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EXECUTIVE SUMMARY 

In September 2021 the University of Waterloo, Arolytics, Inc., and Carbon Management Canada 

commenced a 3-year study focused on assessing the potential of existing and emerging 

technologies for measuring methane emissions from upstream oil and gas sources, and developing 

uncertainties for these estimates. This second interim report summarizes progress up to January 

2023, with a focus on the second field campaign, held at Carbon Management Canada’s Field 

Research Station between September 25-October 1 2022. 

The second field trial examined the performance of four technologies operated by five providers: 

two quantitative optical gas imaging (QOGI) systems; a truck-based tunable diode laser-absorption 

spectroscopy (TDLAS) system; and airborne near infrared (NIR) and long-wavelength infrared 

(LWIR) hyperspectral (HS) imaging systems. These technologies were used to quantify controlled 

emissions from: a 1.7 m stack, a 3.4 m stack, a 4.8 m stack, a 13 m unlit flare, from the top of a 

2.7 m storage tank, and from the side of a shed. Emission rates ranged from 0.25 kg/hr to 80 kg/hr. 

On average, the FLIR QOGI system provided the most accurate estimates under all conditions. 

The QOGI technologies (FLIR GFx320/QL320 and OPGAL EyeCGas/EyeCSite) had similar 

performance and with airborne NIR measurements, and were generally more accurate compared 

to the truck-based TDLAS system. The accuracy of these systems was highest for the stack and 

unlit flare releases, and considerably lower for releases from the storage tank and shed. This was 

attributed to the complex aerodynamics surrounding the structure, and, in the case of the QOGI 

systems, distance, obstructed lines-of-sight, and reflectance from the metallic surfaces.  

The performance of the QOGI technologies depended strongly on the distance between the release 

and the cameras, the ambient wind, the release rate, and the temperature difference between the 

gas and the background. The FLIR QOGI system outperformed the OPGAL system for releases 

from the stack and unlit flare, while the OPGAL system was more accurate for the tank and shed 

releases. It is unclear whether this is due to the different algorithms used by the systems, or the 

different level of experience of the operators. 

The airborne NIR system performed similarly to the QOGI systems, while the LWIR HS systems 

had a much lower accuracy compared to the other technologies due to operational problems and 

issues with the emissions quantification algorithm. The NIR HS system performed considerably 

better in the second field campaign compared to the first field campaign, likely due to the clearer 

sky condition. Both the LWIR and NIR HS systems require wind speed as an input, and are 

therefore susceptible to errors in the local wind conditions. 

The remainder of the project, which ends in December 2023, will focus on: developing an 

improved quantification technique for the LWIR HS imaging system; understanding the impact of 

wind variability on the truck-based TDLAS system; evaluating the potential of incorporating the 

quantification systems into an emissions management plan through Monte Carlo simulations; and 

development of a Bayesian framework for estimating the uncertainty of emissions estimates. 
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1.0 INTRODUCTION 

1.1 Purpose and scope 

As part of its strategy to address climate change, the Government of Canada has pledged to reduce 

methane emissions from the oil and gas sector by 40-45% below 2012 levels by 2025 [1, 2], with 

a further goal of reducing methane emissions by 70% by 2030 [3]. To meet these goals, and to 

fulfill their obligations under emerging provincial emission regulations, Canada’s oil and gas 

producers need tools that can quantify methane emissions. Regulators need methane quantification 

tools to assess compliance of industry to these regulations. Climate modelers need the data from 

these tools to understand how emissions from Canada’s oil and gas industry contribute to climate 

change, information that provincial governments and the Federal government will use to inform 

policy needed to fulfil Canada’s international treaty obligations and to avoid the worst outcomes 

of climate change.  

A diverse suite of candidate methane emission quantification tools is available to Canada’s oil and 

gas industry. There is unlikely to be a “one-size-fits-all” solution: techniques designed to measure 

localized, persistent fugitive leaks from valves or gaskets may not be suitable for diffuse and 

intermittent emissions vented from storage tanks, surface casing vents, and CHOPS (cold heavy 

oil production with sand) wells. Persistent emissions may be identified reliably using periodic 

surveys, while highly variable or intermittent emissions may require continuous monitoring. 

Recent advancements in optoelectronic hardware that include mid-wavelength infrared (MWIR) 

cameras, tunable diode laser absorption spectroscopy (TDLAS) in a range of configurations, and 

hyperspectral imaging from ground-based, aerial, and orbital platforms have augmented and 

disrupted the field of traditional approaches based on extractive sampling (e.g., the Bacharach HI 

FLOW sampler) although their accuracy, precision, and best practices under various 

measurement scenarios are still being refined.  

Choosing the “right tool for the job” depends, to a large extent, on the uncertainty associated with 

the methane emission estimates. This is particularly the case in a regulatory context. For example: 

How certain is it that an operator is complying with emissions? Is it practical to impose a limit on 

emissions that cannot be measured with reasonable accuracy? What is the most cost-effective 

technology to deploy for a given measurement scenario?  To make these decisions, operators and 

regulators need to understand the uncertainty with which emissions may be quantified. Climate 

modelers and policy makers also need to understand the uncertainties attached to reported emission 

inventories in order to draft effective regulations that safeguard the environment without unduly 

penalizing oil and gas producers. 

With these goals in mind, the Petroleum Technology Alliance Canada (PTAC) and Clean 

Resources Innovation Network (CRIN) engaged the University of Waterloo (UW), Arolytics, Inc. 

(Arolytics), and Carbon Management Canada, Inc. (CMC) to undertake a three-year research 

program entitled “Evaluation of Emission Quantification Technologies”. The program is funded 

by the Alberta Upstream Petroleum Research Fund (AUPRF) through PTAC, the Government of 

Canada's Strategic Innovation Fund through CRIN, and the Natural Sciences and Engineering 

Research Council (NSERC) via the Alliance program. 

The UW/Arolytics/CMC team brings together the diverse and complementary range of expertise 

needed to fulfill these objectives. The UW team is led by Professor Kyle Daun from the 

Department of Mechanical and Mechatronics Engineering, an expert in optical gas imaging, laser-

based diagnostics, remote sensing, and uncertainty quantification. Daun is joined by Professors 
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Christiane Lemieux and Audrey Béliveau from the Department of Statistics and Actuarial Science. 

Lemieux’s research interests focus on Monte Carlo simulations, while Béliveau studies Bayesian 

statistics and uncertainty quantification. Arolytics’s participation is coordinated by Kevin Fritz, an 

expert in methane emissions quantification and FEMPs; Fritz also has extensive experience in 

methane emissions field measurements. Finally, CMC’s participation is managed by Kirk Osadetz, 

a geoscientist and expert in methane emissions from Canada’s oil and gas industry. Osadetz is 

CMC’s Programs Development Manager and also manages CMC’s Field Research Station, where 

candidate quantification technologies will be evaluated under industry-relevant conditions. 

Research activities are organized into four project phases: 

Phase 1: Quantification tool review interim summary table 

Phase 2: Recommendation of viable quantification tools 

Phase 3: Field campaign design and execution 

Phase 4: Data analysis and summary 

These research activities are guided with input and oversight from PTAC, CRIN, and members of 

the Industrial Steering Committee (ISC), a subcommittee of PTAC’s Air Research Planning 

Committee (ARPC). 

1.2 Phase 1: Quantification tool review interim summary table 

Research commenced in September 2021 with Phase 1. The outcome of this phase, which was 

completed in January 2022, was a comprehensive survey of 23 candidate emission quantification 

technologies, along with an assessment of their capabilities, their technological readiness level, 

and their applicability to measuring emissions at the component, facility, and site level. These 

technologies are summarized in Appendix A.  

In general, each technology derives an emission measurement, Q (e.g., kg/hr) by combining a 

methane concentration measurement with an advection/transport model. In this regard methane 

emission quantification technologies may be organized according to the nature of the data they 

collect, which, to a large extent, determines their suitability for various emission scenarios and 

how uncertainty estimates may be derived. This is shown schematically in Appendix A.  

Some technologies are based on point-concentration measurements, like short-path TDLAS, which 

provide a local concentration of methane, c (e.g., kg/m3). These measurements are combined with 

a plume transport model (e.g., the Gaussian plume model [4, 5] or backwards Lagrangian 

stochastic model [6]) that incorporates local anemometry measurements to obtain an emission rate 

estimate. Other techniques are based on open-path measurements over long distances, like dual 

comb frequency spectroscopy [7], in which case the outcome is a column density, , integrated 

along the optical path (ppmm or kg/m2); this data may also be combined with a wind speed 

measurement to obtain an emission rate estimate. 

A third category of imaging technology generates a 2D map of column densities; an example 

MWIR quantitative optical gas imaging (QOGI). In some cases the emission rates are inferred by 

combining the column density map with a wind measurement, while, for sufficiently high frame 

rates, a 2D intensity-weighted velocity field may be inferred by feature tracking between 

successive images. Finally, a fourth class of technology is used to measure emissions from 

confined flows (e.g., ducts) using gauges. The summary table and diagrams are in Appendix A of 

this report. 
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Based on this analysis, a subset of these technologies were identified for further analysis during 

subsequent project phases: QOGI; truck-based TDLAS; drone-based TDLAS; and aerial near-

wavelength infrared (NIR) and long-wavelength infrared (LWIR) hyperspectral imaging.  

A brief description of each technique is provided below: 

1.2.1 Quantitative Optical Gas Imaging (QOGI) using MWIR broadband cameras 

This technique is based on imaging the thermal radiation emitted by a hydrocarbon plume that is 

hotter than its background (white plume) or the background thermal radiation that is absorbed by 

a plume colder than its background (black plume). The spectral intensity from the scene enters the 

camera aperture and is imaged through a broadband filter and onto a focal plane array (FPA). The 

broadband “cold filter” and FPA are located behind a “cold shield” and maintained at cryogenic 

temperatures. This is done to enhance the thermoelectric conversion efficiency of the sensor and 

avoid blackbody radiation from the sensor, camera chassis, and the filter, which would otherwise 

contaminate the signal and preclude quantitative interpretation of the image.  

The cold filter defines the measurement spectrum; a typical choice is 3.2-3.4 m (FLIR GFx320), 

which is aligned with a primary vibrational-rotational absorption band corresponding to the C-H 

stretching mode for hydrocarbons (~3.34 m, Fig. 1). The brightness of each pixel corresponds to 

the spectral intensity incident on the pixel, integrated over this wavelength band. 

The column density of gas along each line-of-sight,  (kg/m2), is then inferred from the pixel 

intensity by inverting a spectroscopic model. This requires knowledge of: (1) the plume 

composition (usually taken to be methane); and, in the case of white plumes, (2) the plume and 

ambient temperatures. In the case of white plumes, the plume temperature is usually taken to be 

that of the ambient air temperature, following the assumption that gas emerging from a leak will 

quickly reach thermal equilibrium with the surrounding air. In the case of gases other than 

methane, a conversion chart may be applied to correct the column densities.  

The MWIR measurement spectrum is not the optimal choice based solely on the sensitivity of the 

pixel intensity to methane column density. Hydrocarbons have a secondary vibrational-rotational 

band at ~7.6 m (LWIR) which is far more intense than the 3.34 m feature because matter at 

ambient temperatures emits more thermal radiation at wavelengths closer to 10 m. However, 

while broadband LWIR cameras may be used to visualize methane, quantitative analysis is 

precluded by significant emission features from ambient H2O, as seen in Figure 1.  

The 2D column density map is then combined with an advection model to obtain an overall mass 

flux according to 

 ( ) ( ) ( )
0

Q d


=         u n  (1) 

where () is the column density at a position  over the control surface, u is the 2D projected 

velocity, and n is the 2D normal vector. The advection model is inferred from the apparent motion 

of the plume in successive images. Unlike the spectroscopic model, the advection model is a 

proprietary and largely “black box” aspect of commercial QOGI software. The advection 

calculation may be affected by artifacts like “pooling” and background motion due to, e.g. moving 

clouds or vegetation. 
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Figure 1: Emission spectrum for methane and water vapor at 300 K (a “white plume”). (CH4: L 

= 20 cm,  = 1, H2O: L = 200 cm,  =0.1.) Broadband QOGI measurements are constrained to 

the MWIR because of the water lines over the LWIR. 

1.2.2 Truck and drone-based TDLAS 

Tunable-diode laser absorption spectroscopy is a low-cost and reliable way to measure the 

concentration of a particular gas, e.g., methane. A distinguishing feature of tunable-diode lasers is 

that they may be “tuned” across a narrow range of wavelengths by adjusting the supply current; in 

the case of gas sensing, the wavelengths capture one or more spectral lines corresponding to 

defined transitions between quantized vibrational-rotational states that act like a “fingerprint” for 

the species of interest (Figure 2). In the case of a homogeneous gas over a path length L, the gas 

concentration may be inferred from the Beer-Lambert Law,  

 ( )L o expI I L  = −  (2) 

where η is the wavenumber (cm-1, the inverse of wavelength), Iη0 and IηL are the incident and 

transmitted laser intensity, and η is the spectral absorption coefficient, which is proportional to 

the number density (molecules/m3) of the species of interest. Inverting Eq. (2) results in a column 

density, e.g. ppmm or kg/m2, which is proportional to the number of molecules along the path 

length. 

This approach is called direct absorption spectroscopy (DAS) and is the simplest implementation 

of TDLAS. In wavelength modulated spectroscopy (WMS), the wavelength is tuned rapidly over 

a single line by harmonically varying the supply current, and the absorption coefficient/column 

density is then inferred from the AC and DC components of the transmitted signal; WMS provides 

superior signal-to-noise ratio (and hence a lower detection threshold) compared to DAS and is 

therefore the most common approach for methane detection.  
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Figure 2:Near-Infrared (NIR) absorption spectrum for CH4 used for TDLAS. Boreal Laser’s 

GasFinder 3 instrument uses wavelength-modulated spectroscopy to infer the concentration based 

on an absorption line at 1654 nm (6046 cm-1). This part of the spectrum is also the basis for the 

GHGSat instrument (1630-1655nm) based on absorbed sunlight. 

