will be designed to assess the consistency in the performance of 
the technologies from the first field campaign, and to fill in gaps in wind speed and emission rates. 

4.2 Statistical data analysis 
The preliminary statistical analysis presented in Section 2.4 will be augmented with the results of 
the second field campaign. For each emission quantification technology, measured emission rates 
will be modelled against the true release rates using various statistical models. The variables which 
were found to impact the precision and accuracy of measured emission rates in this report, such as 
the wind speed, will be included in the models. Different models such as generalised linear models 
and hierarchical Bayesian models will be explored and the model which most accurately models 
the errors will be chosen to give final estimates of uncertainty.  

4.2 Alternative FEMP equivalency modeling 
The alternative FEMP equivalency modelling will test the potential for application of various 
emission quantification technologies in a FEMP. Both a default FEMP (as per Alberta Energy 
Regulator Directive 060) and various alternative FEMPs will be modelled and feasibility of a 
technology’s use in an alternative FEMP will be determined by comparison of the quantity of 
fugitive emissions to those released in the default FEMP. Modelling will be completed using 
Arolytics’s proprietary AroFEMP simulation tool and the data from the Fugitive Emission 
Management Program Effectiveness Assessment Study.   
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