TDLAS may deployed in a wide range of configurations to detect methane. For example, Bridger 

Photonics’ Gas Mapping LiDAR system consists of a TDLAS laser operating in WMS mode 

mounted on a movable gimbal on an aircraft that overflies the methane plume [8]. The ground-

reflected portion of the laser is detected by a sensor onboard the aircraft. The ground reflectivity 

and column density may be inferred from the backscattered signal. Column densities obtained at 

different view angles are then tomographically-reconstructed to form a 3D concentration map of 

the plume. Finally, the concentration profile is combined with an advection model based on 

modeled (e.g., Meteoblue) or locally measured wind speeds to find mass flow rates. In this 

configuration, the laser path is defined by the laser, the reflected light, and the receiver. This 

system's main drawback is that it only works if enough laser light is reflected from the ground. 

Consequently, the Bridger system does not perform well on wet or snow-covered surfaces, which 

absorb most incident radiation.  

Alternatively, the TDLAS sensor may be configured to measure the gas concentration over an 

enclosed path. In this approach, the volume is often terminated with a mirror to extend the path 

length and increase the instrument's sensitivity. In this configuration, the TDLAS instrument 

provides a time-resolved point concentration measurement (e.g., ppm, kg/m3). A set of 

concentration measurements made by moving the sensor through the plume is then combined with 

an advection model to obtain a mass flow rate.  

Two common approaches for traversing the sensor through the plume are: truck-based TDLAS 

and airborne TDLAS (e.g., drone-mounted.) In the case of the drone mounted TDLAS sensor 

deployed in the first field campaign, the drone flies a descending helical path around the methane 

source; the helical path defines a control surface, A, which may then be combined with a wind 
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measurement to determine the total release rate. In one approach, called the cylindrical flux plane 

approach [9], the emission rate is estimated from 

 ( ) ( ) ( )
A

Q c dA=  r u r n r  (3) 

where r is the position vector, u(r) and c(r) are the wind velocity vector and concentration at r, 

and n(r) is the unit normal vector. Alternatively, the emission rate may be found from an inverse 

Gaussian plume model, which is discussed below. The wind velocity may be found from 

anemometry (e.g., mounted on the drone) or based on the power required for the drone to maintain 

its position in a cross-wind. This technique, along with other approaches for inferring methane 

release rates from drone measurements, are summarized in Ref. [9]. 

In the case of a truck-mounted TDLAS system, concentration measurements are made at various 

plume transects. Inferring the emission source that caused these concentrations amounts to solving 

an ill-posed inverse problem, since an infinite set of candidate sources could account for the 

observed concentration measurements. Accordingly, it is necessary to impose additional 

information that connects the source to the concentration measurements; the simplest approach is 

to assume a Gaussian plume model [4], which assumes that the time-averaged concentration field 

from a steady release is given by 

 ( )
( ) ( )

2 2 2

2 2 2
exp exp exp

2 2 2 2x y z z z

z h z hQ y
c

u

    − +   
= − + − −      

               

r  (4) 

where r = (x, y, z) is the position vector, u is the wind speed, h is the effective release height, and 

y and  z are coefficients related to atmospheric conditions. In Eq. (4) the x-axis is aligned in the 

downwind direction. Equation (4) is rearranged to express Q in terms of the concentration 

distribution, which are approximated by the finite set of truck measurements, {c}. Other choices 

for inverting the concentration measurements are available, including the backwards Lagrangian 

stochastic approach [6]. 

The main drawback of both the drone-mounted and truck-mounted TDLAS systems is that they 

assume that the release and wind are time-invariant, while both may change with time. The 

previous report showed the emission rates derived from the drone-based measurements were 

particularly susceptible to the errors introduced by this approximation.  

1.2.3 Aerial NIR and LWIR hyperspectral imaging 

As noted in Sec. 1.2.1., a key limitation of broadband QOGI cameras is that the detected spectral 

intensity is integrated over the measurement spectrum. Consequently, the camera can only be used 

to measure pure mixtures (or mixtures of known composition) and, in the case of “white plumes” 

the plume temperature must be specified. These limitations may be overcome through 

multuispectral (MS) or hyperspectral (HS) imaging.  

MS cameras generate a set of images of the same scene, either using plenoptics/microlenses or 

dichroic lenses; the split images pass through filters, and are then imaged onto a segmented FPA. 

Conceptually, this is equivalent to multiple simultaneous broadband cameras viewing the same 

scene, each containing a distinct cold filter. Typical MS cameras generate on the order of ~10 

broadband images; the ONERA SIMAGAZ camera, for example, generates four images [10]. The 

filters may be chosen to align with vibrational-rotational bands of species-of-interest. 
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In contrast, HS cameras generate “data cubes” containing hundreds or thousands of images, each 

at a distinct wavelength. In many cases, this is done through interferometry; this type of HS camera 

is called an imaging Fourier transform spectrometer (IFTS). In this approach, the image entering 

the camera aperture is split, e.g., using a beamsplitter. The split images then travel slightly different 

distances and are then recombined; due to the different distances travelled the resulting images are 

brighter or darker than the original image due to wave interference effects. Many images are 

collected for each optical path difference, and the resulting interferogram may be inverse Fourier-

transformed to produce the data cube.  

Two types of IFTSs are analyzed in the second field trial, each of which works over a distinct 

measurement spectrum and according to a different measurement principle. GHGSat has adopted 

their orbital package [11] into an airborne system; it consists of a Fabry-Perot IFTS that operates 

between 1630-1655 nm, over the NIR spectrum. Thermal emission from the gas and ground is 

negligible over this wavelength range; instead, the camera images sunlight transmitted through the 

atmosphere, reflected from the ground, and transmitted back to the camera. The methane column 

density is inferred from the attenuation of the transmitted light via a multilayer spectroscopic 

model, and then combined with an advection model to find the emission rate.  

There are several schemes that may be used to convert the column density map into an emission 

rate. In the integrated mass enhancement approach the emission rate is approximated by [11, 12] 

 ( )eff eff

1eff eff

,
N

i i

iA

u u
Q x y dA A

L L
 

=

=    (5) 

where ueff is the wind speed and Leff is a characteristic plume length, taken to be the square root of 

the plume area, found using a Boolean plume mask that distinguishes plume pixels from 

background pixels. A second approach, called the cross-sectional method, infers Q by measuring 

the mass flux across M column transects at various distances downwind from the source and 

parallel to the wind: 

 ( )eff

1

,
M

j

j

u
Q x y dy

M


=

    (6) 

where x and y are oriented in the downwind and crosswind directions, respectively. 

Telops and LiDAR Systems, Incorporated (LSI) also use a downwards looking IFTS (Telops 

Hyper-Cam xLW Airborne Mini), but one that operates at much longer wavelengths (7.4-12.5 

m). Instead of relying on transmitted sunlight, the camera exploits the thermal contrast between 

the gas and the background to infer column densities. As already noted, thermal emission over the 

LWIR spectrum is significantly greater compared to the MWIR spectrum used by broadband 

cameras; the spectral resolution of the IFTS makes it possible to disentangle contributions of 

methane and H2O, which cannot be done using broadband cameras. 

In contrast to the Bridger airborne GFL system, which uses a laser to interrogate the plume, the 

GHGSat and Telops systems are entirely passive; they can also image much larger areas compared 

to the Bridger system, but generally have lower detection thresholds. The GHGSat system is 

sensitive to ground reflectance and cloud cover, which affects the incident and reflected sunlight. 

The sensitivity of the Telops system depends on the thermal contrast between the plume and the 

background surface.  
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A key drawback of HS cameras in general is the time needed to generate each interferogram, 

typically on the order of minutes. Also, in the case of gas flows, temporal changes in intensity 

fluctuation caused by the moving gas become convolved with intensity changes caused by wave 

interference (interferometry), leading to scene change artifacts [13].  

1.3 Phase 2: Analysis of candidate emissions quantification technologies 

This project phase has two components: Phase 2a, led by Arolytics; and Phase 2b, led by UW. 

1.3.1 Phase 2a: Recommendation of the most viable quantification tools  

Arolytics personnel used Arolytics’ proprietary AroFEMP simulation code to predict the 

performance of three technologies identified in Phase 1 (two of which were evaluated during the 

field campaign) as if they were incorporated into an alternative FEMP (alt-FEMP) program. This 

procedure considered various scenarios in which operators would use candidate technologies to 

detect and quantify methane emissions, and then action repairs over a calendar year based on the 

outcome of these surveys. The overall benefit of a given technology, in terms of the reduction in 

emissions (e.g., kg/year), were evaluated through a Monte Carlo simulation. Emission scenarios 

were sampled randomly from probability densities that represent operational conditions, and 

emissions were detected and quantified with probabilities derived from manufacturer-specified 

characteristics of the quantification technologies or previous field trials identified in Phase 1. 

Repeating this procedure multiple times amounted to an integration over the probability densities, 

with the outcome of the expected reduction in emissions. 

In preparation for this project phase, Augustine Wigle, a UW PhD student under the supervision 

of Lemieux and Béliveau, spent a four-month internship with Arolytics to help them verify their 

code and improve its performance (Wigle was sponsored by a Mitacs Business Strategy Internship 

and paid outside of the project budget). The next step in Phase 2a was to derive probabilities for 

representative emissions probability profiles. This was done using emissions data from the 

Fugitive Emission Management Program Effectiveness Assessment Study (FEMP-EA), a 

collection of fully-randomized, QOGI-based bottom-up emission measurements from 

approximately 200 oil and gas producing sites in the Red Deer region [14]. 

The four technologies that were modelled are: airborne light detecting and ranging (LiDAR) 

(Bridger Photonics), airborne NIR hyperspectral imaging (GHGSat), truck mounted TDLAS 

(Boreal Laser), and QOGI using the FLIR GF320/QL320 system. The QOGI system was modelled 

as conducting the default FEMP required by the Alberta Energy Regulator’s (AER) Directive 060 

Section 8.10 [15]. If the total fugitive emissions of an alt-FEMP were equal to or less than the 

fugitive emissions produced by the default FEMP, then the alt-FEMP was deemed equivalent and 

the alternative technology feasible for deployment in an alt-FEMP. The results of the modelling 

are presented in Section 4.0. 

1.3.2 Phase 2b: Laboratory trials and development of digital twin systems 

In parallel, the UW team is conducting laboratory-scale analysis and numerical simulations to 

further investigate the capabilities of the most promising technologies identified in Phase 1. 

Specifically, Phase 2b activities have focused on developing and quantifying the performance of 

spectroscopic and optical flow models for QOGI, and the derivation of an inverse Gaussian plume 

model (IGM) for interpreting truck based TDLAS measurements.  

Research into QOGI technology was led by Michael Nagorski, a MASc candidate under Daun. 

Laboratory measurements were carried out using a FLIR GFx320 camera and QL320 tablet 
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system, as well as a four-channel Telops multispectral (MS) channel provided by CMC. Nagorski 

developed an “in-house” version of the QL320 tablet based in Matlab® and validated its 

performance through simulated measurements generated using a CFD Large Eddy Simulation of 

a methane plume, as well as plumes generated with a heated vent apparatus. The simulated 

measurements were used to validate the spectroscopic model used to infer the species column 

densities, and the optical flow algorithm used to obtain the velocity field [17, 18].  

In the heated vent experiments, infrared images captured using the GFx320 camera were 

interpreted using the QL320 tablet and UW’s in-house code. In most cases, UW’s code matched 

or exceeded the performance of the QL320 tablet with regards to the overall mass flow rate when 

using a bulk velocity estimated from the images, but the framerate of the GFx320 was too low for 

the in-house optical flow algorithm to provide robust velocity fields. A subsequent meeting with 

Providence Photonics, the originator of the QL320 system, held in late 2022 provided further 

insights into the proprietary aspects of this technology [19]. While the exact numerical 

methodology was not disclosed, it is believed that the algorithm is built upon one of the optical 

flow algorithms offered by the open-source computer vision library OpenCV [20], which are 

fundamentally similar to those tested in-house. 

These lab-scale experiments highlighted measurement conditions that would be problematic for 

conducting QOGI emission estimates, especially emissive “white” plumes of uncertain 

temperatures. As noted in Sec. 1.2.1, since the GFx320 camera has a single measurement spectrum, 

simultaneously inferring the methane column density (ppmm) and temperature amounts to solving 

one equation with two unknowns. Consequently, it is necessary to assume a plume temperature 

when calculating emission rates in these scenarios; in cases where the plume temperature is 

uncertain, the corresponding emission rates may be highly inaccurate.  

While the Telops camera could visualize gas plumes at a high frame rate, quantitative emission 

estimates were not possible due to thermal emission from the uncooled filters. Further details of 

both the GFx320/QL320 and Telops test results were provided in the previous interim report [21]. 

Inverse Gaussian plume modelling (IGM) research is led by MASc student Daniel Blackmore with 

assistance from Dr. Paule Lapeyre, a postdoctoral fellow, both under Daun’s supervision. The IGM 

(Figure 3  [4, 5];) was validated using concentrations from a CFD-Large Eddy Simulation of a 

methane plume, following Caulton, et al. [4]; these simulations were also used to evaluate how 

various factors (e.g., plume height, measurement location, wind speed) affect quantification 

uncertainty using this technique.  

Both the QOGI and IGM measurement models have been deployed to interpret field measurements 

carried out in Phase 3. The IGM is also the basis for initial Bayesian uncertainty quantification 

analysis carried out under Phase 4. 
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Figure 3: Schematic of an inverse Gaussian plume model (IGM) calculation [5]. 

1.4 Phase 3: Field campaign design and execution 

The project plan called for two field campaigns, both of which to be executed at the CMC Field 

Research Station (FRS) near Brooks, Alberta. The rationale for having two field campaigns was: 

(1) technologies could be evaluated at different times of year, in order to isolate the influence of 

environmental factors (e.g., ambient temperature, snow cover, etc.); (2) some key technologies 

that may not be available for the first field campaign may become available for the second 

campaign; and (3) lessons learned from the first campaign may be incorporated into the planning 

of the second campaign.  

Ultimately, due to scheduling limitations, the field campaigns were conducted under similar 

environmental conditions, but did allow for some providers who were unavailable in the first trial 

to participate in the second campaign. Moreover, some technologies (QOGI, airborne NIR HS 

imaging) were evaluated at both campaigns, which provided important insights into the 

consistency of these technologies. 

1.4.1 Summary of first field campaign 

The first campaign was conducted during April 20th-26th, 2022. Participants included AGAT 

Technologies (GF320/QL320), GHGSat (airborne NIR HS imaging), Boreal Laser (truck-mounted 

TDLAS), and the Southern Alberta Institute of Technology (SAIT, GF320/QL320 and drone-

mounted TDLAS). Each operator participated on a subset of the field trial days, with some overlap. 

Telops/LSI had intended to contribute their airborne LWIR HS system, but were unable to 

participate due to aircraft issues.  

Releases were conducted from a range of industrially relevant scenarios, including a 1.42 m tall 

stack, a 3.18 m tall stack, a 13 m tall unlit flare, and from the top of a 2.79 m tall storage tank. The 

release heights were chosen to explore how plume interactions with the ground as well as wind 

speed, which increases with release height, impacted emission quantification. The tank release was 

used to assess how aerodynamic/structure interactions and reflection from a metallic surface 

(which are more pronounced in the MWIR spectrum compared to the visible spectrum) may affect 

QOGI estimates made with the GF320/QL320 system. The different release heights also provided 

some indication as to how the distance between the release and the camera aperture may affect 

QOGI estimates.  
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Releases were made from a natural gas trailer; an assay showed the natural gas consisted of 94.2% 

methane, 3.4% ethane, 1.1% propane, and 1.3% minor components, predominantly N2 and O2 in 

roughly relative atmospheric abundances. The gas was released through a regulator valve and 

flowed through a heat exchanger/conditioner that heated the cold gas (due to the Joule-Thomson 

effect) to ambient temperature. The conditioned gas then passed through a mass flow controller 

and discharged to the atmosphere in a manner that depended on the release scenario.  

Release rates ranged from 9.25 kg/hr (5.81 standard litres per minute, SLPM) to 50 kg/hr (1164 

SLPM); this range was chosen to represent key industrial scenarios, as well as the United States 

Environmental Protection Agency’s (US EPA’s) 10 kg/hr detection threshold for candidate 

methane detection technologies under the Clean Air Act [22]. Most releases lasted 10-15 minutes 

(with longer releases for airborne measurements), and there was an interval of at least 5 minutes 

per release to ensure that residual methane from the previous release was cleared by the wind prior 

to commencing a new release. Emission rates were chosen quasi-randomly to disguise the emission 

rates from the providers and to avoid unintentional correlations between release rate and wind 

speed. The combination of release rate and release scenario resulted in a total of 383 measurement 

events, with a number of “null releases” and duplications.  

Technology providers were responsible for conducting measurements, analyzing data, and 

providing their best estimates for each release, with two exceptions: (1) the SAIT GFx320/QL320 

system was operated by Nagorski (UW); (2) Boreal Laser carried out their own backwards 

Lagrangian stochastic (BLS) analysis of their TDLAS data, but they also provided their raw data 

to Blackmore (UW), who conducted an independent IGM analysis on the same data. In all cases 

the provider/analyst was not aware of the true release rate until after they computed their estimates. 

Providers/analysts were requested to provide their estimates within 3 weeks of the field 

measurement. This constraint was satisfied except in the case of Boreal Laser, since key personnel 

were unavailable immediately following the field campaign. 

Details of the first field campaign are provided in the previous interim report [21], and a summary 

of the performance to the technologies is included in Appendix B. Key findings include: 

Truck-mounted TDLAS (Boreal): This technique provided the most accurate and unbiased 

estimated and appeared least-susceptible to environmental factors. Both the IGM and BLS models 

provided estimates of similar quality. Estimates of stack emissions were more accurate than 

emissions from the top of the storage tank.  

Drone-mounted TDLAS (SAIT): Only 15 measurements were attempted by the SAIT team, and a 

majority of these were considered “missed detections” due instrument failure or unfavorable 

measurement conditions (e.g., unsteady wind.) The release estimates obtained from the drone were 

the least accurate of those from the first field trial. The SAIT team remarked that the short duration 

of the measurement events differed from the procedures they normally follow, which involved 

making a larger number of measurements per release. 

QOGI (AGAT, UW): QOGI estimates of stack releases were more accurate than those made from 

on top of the storage tank; this was attributed mainly to the increased measurement distance in the 

latter scenario. In general, QOGI estimate accuracy dropped for higher wind speeds and flow rates, 

likely due to limitations in the camera framerate and the advection algorithm. While no head-to-

head comparison was possible, emissions estimated by the UW operator using the GFx320/QL320 

system from SAIT were more accurate than those found by AGAT, despite the considerable 
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experience of the AGAT operator. We speculated that this is because the SAIT QL320 tablet was 

newer than the one used by AGAT, and may incorporate improvements to the advection model.  

Airborne NIR HS imaging (GHGSat): Measurements were conducted under conditions that the 

operator reported as suboptimal due to partial cloud cover. Overall, the provider mostly 

underestimated the true emission rates. There was no apparent correlation between wind speed and 

estimate accuracy; rather, cloud cover appeared to be the main factor that limited estimate 

accuracy. The provider reported that cloud cover can affect the estimate by attenuating the incident 

sunlight used to measure the methane, and by casting a “mottled” pattern on the ground that 

confounds plume identification. In contrast to the other providers, GHGSat provided uncertainty 

estimates for their emission rates, although these underestimated the true error in the estimates. 
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2.0 EXECUTION OF THE SECOND FIELD CAMPAIGN 

This report focuses on the second field campaign of the project, carried out between September 

25th and October 1st 2022. 

 

2.1 Location and equipment 

Measurements took place at the CMC FRS near Brooks AB, the site of the first field campaign in 

April 2022 (Figure 4). This equipment includes various stacks for releasing methane, storage tanks, 

valves, a rented gas trailer, meteorological sensors, and safety equipment. Operations are 

coordinated from an ATCO trailer, while most releases (except for storage tanks and shed) took 

place in an open field approximately 100 m north of the trailer. The location of the assets used for 

the field campaign is shown in Figure 5.  

 

Figure 4: Field trial location 
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Figure 5: Trailer and release locations 

Meteorological sensors include a Davis WeatherLink Pro + weather station affixed to the ATCO 

trailer that contains a cup-and-ball anemometer for wind speed; it also provides temperature, 

humidity, and solar irradiation data. Other meteorological data comes from a portable 81000-L, 

RM Young UVW 3D ultrasonic anemometer with a CR3000 measurement and control datalogger 

set up next to the release locations, and a second 3D ultrasonic anemometer from the University 

of Colorado located next to the FRS ATCO trailer. A third set of wind data comes from an 

ultrasonic anemometer operated by Boreal laser during their measurements. Additional weather 

information is obtained from Meteoblue [23].  

Emissions were released following a procedure identical to the one used in the first field campaign. 

Natural gas (94.2% methane by volume) was released from pressurized tanks via a regulator valve. 

The temperature of the expanding gas dropped due to the Joule-Thomson effect, which was 

returned to that of the ambient air by following the gas through a heat exchanger. The natural gas 

then flowed through an Alicat Model MCR-2000SLPM -D-PAR mass flow controller (calibrated 

on July 31 2022), before finally being vented out of the stack, tank, or shed, depending on the 

release type being investigated. The setup is shown in Figure 6. The flow rate was inspected and 

logged digitally during the releases, revealing very little variation in the flow rate. An example 

flow rate log is shown in Appendix C. 
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Figure 6: Controlled release setup 

2.2 Emission quantification technologies and providers 

The second field campaign focused on four technologies operated by five providers: QOGI (two 

providers), truck-based TDLAS, airborne LWIR HS imaging, and airborne NIR HS imaging. 

Photos of these systems are shown in Figure 7. 

 

Figure 7: Participating technologies in September 2022 field trials. From left to right, top to 

bottom: Airborne NIR HS Imaging; FLIR GF320 QOGI; OpGal QOGI; Airborne LWIR HS 

Imaging; Truck-based TDLAS 

2.2.1 Quantitative Optical Gas Imaging (QOGI) 

QOGI measurements were conducted by two participants, each deploying a different system: 

personnel from Montrose Environmental Ltd (Montrose) used an OPGAL EyeCGas camera and 

EyeCSite tablet, while UW personnel (Nagorski) operated the FLIR GFx320 camera and QL320 

tablet. Both systems employ a mid-wavelength infrared (MWIR) camera with a cryogenically 

cooled detector and bandpass filter that images the wavelengths of hydrocarbon emission and 
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absorption. The technical specifications of these cameras are very similar, and the detection spectra 

(shown in Figure 1) are identical. The most relevant technical specifications of each camera are 

summarized in Table 1. 

Table 1: Summary of OGI camera technical specifications 

 FLIR GFx320 [24] OPGAL EyeCGas [25] 

Spectral Range 3.2 to 3.4 µm (filter) 3.0 to 4.4 µm (detector) 

3.2 to 3.4 µm (filter) 

Spatial Resolution 320x240 320x240 

Optics f/1.5; 24° with 23 mm lens f/1.1; 18° with 30 mm lens 

Frame Rate 15 Hz Unknown 

Sensitivity/NETD <10 mK @ 30°C <10 mK @ 25°C 

 

The tablets that pair with each of these OGI cameras contain proprietary QOGI algorithms that are 

able to estimate the column densities and apparent velocities on a pixel-by-pixel level, then output 

an overall flow rate estimate. The software version of the FLIR QL320 was 1.4.1 and the software 

version of the OPGAL EyeCSite was 1.0.24. 

2.2.2 Aerial providers 

Releases were also quantified through two downward-looking airborne HS imaging systems. 

GHGSat deployed their NIR HS imaging system from a Piper Navajo operating at approximately 

200 m AGL and 240 km/hr. LSI Inc and Telops deployed their Hyper-Cam xLW airborne mini 

system from a helicopter operating at approximately 170 m and 50 km/hr. Both GHGSat and 

Telops constructed their own 2D column density maps from hyperspectral data cubes and used 

this data to derive their own emission estimates. GHGSat also provided uncertainty estimates.  

2.2.3 Truck-borne TDLAS 

Boreal Laser operated their Gasfinder3-VB system, which features a NIR tunable diode laser (see 

Sec. 1.2.2) shone across a perforated measurement chamber approximately 1.3 m in length. The 

laser is modulated across the 1654 nm methane absorption line, and concentration is inferred 

through the Beer-Lambert law, Eq. (2), via wavelength-modulated spectroscopy. Instantaneous 

concentration measurements made as the truck traverses through the plume are combined with 

GPS data from an onboard sensor, as well as wind speed and wind direction from a nearby ground-

based ultrasonic anemometer. This data was analyzed by the technology provider using Wind-Trax 

[6], a backwards Lagrangian stochastic (BLS) dispersion code. Raw data (concentration, wind, 

and GPS coordinates) was also provided to UW to conduct independent inverse Gaussian 

modelling (IGM) analysis on the same dataset, which will be performed at a later date. A summary 

of the technology’s relevant technical specifications can be seen in Table 2, while a typical plume 

transect for the truck is shown in Figure 8. 
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Table 2: Relevant technical specifications for the Gasfinder-3 system [26] 

Specification Name Specification Value/Description 

Minimum Detection Limit (MDL) 0.66 ppm 

Sensitivity 0.16 ppm 

Spectral Range Modulation about 1654 nm absorption line 

Sampling rate 1 sample per second 

 

 

Figure 8: Typical truck paths for truck-based TDLAS technology 

2.3 Meteorological conditions 

As mentioned previously, there were four independent sources of meteorological data (wind speed, 

wind direction, temperature) for this field campaign. Figure 9 and Figure 10 summarize daily 

average windspeed and temperatures, which are generally consistent between the sources. 
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Generally, the Meteoblue data stands out from the other sources, which is to be expected since it 

is considered the least accurate and is developed from a meteorological model.  

 

Figure 9: Daily average windspeeds provided by each source of meteorological data. 

 

Figure 10: Daily average temperatures provided by each source of meteorological data. 
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While average wind speed and temperature provides a convenient summary of overall conditions 

on a given day, the performance of the emission technologies depends on the instantaneous 

meteorological conditions as summarized in Table 3. Accordingly, time-resolved measurements 

are crucial when interpreting the performance of the technologies and when developing uncertainty 

estimates (see Sec. 4). Figure 11 and Figure 12 show near instantaneous wind speed and wind 

direction over a one-hour window on September 27th, which is representative of data collected 

throughout the field campaign. Data from the various instruments are generally in agreement, 

albeit with a little more offset between the sources being present in the wind direction data. 

Discrepancies may be attributed to the fact that the portable ultrasonic anemometer was located 

10-20 m away from the release location, while the Davis weather station and fixed ultrasonic 

anemometer was located near the ATCO trailer, which was located about 250 m away from the 

stack release locations as shown in Figure 5. 

 

Table 3: Summary of meteorological effects on technology performance 

Technology Sensitivity to meteorological conditions 

QOGI • Wind: QOGI advection model, wake aerodynamics, column 

density for spectroscopic model 

• Air and background temperature (thermal contrast) 

Truck-based TDLAS • Wind: consistency of wind during measurement (applicability 

of Gaussian plume assumption) 

• Wind: plume dispersion/concentration 

Airborne NIR HS 

imaging 
• Wind: plume dispersion/column density 

• Cloud cover (incident sunlight and plume detection) 

Airborne LWIR HS 

imaging 
• Wind: plume dispersion/column density 

• Ground and air temperature (thermal contrast) 
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Figure 11: Instantaneous windspeed measurements on September 27th. (All times MST.) 

 

Figure 12: Instantaneous wind direction measurements on September 27th. (All times MST.) 

Finally, Figures 5 and 6 compare the wind speed and wind direction data from the field campaign 

was compared to historical data for the region from 2017-2021. Windspeeds during the field 

campaign are typical of historical conditions. In contrast, the temperatures were clearly 

significantly hotter than historical averages, with the average temperature throughout the week 

being approximately 7C hotter than the average for the previous 5 years. 
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Figure 13: Comparison of windspeed from the field campaign to historical data. 

 

Figure 14: Comparison of temperature from the field campaign to historical data 
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The background methane concentration was monitored throughout the tests using a Picarro cavity 

ring-down spectrometer (CRDS) located at the ATCO trailer. This is important in view of the 

number of potential methane sources in the vicinity, including a large feedlot located 40 km 

northwest of the FRS as well as several wells.  The average background methane concentration 

was between 2 and 2.5 ppm, which is a typical of the global average. On certain days, there were 

small spikes in the methane concentration, less than 1 ppm in magnitude. These spikes could have 

resulted from upstream oil and gas operations, or perhaps from the field tests themselves. Figure 

15 shows the most stable day of background measurement (September 27th), while Figure 16 shows 

the most unstable day (September 28th) of background measurement and the most significant 

concentration spike. 

 

Figure 15: Background methane concentration for September 27th 
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Figure 16: Background methane concentration for September 28th  

For the purposes of the analysis presented in this report, anemometry data was taken from the 

portable ultrasonic 3D anemometer, unless otherwise noted. This was because this anemometer 

was closest to the release location and had the highest temporal resolution with respect to the 

measurements of the available sources. Data from the 3D anemometer was lost on two occasions: 

September 26th between 9:31 AM and 11:21 AM; and September 27th between 3:20 PM and 4:06 

PM. For these time frames, meteorological data was taken from the Davis weather station at the 

FRS, as this was the next closest source of meteorological data, and wind data from these two 

sources were generally consistent. 

For the purposes of following figures of this report, wind was categorized into low, medium, and 

high categories. The categories were chosen by arranging the observed wind speeds during the 

field trial from lowest to highest and then dividing the data into thirds. The low category was the 

bottom third, which was made up of speeds below 1.89 m/s. The medium category was the middle 

third which ranged from speeds of 1.89 m/s to 3.13 m/s. The high category was composed of 

speeds greater than 3.13 m/s. 

2.4 Design of the field campaign 

The timeline of the technology availability throughout the week of September 25th to October 1st 

is shown in Table 4.  The original testing plan had aerial LWIR HS imaging scheduled on 

September 29th, but this had to be postponed to September 30th due to issues installing the 

instrumentation within the aircraft. 
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Table 4: Technology availability timeline. 

Date Technology (providers) Release scenarios 

Sep 25 • Airborne NIR HS imaging (GHGSat) 13 m unlit flare; 1.7 m stack 

Sep 26 • QOGI (UW, Montrose) 

• Truck-based TDLAS (Boreal) 

13 m unlit flare; 1.7 m stack; 4.8 

m stack 

Sep 27 • QOGI (UW, Montrose) 

• Truck-based TDLAS (Boreal) 

Storage tank; 1.7 m stack 

Sep 28 • QOGI (UW, Montrose) 

• Truck-based TDLAS (Boreal) 

1.7 m stack; 3.4 m stack; 4.8 m 

stack; Shed 

Sep 29 • No measurements No scenarios 

Sep 30 • QOGI (UW) 

• Airborne LWIR HS imaging (Telops/LSI) 

13 m unlit flare; 1.7 m stack 

Oct 1 • Airborne LWIR HS imaging (Telops/LSI) 13 m unlit flare; 1.7 m stack; 

Tank 

The field tests were designed to explore the interaction between each technology and potential 

factors: 

Release rates: Releases ranged from 0.25 kg/hr to 80 kg/hr. The minimum release rates for each 

technology were chosen based on the corresponding minimum detection threshold (MDL). For 

QOGI, truck-based TDLAS, and airborne LWIR HS imaging, a minimum non-zero release of 0.25 

kg/hr was chosen, while the minimum non-zero release of the airborne NIR HS system was 5 kg/hr 

based on conversations with the provider. 

Release rates were quasi-randomized to avoid any consistent trend in release rate; this was done 

to both disguise the release rate from the provider and also avoid any unintentional covariance 

between release rate and wind speed. An example release schedule is shown in Figure 17. Full 

information on the releases can be found in Appendix D. 

Release scenarios: Four different release types were used to investigate how different release 

configurations affect quantification accuracy. These included: a short, modular vent stack that 

could be adjusted to a release height of 1.7 m, 3.4 m, and 4.8 m above ground; a 13 m tall unlit 

flare stack; a 2.79 m tall storage tank; and a storage shed. The storage shed release was done 

through a perforation in the wall on the leeward side of the shed, approximately 1.5 m above the 

ground. 

The majority of releases were performed using the short stack and the unlit flare stack. Release 

height is known to affect the quantification accuracy of airborne NIR HS imaging due to the 

manner in which the plume interacts with the ground. It may also impact the performance of the 

truck-mounted TDLAS system via Eq. (4) (e.g., if the measurement path is beneath the plume.) 

Release height also impacts ambient wind, which generally increases with height above ground. 

Finally, releases from the storage tank and shed were conducted to examine how aerodynamic 

interactions with the structure (e.g., turbulent wakes) and reflection from the metallic surfaces may 

impact the performance of QOGI systems. 

Environmental factors: As summarized in While average wind speed and temperature provides a 

convenient summary of overall conditions on a given day, the performance of the emission 

technologies depends on the instantaneous meteorological conditions as summarized in Table 3. 
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Accordingly, time-resolved measurements are crucial when interpreting the performance of the 

technologies and when developing uncertainty estimates (see Sec. 4). Figure 11 and Figure 12 

show near instantaneous wind speed and wind direction over a one-hour window on September 

27th, which is representative of data collected throughout the field campaign. Data from the various 

instruments are generally in agreement, albeit with a little more offset between the sources being 

present in the wind direction data. Discrepancies may be attributed to the fact that the portable 

ultrasonic anemometer was located 10-20 m away from the release location, while the Davis 

weather station and fixed ultrasonic anemometer was located near the ATCO trailer, which was 

located about 250 m away from the stack release locations as shown in Figure 5. 

 

Table 3, all of the quantification technologies are sensitive to instantaneous meteorological 

conditions. Accordingly, the release schedule was planned to account for diurnal variations in wind 

speed, ground temperature, and air temperature by conducting identical releases (rate and source 

type) for each technology in the mornings and afternoons. Figure 17 shows an example of the 

release schedule as it related to windspeed and temperature measurements from the portable 

ultrasonic anemometer for September 28th. This allows for better isolation of windspeed effects 

and release rate effects when investigating how these factors affect the error associated with the 

technologies. 

 

Figure 17: Release rates (normalized to scale of graph) for September 28th as they relate to 

windspeed and temperature. 

The impact of ground and air temperature is particularly important for airborne LWIR HS imaging, 

which relies on the thermal contrast between the plume and the background. Ground temperature 

was measured using a handheld infrared thermometer. 

Measurement distance: Measurement distance is known to impact the quantification accuracy of 

QOGI systems [16, 27, 28]. Accordingly, measurements on the stack releases were conducted at 
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distances of 2.5 m, 5 m, 10 m, and 15 m from the base of the 1.7 m stack. These distances were 

marked with flags inserted in the ground as shown in Figure 18. 

 

Figure 18: Procedure for measuring distance for QOGI on the 1.7 m stack. 
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3.0 PRELIMINARY RESULTS FROM THE SECOND FIELD CAMPAIGN 

3.1 Assessment of accuracy and treatment of outliers 

The error associated with the kth measurement is defined as  

 
meas true

true

k k
k

k

Q Q

Q

−
 =  (7) 

where Qk
meas is the estimated emission rate and Qk

true is the true emission rate, taken to be the value 

specified on the mass flow controller. The performance of a given technology is summarized by 

the average absolute error over N measurements 

 ave k

1

1 N

kN =

 =   (8) 

as well as the bias, 

 k

1

1 N

kN =

 =    (9) 

A positive bias indicates that the technology, on average, overestimates the true emission rate, and 

a negative bias indicates that the technology, on average, underestimates the true rate. 

For the purposes of this report, data points that differ significantly from the majority of the data 

are identified as potential outliers. Outliers occur for a variety of reasons, including environmental 

factors or momentary equipment failures. To the extent possible, the origins of the outliers will be 

identified and discussed. We avoid discarding points that appear as outliers without strong 

justification, because occasional extreme observations may reflect the true variability of the data 

and discarding these points would lead to underestimating the uncertainty. In some cases, the 

results may be presented with and without these data points for context. A similar procedure for 

outliers will be taken at the modelling stage, where an effort will be made to understand the root 

cause of the outlier, and the analysis may proceed without the outlying point if appropriate, 

otherwise results will be provided both with and without the outlier.  

3.2 Ground-based MWIR QOGI 

This section combines the results of the two QOGI technologies in the second field trial: the FLIR 

QL320/GFx320 system, operated by UW personnel (Nagorski); and the OPGAL EyeCSite and 

EyeCGas system, operated by Montrose personnel. This section summarizes the results from the 

two technologies, and then provides a technical commentary based on lab-scale/modeling carried 

out under Task 2b (Sec. 1.3.2). This commentary is based primarily on observations with the 

GFx320/QL320 system, but should also apply to the OPGAL EyeCSite since both systems operate 

according to similar principles. 

3.2.1 Summary of results 

Figure 19 summarizes the performance of the FLIR QL320. The average absolute error for the 

QL320 was 59.43% across 116 measurements. The overall bias over all release rates was +8.62%. 

Figure 19 shows that the technology had a positive bias at low emission rates (< 10 kg/hr) and 

skewed towards a negative bias at higher emission rates. 
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Figure 19: FLIR QL320 emission estimates summary 

Figure 20 shows that the OPGAL QOGI estimates tended to underestimate the true emission rate, 

with an average bias of -42.72%. The average absolute error for the technology was 67.77% across 

81 measurements. There were an additional 17 datapoints from the start of September 26th that had 

to be excluded from the analysis, as the operator forgot to timestamp the measurements.  
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Figure 20: OPGAL EyeCSite emission estimates summary 

3.2.2 Effect of wind speed 

The impact of wind speed on QOGI detection limits has been discussed in literature [16, 27, 28] 

and is understood to lower the detection threshold for otherwise identical conditions, although, to 

the best of our knowledge, no study has focused exclusively on how wind affects the accuracy or 

uncertainty of QOGI emission estimates. Zimmerle et al. note that a specific wind speed cut-off 

ranging from 4.5 to 16 m/s is often used by QOGI operators as a formal or informal guideline, 

above which emission estimates become unreliable [16]. 

Wind could impact the accuracy of the QOGI estimate through both the velocity and spectroscopic 

sub-models. Higher wind speeds cause the plume to move faster and disperse to a greater extent, 

which may lower the column densities. Separately, high winds may generate turbulent features 

that move faster than can be resolved by the camera. Lower wind speeds have the opposite effect, 

and under extremely calm wind conditions the plume may stagnate and pool.  

Figure 21 shows no immediately obvious trends between wind speed and QOGI accuracy. The 

bias of the OPGAL measurements skew more positively at higher wind speeds than at lower wind 

speeds, however it is still negative overall across almost every different emission type. In contrast 

the FLIR error tended to skew more negatively at higher windspeeds. Overall, however, there was 

no consistent increase or decrease in the magnitude of the overall error with respect to changes in 

wind speed.  
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Figure 21: Effect of wind speed on QOGI percentage error; (left) FLIR QL320 (right) OPGAL 

EyeCSite. 

Figure 22 illustrates how high wind speeds impacts the QL320 estimates of a single release rate 

over the course of 2 minutes. Each individual measurement by the QL320 requires about 5 seconds 

and this example consists of 10 individual measurements. The impact of wind speed on QOGI is 

most apparent through video files (included as supplemental information), but can also be seen in 

a plot of instantaneous flow rate estimates and wind speeds sampled at 0.25 s intervals (4 Hz). The 

release was from a 4.8 m tall stack at a measurement distance of 5.4 m and flow rate of 20.9 kg/hr, 

which, as we will show, is far larger than the minimum detection limit (MDL) for the FLIR 

GFx320 at this distance with clear sky background. During the first minute of the measurement, 

the wind speed ranged between 1-3 m/s and the QL320 estimates ranged from 12 to 16 kg/hr 

(−43% to −23% error). When the wind speed suddenly increased to between 2 and 5 m/s the QL320 

estimates dropped significantly, ranging from 7 to 9.8 kg/hr (−53% to −66% error). All other 

variables are assumed to be constant over this period, so this variation may be attributed solely to 

variation in wind speed. 

The increase in error with wind speed could be due to the limited framerate of the GFx320 camera 

or a reduction in accuracy of the velocimetry algorithm at these higher wind speeds. Based on the 

measurement distance, field-of-view, and frame rate of the GFx320, and a discussion with 

Providence Photonics [19], these wind speeds fall within the measurement envelope of the system. 

The data output of the QL320 does not separate the column density and velocity estimates so it is 

not possible to discern the change in each quantity when the wind speed changed, but, considering 

our knowledge of the QOGI sub-models and release rate, this example seems to indicate a 

reduction in accuracy of the velocimetry algorithm at higher wind speeds.  
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Figure 22: QL320 measurement #25 flow rate estimates and 1/4-second wind speed data. Flow 

rate estimates are much closer to the actual release rate when the wind was in the range of 1-3 

m/s, but when the wind speed increased to 2-5 m/s the flow rate estimates decreased 

significantly. 

 

Figure 23: QL320 measurement #25, snapshot showing plume detection overlay and blue 

circular control line. 

However, the observation that higher wind speeds lead to lower QOGI estimates is not consistent 

across all measurements. Figure 24 shows an example with the same measurement distance and 

release height but a release rate of 2.5 kg/hr. The wind speed during this 2-minute period fluctuated 

rapidly but, when inspecting each of the measurement videos, the wind speed was noticeably 

higher during the 4th, 5th, and 6th recordings, which corresponded to higher QOGI estimates. This 
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is the opposite wind speed-flow rate estimate relationship that was observed in measurement #25. 

The MDL of the GFx320 will be discussed in Section 3.2.5, but at this release rate, distance, and 

temperature contrast, it is not believed that column density error would be responsible for this 

observation and instead this is likely another effect of wind speed on the velocimetry algorithm.  

Measurement #31 also exemplifies a key observation in the 2018 report by the Saskatchewan 

Research Council, which stated that averaging multiple QOGI measurements improves accuracy 

by reducing variance [29]. While most of the measurements in this 2-minute window were about 

32% to 42% higher or lower than the actual release rate of 2.5 kg/hr, the average was 2.7 kg/hr 

and the final estimate by the operator was 2.5 kg/hr.  

However, it must be noted that averaging multiple measurements to reduce variance only addresses 

unbiased random error or aleatoric uncertainty and ignores any bias or epistemic uncertainty in the 

estimate. In other words, if there is a bias present due to any limitation of the QOGI algorithms or 

techniques, then more measurements will not improve this other aspect of error or uncertainty. 

This approach also works only if the environmental conditions remain stationary during the 

measurement duration. 

 

Figure 24: QL320 measurement #31 flow rate estimates and 1/4-second wind speed data. Flow 

rate estimates are lower when the wind speed was lower and vice-versa, but this correlation is 

less obvious and opposite to that which was observed in measurement #25. 
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Figure 25: QL320 measurement #31, snapshot showing plume detection overlay and blue 

circular control line. The plume is noticeably less dense than measurement #25 due to the lower 

release rate. 

Very low wind speeds may cause the plume to disperse very slowly and may even stagnate in the 

same location; this scenario can also degrade the accuracy of QOGI estimates. As long as there is 

still some plume advection, it should be possible to infer a velocity and obtain a QOGI estimate 

but a stationary plume would be problematic.  

This scenario is exemplified in Figure 26. The wind became very calm over a number of 

measurements, causing the instantaneous QOGI estimates to increase significantly; up to three 

times greater than the actual release rate, whereas the estimates were about 16% to 44% lower than 

the release rate when the wind was about 1 m/s. Note that missing wind speed data is due to the 

wind speed being lower than the 0.5 m/s lower limit of the portable ultrasonic anemometer. 
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Figure 26: QL320 measurement #80 flow rate estimates and 1/4-second wind speed data. Flow 

rate estimates became significantly higher when the wind becomes very calm but were otherwise 

fairly accurate when the wind speed was around 1 m/s. The lower limit of the portable ultrasonic 

anemometer was 0.5 m/s, so wind speeds were recorded as 0 m/s during these calm conditions.  

 

Figure 27: QL320 measurement #80, snapshot showing plume detection overlay and blue 

circular control line when the wind was very calm. The plume disperses very slowly and is on the 

verge of stagnating or pooling near the stack exit. 

Figure 27 shows a snapshot of the plume when the wind was at its calmest; it is evident from the 

video that the plume is still moving, albeit slowly. Therefore, the large estimates cannot be 

attributed to plume pooling, and are likely due to another error in the velocimetry algorithm at very 

low wind speeds.  
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These are some of the most apparent effects of wind speed on QOGI measurement in the context 

of the QOGI sub-models. Unfortunately, these observations did not always apply when comparing 

measurements under the same test parameters and wind conditions. Understanding the functional 

impact of wind on QOGI-derived emission accuracy is impaired by the fact that the velocity sub-

model is semi-empirical and confidential to the instrument manufacturer. Therefore, while it is 

hypothesized that the wind speed has a strong effect on the velocimetry algorithm in the QL320, 

this cannot be confirmed without separate velocity and column density estimates. The statistical 

analysis of this data will be better able to objectively evaluate the effect of wind speed.  

3.2.3 Effect of flow rate 

Figure 28 shows the error of the emissions estimates obtained from the FLIR and OPGAL systems 

with respect to flow rate. The OPGAL system generally performed better at the lower emission 

rates, with error consistently increasing linearly with increasing flow rate. Further analysis will 

focus on identifying a coefficient or function that can quantify this error increase. For the FLIR 

measurements, the effect of emission rate on accuracy is less clear, and different challenges emerge 

at high and low flow rates. It is unclear why the FLIR and OPGAL systems perform so differently 

depending on flow rate.  

    

Figure 28: Effect of release rate on QOGI percentage error; (left) FLIR QL320 (right) OPGAL 

EyeCSite. 

High flow rate challenges 

Three problems may arise with the QOGI estimates using the QL320 when quantifying high flow 

rates:  

1. Contrary to our initial hypothesis in the first interim report, we now believe that column 

densities are not determined by inverting an analytical RTE model explicitly, but rather via 

calibration (e.g. matching pixel intensity to a measurement made with a known column 
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density). This means there may be an upper limit to the column densities estimated by the 

algorithm, corresponding to the maximum column density included in the calibration. This 

upper limit may be exceeded depending on the flow rate, distance, and wind speed and will 

result in an underestimation of the actual flow rate since the actual column density exceeds 

the estimated column density. This hypothesis is supported by the available patents , 

literature , and a FLIR white paper  but cannot be confirmed by the data output of the 

QL320. There is also a physical limit to the maximum column density that can be inferred 

as the plume concentration and thickness increases because the plume will become 

“optically thick,” effectively making the pixel intensity insensitive to the true column 

density. The calibration of the QL320 may extend to this physical limit, or stop earlier as 

the sensitivity to changes in column density decreases.   

2. High flow rates originating from small orifices result in highly concentrated and turbulent 

plumes which may inhibit the motion tracking done by the velocimetry algorithms in 

QOGI. In other words, we observed instances in which the plume was so dense and 

turbulent that the turbulent structures in the plume evolved faster than could be resolved 

by the limited camera framerate. When this occurs, the velocimetry algorithm cannot 

reliably infer the velocities of gas-containing pixels and the estimated flow rate is likely to 

be lower than the actual flow rate. Again, it is difficult to confirm this hypothesis because 

the algorithm and output of the velocimetry sub-model is unknown. 

3. Exclusive to the QL320, the plume detection algorithm becomes unreliable when imaging 

high flow rates as portions of the plume are consistently not identified. When these non-

detected gas-containing pixels cross the blue control line, they are not included in the flow 

rate estimate which will lead to systematic underestimation in the overall emission rate. 

Measurement #24 exemplifies these issues. The release rate was 49.7 kg/hr from the 4.8 m tall 

stack and the measurement distance was 5.4 m. The highest flow rate obtained from QOGI during 

this measurement was 43 kg/hr and the final estimate made by the operator was 35 kg/hr, 

representing errors of -13% and -30% respectively. The FLIR white paper on QOGI says that the 

QL320 has been calibrated up to 300 SLPM (12.7 kg/hr) , but the measurement distance is not 

specified, which should be an important factor in the quantification. Figure 29 shows a snapshot 

of one of the recordings with the plume detection overlay present, and it can be seen that portions 

of the plume are consistently excluded by the detection algorithm. It is unclear why the plume 

detection fails in these high flow rate scenarios.  
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Figure 29: QL320 measurement #24, sample image showing that the plume detection algorithm 

does not identify some of the densest parts of the plume which would lead to underestimation of 

the flow rate.  

Figure 30 shows a snapshot from the same recording but without the plume detection overlay so 

that the plume can be seen in its unmodified form. In this case the plume is very dense throughout 

and there is less contrast or brightness gradient within the plume compared to if the plume was 

sparse with sky background pixels intermixed. This can make velocimetry less accurate because 

feature tracking requires a brightness contrast between neighboring pixels. 

 

Figure 30: QL320 measurement #24, sample image showing the raw capture of the release 

without any overlays. The plume is relatively dense throughout which reduces the contrast within 

the plume and may make velocimetry less accurate.  

Low flow rates and minimum detection limits (MDLs) 

Zeng and Morris produced a theoretical equation for the MDL (in kg/hr) of an OGI measurement 

based on the radiative intensity difference versus noise on a pixel level as a function of the gas 

species, temperature of the gas, apparent temperature of the background, camera, lens, distance, 

and dispersion conditions :  
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 2MDL
P MW

C T d w
T R

=         


  (10) 

where C is a constant specific to a camera and lens, α and β are constants specific to a gas and 

camera, T is the ambient temperature (which is used to approximate the gas temperature), ΔT is 

the temperature difference between the gas and background, d is the measurement distance, w is a 

variable that is influenced by the dispersion conditions (i.e. wind and gas exit velocity), P is the 

ambient pressure, MW is the molecular weight of the gas species, and R is the ideal gas constant . 

Table 5 summarizes these parameters as they pertain to the test conditions of the second field trial. 

Table 5: Parameters for theoretical calculation of QOGI minimum detection limits . 

FLIR GFx320 with 23mm lens 56.17 10C −=   

Methane emissive plume 
18010 =  
1.530 = −  

Typical dispersion conditions 35w = m3/L-hr 

Ambient pressure 1P = atm 

Molecular weight of methane 16.04MW = g/mol 

Ideal gas constant 0.08206R = atm-L/gmol-K 

 

Note that the variable w for the dispersion conditions is based on empirical observations by Zeng 

and Morris and the authors state that further work needs to be done to substantiate its value. 

Nonetheless, substituting these parameters into Eq. (10) yields: 

 
( )

1.530

2MDL 7.602  (kg/hr)
T

d
T

−


=   (11) 

Equation (11) can be used to calculate the theoretical minimum detection limit for each 

measurement given the ambient temperature, apparent background temperature, and distance. 

While this study was not designed to evaluate QOGI detection limits, it is useful to identify 

measurements that may lie below the MDL and would therefore be difficult to quantify. 

Furthermore, measurements near the MDL can be identified and considered more carefully to 

better understand the effect on quantification accuracy.  

For measurement distances less than 10 m, the theoretical MDL was always considerably lower 

than the lowest release rate (0.25 kg/hr). Therefore, this study draws no conclusions regarding the 

validity of the theoretical MDL equation for measurements closer than 10 m.  

For measurement distances of 10 m and 15 m, Eq. (11) shows that detection of the 0.25 kg/hr 

releases should not be possible. However, in some instances, gas was still detectable using the 

“high-sensitivity mode” which highlights relative changes in pixel intensities between frames, 

making small gas plumes more apparent. For releases of 1.5 kg/hr at 10 m and 15 m, the accuracy 

of the QOGI estimates sometimes deteriorated as the release rate approached the MDL. More 

testing near these theoretical MDLs should be done to better understand the effect on QOGI 

accuracy.  

3.2.4 Effect of distance 

The effect of distance on QOGI estimates overlaps with the effect of flow rate. Increasing 

measurement distance increases the MDL since it decreases the intensity incident on the detector 
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in proportion to 1/d2 per Eq. (10). Distance also influences the velocimetry sub-model. Larger 

measurement distance increases the footprint of the frame and spatial size of pixels, assuming the 

optics are fixed. With more of the plume in frame at a larger measurement distance, this can 

provide more information for the velocimetry algorithm, unless the measurement distance 

becomes so large such that the spatial resolution is insufficient to resolve details in the plume 

which will adversely affect the velocimetry algorithm.  

Figure 31 shows the effect of measurement distance on the accuracy of the QOGI estimates for the 

FLIR QL320 and OPGAL EyeCSite. One commonality between the two systems is that 

measurements at 2.5 m tend to have the highest percentage errors. During the field trials both 

operators reported that 2.5 m seemed too close to obtain a reliable estimate, particularly at higher 

release rates. At such a short measurement distance, a plume may comprise a significant portion 

of the frame and make it difficult to: 1) contain the entire plume within the quantification control 

line as seen in Figure 32, and 2) estimate the bulk velocity of the plume with the velocimetry 

algorithm because the plume advects so rapidly relative to the scene footprint and frame rate. 

Measurement #49 with the QL320 clearly shows these challenges. The plume fills a significant 

portion of the blue control line and frame, and when reviewing the video frame-by-frame it is very 

difficult for the eye to track the turbulent features of the plume (see supplemental information). 

The result is that the QL320 estimate was only 6.1 kg/hr while the release rate was 20.9 kg/hr 

which is an error of -71%. It is unlikely that this amount of error is due to the column densities and 

challenges with high flow rates discussed in Section 3.2.3 because this flow rate was estimated 

accurately at larger measurement distances. Ultimately, however, the hypothesis that the 

velocimetry becomes inaccurate at such close measurement distances and large flow rates cannot 

be verified because the column densities and velocities are not given separately.  

 

Figure 31: QOGI measurement error with respect to measurement distance 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.5 3 5 5.4 5.5 9 10 12 15

A
v
er

ag
e 

A
b
so

lu
te

 E
m

is
si

o
n
 E

rr
o
r

Measurement Distance [m]

OpGal Measurements FLIR Measurements



44 

 

 

Figure 32: QL320 measurement #49 showing a 20.9 kg/hr release rate at 2.5 m measurement 

distance. The measurement distance is too close to measure this large flow rate. The QL320 

estimate was 6.1 kg/hr which is an error of -71%. 

For the QL320 at lower flow rates, a close measurement distance of 2.5 m seems to be less 

problematic. Figure 33 shows a snapshot from the QL320 of a 1.5 kg/hr release at 2.5 m 

measurement distance. The plume is much more contained within the blue circular control line 

compared to the larger release rate shown in Figure 32. The final estimate for this measurement 

was 1.6 kg/hr which is an error of +7%.  

 

Figure 33: QL320 measurement #53 snapshot showing a 1.5 kg/hr release at 2.5 m measurement 

distance. The plume is much more contained in the blue circular control line compared to 

measurement #49 in Figure 32. The final estimate was 1.6 kg/hr (+7%).  

A close measurement distance seems to have affected the OPGAL EyeCSite measurements more 

than the FLIR QL320. It is unclear why this may be the case because our experience with the 

EyeCSite is limited to observing the Montrose operator perform measurements. It may be that the 

control line selection in the EyeCSite user interface is less suited to closer measurement distances.  

3.2.5 Effect of release height and line-of-sight angle 

Releases were made from a 1.7 m, 3.4 m, and 4.8 m tall stack and from a 13 m tall unlit flare. The 

release height affects the dispersion conditions of the plume due to the location of the release 

within the atmospheric boundary layer. Higher release heights will experience higher wind speeds 
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than lower release heights, so the discussion from Section 3.2.2 on the effect of wind speed applies 

here.  

Release height also impacts measurement distance. Higher release heights prevent the QOGI 

operator from getting closer to the source unless scaffolding or some other elevated platform is 

used. A longer measurement distance reduces the MDL as discussed in Section 3.2.4, and a 

statistical analysis on the effect of measurement distance to QOGI accuracy is ongoing.  

Finally, release height limits the line-of-sight angle of the measurement when using a sky 

background. With a higher release height, a QOGI operator is able to move under the source and 

use a more vertical line-of-sight angle, whereas lower release heights require the operator to use a 

more horizontal line-of-sight angle. This affects the background temperature contrast since the 

apparent temperature of the sky near the horizon is greater than the sky directly upwards due to 

differences in the pathlength of atmospheric emission. This effect on temperature contrast affects 

the MDL as discussed in Section 3.2.4. 

Examples of the effect of release height and line-of-sight angle on QOGI are shown in Figure 34. 

Both measurements involved similar flow rates (2.5 kg/hr and 1.5 kg/hr, respectively) and 

measurement distances (12 m and 10 m, respectively), but one is from an unlit flare, while the 

other is from a 1.7 m tall stack. The measurement of the unlit flare at a higher release height 

enabled a vertical line-of-sight angle, resulting in a higher background temperature contrast of 

12.1°C and more accurate estimate with only +12% error. In contrast, the measurement of the 1.7 

m tall stack at a similar distance required a more horizontal line-of-sight angle, resulting in a lower 

background temperature contrast of 5.5°C and less accurate estimate with +260% error. It should 

be noted that the exit diameter of the unlit flare is much larger than that of the stack, which 

produces different dispersion conditions, and the wind speeds and ambient temperature are 

different for these measurements.  

 

Figure 34: QL320 measurements showing effect of release height and line-of-sight angle. (Left) 

measurement #118 of an unlit flare release at 12 m vertical measurement distance. The QOGI 

estimate was 2.8 kg/hr while the actual release rate was 2.5 kg/hr (+12% error). The thermal 

contrast between gas and background was 12.1°C. (Right) measurement #9 of a 1.7 m tall stack 

release at 10 m measurement distance. The QOGI estimate was 5.4 kg/hr while the actual 

release rate was 1.5 kg/hr (+260% error). The thermal contrast between gas and background 

was 5.5°C. There is a clear temperature gradient in the sky background. 
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3.2.6 Effect of cloud cover 

When performing QOGI using a sky background, the impact of clouds may impair the accuracy 

of emission estimates or render the measurement infeasible altogether. Clouds increase the 

apparent temperature of the background compared to a clear sky and introduce non-uniformity in 

the background. QOGI is still possible against a cloudy background provided there is sufficient 

temperature contrast between the clouds and gas plume. Previous studies by Concawe [33] and the 

Saskatchewan Research Council [29] recommended a ΔT of at least 5°C and 10°C, respectively. 

These recommendations appear to be conservative as QOGI can still perform relatively well with 

a ΔT of about 3°C, as demonstrated in Figure 35. 

 

Figure 35: QL320 measurement snapshots showing (left) relatively uniform cloud coverage 

behind plume (right) relatively non-uniform cloud coverage behind plume. The left image was 

from measurement #109 at a release rate of 10 kg/hr and the QL320 estimate was 8.4 kg/hr, 

while the right image was from measurement #113 at a release rate of 2.5 kg/hr and the QL320 

estimate was 4.2 kg/hr. The temperature difference between ambient temperature gas and cloud 

background was only 3.3°C to 4.1°C.  

Since cloud coverage cannot be controlled systematically, it was not possible to conclusively 

isolate the effect of cloud coverage on QOGI performance. This example demonstrates that QOGI 

with a cloudy background is still possible, with some caveats. It is also notable that uniform cloud 

coverage is preferable to non-uniform cloud coverage, for several reasons. First, background 

temperature is taken as the average of the radiometric or apparent temperature of the pixels along 

the blue control line, excluding any gas-containing pixels. Any non-uniformity along this blue line 

will influence the average and potentially make the background temperature unrepresentative of 

the true background temperature behind the plume. Second, background non-uniformity directly 

behind the plume will augment the intensities of the gas-containing pixels. These two effects will 

introduce error in the estimated column densities and therefore the flow rate estimates.  

Figure 36 serves to demonstrate that cloudy backgrounds can make QOGI unfeasible due to the 

decrease in temperature contrast between background and gas. The same release rate was used 

during both measurements, but the presence of clouds in the background on the left reduced the 

temperature contrast and made visualization, and therefore quantification, impossible when the 

same release rate was quantified accurately against a clear sky.  
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Figure 36: QL320 measurement snapshots showing 0.25 kg/hr release rates at 5 m against (left) 

cloudy background (right) clear sky background. The left image was from measurement #110 

where the QL320 estimate was 0 kg/hr, while the right image was from measurement #59 where 

the QL320 estimate was 0.23 kg/hr. The temperature difference between gas and background 

was about 9°C with the clear sky but only 4.4°C with the cloudy background. The ambient 

temperature was 30°C during the clear sky measurement and 19°C during the cloudy sky 

measurement. 

Cloud coverage may also interfere with the velocimetry algorithms used in QOGI if the clouds are 

noticeably moving during the measurement. When cloud cover was present during the second field 

trial, they were relatively stationary over the measurement duration, so this effect is not expected 

to have introduced any error.  

3.2.7 Low ambient temperature conditions 

As highlighted in Eq. (10), there must be sufficient temperature contrast between the gas plume 

and background to make a QOGI measurement. An interesting situation was encountered during 

the field trial in the morning of September 28th, when, from 9 AM to 10:30 AM, the ambient 

temperature increased rapidly from 14°C to 19°C. During this time, QOGI measurements were 

difficult to carry out against the clear sky background because the apparent temperature of the sky 

was very near the ambient temperature gas, likely due to the longer atmospheric pathlengths 

involved with near horizontal measurements. While the gas plume was still visible, as seen in 

Figure 37, large sections of the plume were not detected by the QL320 plume detection algorithm 

and therefore not quantified. This led to estimates in the range of 50% to 75% lower than the actual 

release rate. This result is somewhat counterintuitive because typically a clear sky background is 

ideal for QOGI as the apparent background temperature will be much lower than the ambient air.  
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Figure 37: QL320 measurement #68 showing QOGI challenges when the gas temperature is 

near the background temperature. A significant portion of the plume is not detected and not 

quantified.  

3.2.8 Operator experience and bias 

Operator experience is known to have a significant impact on QOGI detection probabilities [16]. 

This study included only two QOGI operators, each using different devices, so it is impossible to 

isolate the impact of operator experience on QOGI accuracy. Both operators were trained in QOGI, 

but the Montrose operator was using the OpGal EyeCSite system for the first time and experienced 

some difficulties on the first day of measurements. It was discovered near the end of the day on 

September 26th that the Montrose operator was not properly “NUC-ing” (non-uniformity 

correction) the camera. This could have introduced some unknown error in their QOGI estimates 

from that day. A comparison of the performance of the QOGI technologies at each release scenario 

can be seen in Table 6. These results are based only on releases for which both QOGI technologies 

provided an estimate; data from September 30th for the FLIR camera, as well as some data from 

September 26th are omitted. 

 

Table 6: QOGI Performance comparison 

Scenario Number of 

measurements 

FLIR Abs. 

Error, ave 

OpGal Abs. 

Error, ave 

FLIR Bias, 

 

OpGal Bias, 

 

1.7m-4.8m Stack 51 39% 71% -9% -42% 

13m Flare 5 20% 59% +0% -53% 

Tank 14 59% 62% +17% -44% 

Shed 10 205% 62% +180% -39% 

 

Throughout testing, the Montrose and UW QOGI operators conducted their measurements in close 

proximity but were intentionally blinded to each other’s estimates. There was some consultation 

at times when the test conditions were difficult, such as during cloud cover and far measurement 
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distances, but this was only to provide feedback on the design of the study and maximize the 

usefulness of the data collected.  

The UW QOGI operator, Michael Nagorski, has contributed comments specific to his perception 

of operator experience and bias: 

1. One technique that was used was masking the blue control line and moving it closer to the 

release point in order to quantify lower release rates, as seen in Figure 38 (right). It may be 

intuitive for some operators to always center the leak source in the blue control circle, but 

in this scenario the gas plume may become undetectable by the time it reaches the blue 

control line. By masking and moving the control line closer to the source, quantification 

can be more accurate. This is an example of how operator experience may improve QOGI 

accuracy. 

2. Heuristically-adjusted settings in the QL320 user interface can introduce subjectivity to the 

estimates, particularly since these settings are poorly-defined. For example, the use of 

“expert mode,” which continuously estimates the flow rate and indicates when the 

instantaneous flow rate is within a certain percentage of the time-averaged flow rate, can 

affect QOGI accuracy and depends on the operator’s experience and/or preference. 

Another example is the behavior of the blue control line, which typically resizes itself 

according to the measurement distance but has a large transition in size around 11 m. The 

position and size of the blue control line is critical to a QOGI estimate and being able to 

manipulate it effectively is likely one of the biggest factors in operator experience, 

alongside the operator’s choice of measurement distance and background, which were 

mostly controlled in this study. Lastly, the wind speed setting which the operator must 

specify in the QL320 is ambiguous. It is not clear what this setting changes; selecting 

different wind speed ranges under the same environmental conditions sometimes changes 

the estimate but other times has no effect. Overall, the QL320 is very user-friendly but the 

ambiguity of certain features introduces uncertainty and subjectivity into the estimate. 

3. After reviewing all the QL320 estimates against the actual release rates, one scenario in 

particular seems to have introduced a positive bias into some of the UW-derived emission 

rates. Due to the aerodynamics surrounding the stack, the plume would often be drawn into 

the low-pressure wake region, leading to challenging dispersion conditions for QOGI, as 

seen in Figure The UW QOGI operator noticed this behavior and believed that a portion of 

the plume could be missed by the QL320 at close measurement distances (2.5 m) as the 

blue control line seemed too close to the source. Therefore, he was biased towards the 

higher instantaneous estimates when providing his final estimate. The actual release rate 

was 1 kg/hr and his final estimate was 1.6 kg/hr (+60% error) whereas most instantaneous 

estimates were between 0.9 and 1.1 kg/hr.  
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Figure 38: QL320 measurement #4, snapshots showing (left) ideal plume dispersion (right) 

significant downwash of the plume into the wake of the stack 

3.2.9 Effect of emission type on error 

As has been seen throughout Section 3.2 of this report, the effect of emission type (stack, flare, 

shed, and tank) was not consistent between each of the technologies. For the OPGAL 

measurements, different emission types did not have a very pronounced impact on the overall 

accuracy. The error associated with short stack measurements was highest at 71%, while average 

estimate errors for the flare, tank, and shed were all between 59% and 62%. Furthermore, the bias 

of the OPGAL measurements was not significantly impacted by emission type, with all associated 

biases being between -39% and -53%. 

In contrast, the emission type had a more profound impact on the error of the FLIR measurements, 

particularly with shed measurements. The error was smallest for the short stack at 43%, with the 

flare and tank measurements having average absolute errors of 54% and 59% respectively. And 

finally, the shed measurements having an average absolute error of 205%. In addition, the bias of 

the tank and shed measurements skewed very positively, whereas the bias was negative for the 

short stack and flare measurements. 

FLIR tank and shed measurements 

It is difficult to draw definitive conclusions and recommendations about QOGI measurements of 

shed and tank releases because the results were inconsistent and the estimates were often very 

inaccurate compared to the stack releases. 

In general, releases from the side of the shed led to pooling around the source as the plume was 

shielded from the wind. In some cases, the gas would exit the side of the shed in a steady plume, 

as seen in Figure 39 (left), but most of the time it would pool and meander which made QOGI very 

inaccurate, as seen in Figure 39 (right). The former estimate was 1.1 kg/hr (−27%) while the latter 

estimate was 9.2 kg/hr (+513%); the actual release rate was 1.5 kg/hr. Also notice in Figure 39 

(right) that the plume detection algorithm identifies the reflection of the plume on the aluminum 

paneling of the shed. It is unclear whether this could affect the QOGI estimate due to the 

proprietary nature of the algorithm. The accuracy of QOGI-derived estimates in these situations 

could very likely be improved by waiting for the perfect conditions so that the plume disperses in 

an ideal manner. Zimmerle et al. observed that longer survey times increased detection 

probabilities by 1.3 to 2.4 times, depending on the operator’s level of experience [16], which is 

particularly germane to challenging measurement scenarios such as these.  
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Figure 39: QL320 measurement #90, snapshots showing (left) steady plume being formed which 

is ideal for QOGI and (right) gas pooling which makes QOGI very inaccurate. The (left) 

estimate was 1.1 kg/hr while the (right) estimate was 9.2 kg/hr. The actual release rate was 1.5 

kg/hr. 

The main challenge with quantifying the tank releases was that the size of the tank and location of 

the release limited the operator’s positioning, while equipment on the top of the tank further 

obstructed the line-of-sight between the operator and the release. Two release configurations were 

tested: in the first scenario the hose was pointed upwind, while in the second the hose was pointed 

downwind. The measurement distance was 9 m. Releasing into the wind was generally more 

challenging as quantification had to be done either closer to the source where the column densities 

are greater but part of the plume is obstructed by the pipe, or further from the source where there 

are no obstructions but the column densities are lower due to plume dispersion. Figure 40 shows 

QOGI images for these two cases; the corresponding estimates were 4.3 kg/hr (−57%) and 0.6 

kg/hr (−94%), respectively, while the actual release rate was 10 kg/hr.  

 

 

Figure 40: QL320 measurement #36 which was an upwind tank release. Snapshots showing (left) 

quantification close to the source with obstruction, and (right) quantification further from the 

source without obstruction. The estimates were 4.3 kg/hr and 0.6 kg/hr, respectively, while the 

actual release rate was 10 kg/hr. 
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The estimates from downwind releases were slightly more accurate. However, another challenge 

with the tank is that slight changes in wind direction, or complicated aerodynamics over the top of 

the tank, can make some measurements very inaccurate as the tank walls obstruct the plume, as 

seen in Figure 41 (right). The estimates were 1.6 kg/hr (+7%) and 0.57 kg/hr (−62%), respectively, 

while the actual release rate was 1.5 kg/hr. Frequently repositioning the camera in these situations 

would be cumbersome, so it is recommended that more QOGI measurements be made to mitigate 

this potential error.  

 

Figure 41: QL320 measurement #41 which was a downwind tank release. Snapshots showing 

(left) ideal wind direction and plume dispersion, and (right) challenging wind direction and 

plume dispersion. 

3.3 Truck-based tunable-diode laser absorption spectroscopy 

3.3.1 Summary of results 

Figure 42 summarizes the performance of the truck-based TDLAS system. Overall, the technology 

had an average absolute error of 105%, with an average bias of +26%. Figure 42 also shows a 

potential outlier; excluding this datapoint, the average absolute error and bias of the technology 

were 73% and -7% respectively. 
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Figure 42: Summary of results for truck-based TDLAS emission estimates 

3.3.2 Effect of wind speed 

The truck-based results are plotted against windspeed in Figure 43. There is no clear trend between 

wind speed and error. The error was fairly skewed towards negative bias.  

As noted in Sec. 2.2.3, the truck-based mass flow estimates are outcomes of the BLS dispersion 

model, which depend on wind speed but also on wind direction. During the TDLAS truck 

measurement, the operator reported that the plume was difficult to localize when the wind changed 

significantly during transects. Based on this observation, we hypothesize that the estimates inferred 

using the BLS algorithm should be sensitive not only to the wind speed, but variations in wind 

conditions during a transect. 

Figure 44 plots the error of the estimates with respect to wind direction variability for the three 

days of TDLAS measurement. Wind direction variability is defined as the angle (in degrees) 

between the minimum and maximum wind directions measured over a 10 s period by the portable 

ultrasonic anemometer. In Figure 44, the x-axis corresponds to an average of the wind direction 

variability over the measurement time for each estimate, which is roughly 4 minutes depending on 

the length of the plume transect. At this point there is no clear trend between the estimate errors 

and the wind direction variability. On September 27, the errors corresponding to a wind direction 

variability below 35 are all lower than 50%. This could indicate that for lower wind direction 

variability the estimate errors are lower, however for higher angles some of the errors are also 

lower than 50%. This result is counterintuitive, since the advection model used to infer the release 

rate assumes a constant wind during the concentration measurements. Further research is needed 

to investigate how wind gusts, veering, and backing during a measurement may impact 

quantification accuracy. 

+1 
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Figure 43: Truck-based TDLAS error (%) for different wind speeds 
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Figure 44: Truck-based TDLAS error (%) with respect to wind direction variability (deg) 

3.3.3 Effect of emission rate 

Figure 45 shows the errors of the truck-based TDLAS with respect to emission rate. As the 

emission rate decreases, the quantification error increases. Furthermore, with lower emission rates, 

the bias trends more negatively, indicating that the lower measurements may be operating at or 

near the technology’s minimum detection limit (MDL). There is also a more significant effect on 

tank estimates for emission rate compared to windspeed. This could indicate that for these types 

of emissions the emission rate is a more important contributor to uncertainty than windspeed. 
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Figure 45: Truck-based TDLAS error (%) for different actual release rates. 

3.3.4 Effect of release scenario 

Figure 43 and Figure 45 show that quantification error is influenced significantly by the emission 

type; estimates of stack and flare emissions were more accurate than those of shed and tank 

emissions. Tank and shed emissions had considerably more surrounding infrastructure that could 

have interfered with downwind dispersion of the plume, in turn affecting the ability of the truck to 

detect the plume and the validity of the simplifications used to derive the BLS model. 

3.4 Airborne NIR HS Imaging 

3.4.1 Summary plots and cloud cover 

Figure 46 summarizes the performance of the airborne NIR HS imaging system. The estimates 

have an average absolute error of 62% and a consistent positive bias of +52% for 44 emission 

estimates. Figure 46 shows error bars based on the uncertainty estimates provided by GHGSat for 

the technology. 
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During the second field campaign, only 2 of 46 measurement passes were reported as “missed 

detections”, contrasting with 32 out of 80 measurements conducted during the first campaign were 

missed detections. This is mainly due to the difference in cloud cover between field campaigns. 

During the April 2022 campaign cloud shadow caused quantification issues for the technology, 

while on September 25 the skies were almost entirely clear of cloud. Cloud cover is a key factor 

that limits the availability of this technology. 

 

 

Figure 46: Summary of NIR HS imaging performance 

3.4.2 Effect of wind speed 

Figure 47 shows boxplots of the emission error for different windspeed measurements from the 

portable ultrasonic anemometer wind speed measurements. In general, error increases with wind 

speed, and the estimates have a positive bias. This could be for two reasons: first, increasing wind 

speed leads to a more disperse plume, which may result in regions of the 2D column density image 

that are below the detection threshold of the instrument. In this scenario one would expect the 

estimates to underpredict the true release rates, since areas of the plume are unaccounted for in the 

integration.  

A second possibility is that the windspeed used to estimate the emission rate may be different than 

the true conditions. A key advantage of airborne systems is the ability to conduct measurements 

remotely, but with the drawback that a ground-based anemometry measurement is rarely available. 

Instead, providers must rely on wind speed models, e.g. from Meteoblue [23]. The wind speeds 

recorded by the provider are considerably higher than the windspeeds from the portable ultrasonic 

anemometer, on average reading 1.2 m/s higher. The wind speed error may be a significant 

contributor to uncertainty in estimates from airborne systems, and one would expect a linear 



58 

 

relationship based on wind speed error and emission error based on Eqs. (5) and (6). Johnson et 

al. observed a similar impact of wind inaccuracy in airborne TDLAS measurements [34]. 

Figure 48 shows a scatterplot of the absolute percent error ε versus the error in the wind speed, 

defined as the difference between the Meteoblue wind speed, uMB, and the wind speed from the 

ultrasonic anemometer, uUS. To investigate if there is a linear relationship between wind speed 

error and error in the estimates, a linear regression model of the form 

 ( )0 1 MB USu u =  + −  (12) 

was fit to the entire dataset. The resulting regression line is shown in blue in Figure 48. However, 

the presence of outlying points indicate that the statistical assumptions underlying the linear 

regression model may be violated. The two points which cause the most concern are indicated on 

the plot. It is unclear why these observations resulted in such high errors. Both observations 

occurred under relatively high wind speeds (according to the portable ultrasonic anemometer), so 

the high wind speeds may have contributed to the large errors. However, there were other 

observations taken at high wind speeds which do not have such large errors. A second linear 

regression model of the same form was fit to the dataset with the two outlying points removed and 

is shown in red. The statistical assumptions underlying the linear regression model are better 

satisfied in this case. 

The parameter estimates and their associated standard errors are shown in Table 7. One important 

difference between the two models is in the magnitude of the standard errors. In the model with 

the outliers included, the standard errors are about twice as large as for the model without the 

outliers. Both models give similar estimates for 𝛽1, the coefficient which quantifies the linear effect 

of wind error on absolute error. This indicates that the outliers do not have a big influence on the 

magnitude or direction of the linear effect.  

Table 7 Parameter estimates and their standard errors for linear regression models of absolute 

error versus error in windspeed. Confidence interval(s) which indicate evidence of a linear effect 

of wind speed on absolute error are bolded. 

Parameter Estimate Standard Error 95% Confidence 

Interval 

Model with outliers, 

𝜷𝟎 

24.38 28.66 (-33.9, 82.6) 

Model with outliers, 

𝜷𝟏 

36.90 20.46 (-4.7, 78.4) 

Model without 

outliers, 𝜷𝟎 

12.34 13.86 (-15.9, 40.6) 

Model without 

outliers, 𝜷𝟏 

32.31 9.90 (12.2, 52.5)  

 

An important result is that the model without the outliers finds that there is significant evidence of 

a linear effect of wind error on absolute error, while the model with outliers finds no significant 

evidence of this effect. This can likely be attributed back to the size of the standard errors in the 
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two models. There is much greater variability in the data with the outliers included, so the linear 

effect cannot be estimated very precisely compared to the data with the outliers removed, leading 

to a wider range of plausible values for the parameter.  

Finally, we investigate the strength of the linear relationship between wind error and absolute error 

by comparing the R2, which measures the strength of the linear relationship between the variables. 

In the model with outliers included, the R2 is 0.09, which means about 9% of the variation in the 

absolute error can be explained by the linear relationship with wind error. In the model with the 

outliers removed, the R2 is 0.25, so 25% of the variation in absolute error is attributable to a linear 

relationship with wind error. Again, the differences between the models are likely due to the 

outliers increasing the variability in the data for the first model. Overall, we can conclude that the 

wind error appears to play a role in explaining the error in emission rate estimates, but the presence 

of extreme outliers and a relatively low R2 suggest that there are more factors at play. 

 

 

Figure 47: Airborne NIR HS imaging estimate error (%) with respect to windspeed from the 

portable ultrasonic anemometer.  
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Figure 48: Airborne NIR HS imaging estimate error vs. the difference between the wind speed 

used by the provider and the in-situ wind speed measurements from the portable ultrasonic 

anemometer. Estimated linear regression lines fit with and without outlying points are overlaid. 

3.4.3 Effect of emission rate 

Figure 49 shows the relationship between emission rate and accuracy for estimates from the 

airborne NIR HS imaging system. Although the errors at high emission rates are significantly 

lower than at medium emission rates, far fewer releases were carried out at the medium emission 

rates. It possible that this result has more to do with the emission type than the actual release rate, 

as most of the “Medium” emission rates occurred on the short yellow stack, which had significantly 

more error than the tall flare stack, as discussed below. 
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Figure 49: Airborne NIR HS error (%) for different actual release rates. 

3.4.4 Effect of release scenario 

Airborne NIR HS measurements were carried out on releases from the 13 m tall unlit flare and the 

1.7 m short stack. These results are summarized in Table 8. Overall, the estimates on the short 

stack were significantly less accurate compared to those from the unlit flare. One potential reason 

for this is the impact of release type on how the plume disperses, with releases from the unlit flare 

dispersing over a wider area more quickly than for the short stack. It is possible that this led to 

spatial resolution issues when measuring the short stack, however more investigation is required 

to assess this possibility. 

Table 8: Summary of airborne NIR performance vs release type. 

Release Type Average Absolute Error Average Bias 

1.7m Stack 100% +100% 

13m Flare 37% +15% 
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3.5 Airborne LWIR HS imaging 

3.5.1 Summary of results and data collection issues 

Figure 50 summarizes emission estimates from the airborne LWIR HS system. Far fewer 

measurements were reported for this technology compared to the other systems. This is for two 

reasons: First, data from measurements carried out on October 2nd were deleted inadvertently by 

the provider. A second issue was caused by a tracking feature needed to focus the camera, which 

was set incorrectly for the majority of measurements. Consequently, only 26 estimates of 30 

releases were reported on September 30th, and only two estimates of 39 releases were reported for 

October 1st. The average absolute error for the technology was 574% across 26 emission estimates. 

Figure 50 shows that this technology systematically overestimates the true emission rate.  

Unfortunately, the environmental conditions for measurements were marginal on September 30th 

(chiefly due to poor thermal contrast between the air and the ground), while those on October 1st 

were nearly ideal. The technology provider shared an algorithm with the UW team that predicts 

the MDL based on air temperature, ground temperature, wind speed, and relative humidity. This 

tool is an important attribute to the cost-effectiveness of the measurement system, since it may be 

used to determine under which conditions measurements should be attempted, or when a survey 

should be aborted. 

It should be remarked that this technology is the least mature of those evaluated in this project. 

The second field trial represents one of the first deployments of this technology, and consequently 

some “teething problems” are to be expected. Our understanding is that many of the issues that 

affected deployment have since been resolved by the technology provider. 

3.5.2 Quantification technique 

The primary reason for systematic overestimation of the true release rate is not inherent to the 

measurement, but rather lies in how the technology provider extracted an emission estimate from 

the wind speed and 2D column density map. Figure 51 shows an example 2D column density map, 

found from the LWIR data cube by inverting a spectroscopic model for each pixel.  

The provider identified the highest column density (indicated on Figure 51), which was combined 

with a plume width and velocity to obtain an emission rate; this conceptually similar to the cross-

section method, Eq. (6). However, in the cross-section method multiple plume transects are 

computed and averaged, so choosing only one transect that has the highest column density will 

bias the inferred emission rate strongly. The UW team is currently reanalyzing the column density 

maps using the techniques summarized in Sec. 1.2.2, and will revise the emission rate estimates 

accordingly. 
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Figure 50: Summary of results for aerial LWIR hyperspectral estimates 

 

Figure 51: Example of airborne LWIR hyperspectral mass mapping for quantification. 
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4.0 PHASE 2A: AROFEMP MODELLING 

As discussed in Section 1.3.1, Arolytics personnel used Arolytics’ proprietary AroFEMP 

simulation code to predict the performance of three technologies identified in Phase 1 (two of 

which were evaluated during the field campaign) as if they were incorporated into an alternative 

FEMP (alt-FEMP) program. This procedure considered various scenarios to assess each 

technology’s ability to detect and quantify methane emissions and subsequently influence leak 

repairs over a calendar year. The overall benefit of a given technology, in terms of the reduction 

in emissions (e.g., kg/year), was evaluated through a Monte Carlo simulation. Emission scenarios 

were sampled randomly from probability densities representative of operational conditions, and 

emission detection and quantification probabilities were derived from either manufacturer-specific 

details for a technology or previous field trials identified in Phase 1. Repeating this procedure 

multiple times amounted to an integration over the probability densities, with the outcome of the 

expected reduction in emissions. 

Representative fugitive emissions probability profiles were derived from the FEMP-EA study’s 

dataset [14]. Modelling was performed using an anonymous set of infrastructure, drawn from the 

Petrinex database, representing a typical Alberta upstream oil and gas producer. The criteria used 

to select the representative infrastructure were facility count, facility subtype distribution, and the 

ratio of facilities requiring triannual (3x) and annual (1x) surveys (per AER Directive 060 Table 4 

[15]). A subset of 562 facilities was then chosen such that each of the criteria were equivalent to 

those of Petrinex’s Alberta infrastructure. The FEMPs were modelled for a two-year timespan, as 

this is the typical length of an alt-FEMP. 

The four technologies that were modelled are: airborne light detecting and ranging (LiDAR) 

(Bridger Photonics), airborne NIR hyperspectral imaging (GHGSat), truck mounted TDLAS 

(Boreal Laser), and QOGI using the FLIR GF320/QL320 system. QOGI survey time was derived 

from general time estimates from Canadian QOGI service providers and the QOGI detection 

capabilities were derived from Zimmerle et al. (2020) [16]. The detection capabilities and time 

information for the remaining technologies were obtained from each of the service providers. 

The QOGI system was modelled as conducting the default FEMP [15] and the remaining 

technologies were modelled each in their own alt-FEMP. The frequency of screenings and the 

fraction of all facilities that received follow-up surveys were adjusted to design alt-FEMPs that 

were equivalent to or better than the default FEMP in fugitive emissions reductions.  

The model results showed that all three alternative technologies could be used to design alt-FEMPs 

that are equivalent or superior to the default FEMP. These alt-FEMPs employed 2-3 screening 

surveys each year with OGI follow-ups being conducted at 30% of all screened facilities, selecting 

those with the largest emissions. The alt-FEMP design and performance details are as follows: 

airborne LiDAR technology, two screenings each year, 30% follow-up, 8% reduction in total 

fugitive emissions; airborne NIR hyperspectral imaging technology, three screenings each year, 

30% follow-up, 11% reduction in total fugitive emissions; truck mounted TDLAS technology, 

three screenings each year, 30% follow-up, 15% reduction in total fugitive emissions. The 

reductions in total fugitive emissions are relative to the total fugitive emissions estimated by the 

model for the default FEMP.  

This demonstrates that the airborne LiDAR, airborne NIR hyperspectral imaging, and truck-

mounted TDLAS technologies can all be feasibly and practically employed as the screening 

technologies in alt-FEMPs that achieve fugitive emission reductions equivalent to a default FEMP 
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for a “typical” Alberta oil and gas producer. In this modelling, each of the alt-FEMPs was able to 

perform better than the default FEMP, indicating that the alt-FEMPs could potentially achieve 

fugitive emissions reductions equivalent to the default FEMP using less follow-up or fewer 

screenings than were modelled.  

It is important to note that while this modelling was conducted for a “typical” Alberta oil and gas 

producer, the infrastructure of a given oil and gas producer and the properties of that infrastructure 

can vary considerably between producers. In addition, each alternative technology has unique 

capabilities which make it best suited to particular types of infrastructure and particular properties. 

Since the infrastructure and its properties can greatly affect the practicality and feasibility of 

employing an alt-FEMP and a particular alternative technology, the potential for successful 

implementation of an alt-FEMP is case dependent and should be evaluated for each unique 

scenario.  
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5.0 UNCERTAINTY QUANTIFICATION 

Almost all of the technologies surveyed in this project provide a single “point estimate” of the 

emission rate, by combining a point concentration or column density estimate with an advection 

model. These estimates can only be interpreted correctly if their uncertainty is known. For 

example, oil and gas producers need to know the uncertainty of an emissions estimate to determine 

the most cost-effective mitigation strategy; regulators need to understand the probability that an 

operator is complying with emissions regulations; while environmental scientists need to 

understand uncertainty in emission inventories when developing policy. Accordingly, a key focus 

of this project is to develop techniques for quantifying the uncertainty attached to these emission 

estimates. 

5.1 Bayesian analysis framework 

Data collected during the first and second field campaigns highlights how parameters such as the 

true emission rate, wind speed, and emission scenario may influence the estimated emission rate. 

Our goal is to explain the bias (the difference between the estimated emission rate and the actual 

emission rate, on average) and the uncertainty (the expected variability in the estimated emission 

rate in repeated measurements under the same conditions) of these measurements and understand 

how bias and uncertainty are impacted by the parameters. We will accomplish these goals using a 

Bayesian statistical analysis.  

Bayesian statistical analysis allows us to consider different sources of bias and uncertainty. These 

sources may be categorized as: (1) errors in the observed data, such as an incorrect concentration 

measurement (due to instrument error or noise) or inaccurate wind speed, e.g., due to using 

Meteoblue, or; (2) errors in the measurement model. The measurement model connects the 

emission rate to the observed data (concentration, background temperature, etc.); it may be based 

on physics, such as the Gaussian plume model, or be empirical in nature (e.g., a neural network). 

By necessity, the measurement model is a simplification of the true problem physics, and 

consequently even if there are no errors in the observed data, the modeled release rate will differ 

from the true release rate by a small factor. 

In Bayesian analysis, the QoI and statistical model parameters are treated as random variables 

which follow probability density functions (PDFs); the PDFs define what is known about the 

parameter in question, and the PDF widths reflect the uncertainty. Let Q denote the quantity-of-

interest (QoI), the actual emission rate. Let Qm denote the estimated emission rate,  denote the 

vector of raw data (such as concentration) used to determine the estimated emission rate, and  be 

a vector of additional observed data which may or may not be involved in determining Qm, such 

as the wind speed and background temperature. We will let x = (Qm, , ) be the vector containing 

the additional data that is not the quantity of interest, Q. The data from our field trial comprises 

(Q, Qm, , ). Finally, let  denote a vector of unknown model parameters which describe the bias 

and uncertainty of Qm.  

Our goal is to determine the probability distribution of the model parameters  given the field trial 

data. This is called the posterior distribution, denoted p(| Q, x). Bayes’ theorem describes the 

fundamental relationships between the probability densities of the observed data and model 

parameters and shows how to get the posterior distribution: 

 ( )
( ) ( )

( )

,
,

p p Q
p Q

p Q
=

ξ ξ x
ξ x  (13) 
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Here, p() is called the prior distribution, which describes what is known about  before observing 

the data. The likelihood function p(Q|, x) describes the probability density of the quantity of 

interest given the parameters and additional data, and the evidence,  

 ( ) ( ) ( ),p Q p p Q d= 
ξ

ξ ξ x ξ  (14) 

serves to normalize the numerator in Eq. (13) so the posterior PDF satisfies the Law of Total 

Probability.  

Another important probability density that can be obtained in a Bayesian analysis is the posterior 

predictive distribution, 

 ( ) ( ) ( )new new new new, , , ,p Q Q p Q p Q d= 
ξ

x x ξ x ξ x ξ  (15) 

This procedure allows the posterior PDF of the actual emission rate for a new observation, Qnew, 

to be derived given a new observation xnew and the previously observed data, Q. That is, if a 

provider makes a measurement, or in other words, observes particular values xnew = (Qm,new, new, 

new), the posterior predictive distribution p(Qnew|xnew, Q, x) is the probability distribution of the 

true emission rate given xnew and the data from the field trial. The posterior predictive distribution 

incorporates uncertainty in the model parameters and the variability observed in the field trial data, 

therefore painting a full picture of the uncertainty associated with predicting a true emission rate 

given a measurement xnew. 

5.1.1 Likelihoods 

Specifying the likelihood of Q is an important step in the model. We can explore different 

likelihoods by specifying the mean and the variance and then using different distributions with 

different shapes to find what gives the best model fit. The normal distribution is a classic starting 

point, and can be changed to a different distribution if the fit is poor. That is, the likelihood is Q ~ 

(µ(x), Σ (x)). The form of the mean, µ(x), and the covariance matrix, Σ(x), are discussed below. 

Two broad approaches to specifying the mean can be used, depending on whether or not the 

functional form of the measurement model is available. Let m(, ) be the measurement model, 

that is, the function which a provider uses to transform the raw data and auxiliary data into the 

estimated emission rate Qm. We have m(, ) = Qm. If m is known, we can model the mean as  

 ( ) ( )0 1 ,m  = +x ρ φ  (16) 

where 0 and 1 are parameters to be estimated: 0 is the expected actual emission rate when the 

measured emission rate is 0, and 1 is the expected increase in actual emission rate for every one 

unit increase in the measured emission rate. Therefore, a perfectly unbiased measurement model 

(with no errors in the observations) would have 0
 = 0 and 1

 = 1. 

The advantage of using the known measurement model is that it reflects the underlying physical 

processes. This will become important once errors in  are included in the model (see Section 

5.1.2). 

On the other hand, if the measurement model is not known, the variables in  are not included in 

the model, although they may help predict the technology’s performance. In this case, these 

variables can be included in the linear model: 
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 ( ) m

0 1 1

1

,
p

k k

k

Q    +

=

= + + x  (17) 

where k is the kth element in . This allows  to play a role in the mean of the quantity of interest 

and also to incorporate the effect of errors in  without knowing the measurement model used by 

the technology provider. 

From the scatterplots of the estimated versus actual emission rates, it appears that the variability 

increases for larger values of Q and Qm. Therefore, we will scale the variance by the mean of Q. 

That is, we model the variance as [µ(x)]2ασ2 where 0  α  1, reflecting the fact that larger 

measurements tend to have more variability, and σ2 is non-negative and quantifies the variance. 

5.1.2 Errors in observations 

So far, we have not considered the possibility of error in .  This can be incorporated into the mean 

models using a latent variable approach in which introduce new variables k
* are used to represent 

the true values of these variables in the absence of error. For example, k might be the wind speed 

reported by Meteoblue, and k
* would be the wind speed at the source at the time of the 

measurement, which is unknown but can be modelled. The observed values of k can be written 

as k = k
* + ϵk where k

* is the error-free measurement and ϵk is the measurement error. Then we 

assume that ϵk  ~ (0, k
2) that is, the measurement error is normally distributed around zero with 

unknown variance, k
2. 

5.1.3 Prior specification 

Prior distributions must be specified for 0, …, k+1, , and σ2. If measurement error is included, 

priors must also be placed on k
2, k = 1, …, p. The prior distributions reflect our beliefs about these 

parameters before considering the observed data. For example, σ2 is a variance parameter, so we 

would use a prior distribution with non-negative support. 

5.1.4 Computation and Inference 

Due to the complexity and generality of the models which will be fit during the Bayesian analysis, 

a closed form solution to Bayes’ theorem will not be available. Thus, we will use Markov Chain 

Monte Carlo (MCMC) to simulate the posterior distributions and the posterior predictive 

distributions. MCMC draws values of the parameter vector  = (0, …, k+1, , σ2, 1
2, … p

2) from 

a distribution which eventually converges to the posterior distribution. The computation required 

for MCMC can be carried out using JAGS (Just Another Gibbs Sampler) [35]. Inference can be 

carried out using the resulting MCMC samples. Credible intervals for quantities of interest can be 

constructed from the posterior distribution to give regions which have a 95% probability of 

containing the true parameter value.  
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6.0 CONCLUSIONS AND FUTURE WORK 

6.1 Key findings 

6.1.1 Preliminary results from the second field campaign 

The second field campaign focused on the performance of four technologies, operated by five 

providers: QOGI, truck-based TDLAS, and airborne NIR and LWIR HS imaging. In general, the 

truck-based TDLAS system provided the most robust emission estimates, followed by QOGI, 

airborne NIR HS imaging, and airborne LWIR HS imaging.  

Emission estimates were sensitive to emission rates, release scenarios, and environmental 

conditions. In general, the QOGI systems provided the most robust estimates, followed by the 

airborne NIR system and the truck based TDLAS system, and finally the LWIR HS systems. The 

truck-based TDLAS system and QOGI were most accurate when estimating releases from the stack 

and unlit flare, and less accurate for emissions from structures. A detailed analysis of the QOGI 

data revealed how factors including measurement distance, wind speed, release rate, background 

cloud cover, thermal contrast, background reflection, and, potentially, operator experience may 

impact the emissions accuracy. In some cases, it is difficult to determine the impact of each factor 

conclusively since advection model is a proprietary and confidential aspect of the measurement 

system, and some aspects of the system involve heuristically-set parameters that may introduce 

bias in the estimates. 

Estimates from the airborne NIR HS imaging system made during the second field campaign were 

considerably more accurate compared to the first field campaign, which was attributed to clearer 

skies during the second field campaign. The accuracy of these estimates was also affected by 

release height, with the releases from the unlit flare estimated more accurately than those from the 

stack closer to the ground. Estimation accuracy also relies on the windspeed used to convert the 

2D column density map found using the spectroscopic model into an emission estimate; a 

statistical analysis shows a linear correlation between the accuracy and the difference between the 

modeled windspeed used by the provider to process the data and the windspeed measured using 

an ultrasonic anemometer.  

Estimates obtained using the airborne LWIR HS imaging system were the least accurate, and this 

system had a large number of missed detections due to issues with the instrument setting and data 

handling on the part of the provider. Furthermore, the 2D column density maps were processed in 

a manner that produced a large positive bias in the estimates. 

Care should be taken when comparing these technologies, since each has their own application 

and relies on different levels of information. For example, the truck-based TDLAS system and 

QOGI systems relied on knowledge of the leak location, while the airborne HS systems could be 

used to survey a much larger area. The truck-based TDLAS system estimate incorporates a wind 

measurement obtained from a peripheral ultrasonic anemometer, while the airborne HS imaging 

techniques are constrained to use wind speeds from less reliable sources. The QOGI systems do 

not require wind speed as an input, since plume advection is inferred from feature tracing between 

successive images. 

6.1.2 AroFEMP Modelling 

As described in Section 4.0, the model results revealed that alt-FEMPs equivalent or superior to 

the default FEMP were successfully designed for all three alternative technologies (technologies 

other than OGI). These alt-FEMPs employed 2-3 screening surveys each year with OGI follow-
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ups being conducted at 30% of all screened facilities, selecting those with the largest emissions. 

This demonstrates that the airborne LiDAR, airborne NIR hyperspectral imaging, and truck-

mounted TDLAS technologies can all be feasibly and practically employed as the screening 

technologies in alt-FEMPs that achieve fugitive emission reductions equivalent to a default FEMP 

for a “typical” Alberta oil and gas producer. In this modelling, each of the alt-FEMPs was able to 

perform better than the default FEMP, indicating that the alt-FEMPs could potentially achieve 

fugitive emissions reductions equivalent to the default FEMP using less follow-up or fewer 

screenings than were modelled. 

It is important to note that while this modelling was conducted for a “typical” Alberta oil and gas 

producer, the infrastructure of a given oil and gas producer and the properties of that 

infrastructure can vary considerably between producers. In addition, each alternative technology 

has unique capabilities which make it best suited to particular types of infrastructure and 

particular properties. Since the infrastructure and its properties can greatly affect the practicality 

and feasibility of employing an alt-FEMP and a particular alternative technology, the potential 

for successful implementation of an alt-FEMP is case dependent and should be evaluated for 

each unique scenario. 

6.2 Ongoing and future work 

The following activities are currently underway, or will commence before the end of the project 

in December 2023.  

6.2.1 Aerial LWIR HS imaging 

The UW team will investigate alternative techniques including the IME method and cross-

sectional flux method used for the NIR measurement quantification, described in Section 1.2.2. In 

view of the limited amount of data collected during the second field campaign, additional field 

measurements are required. These activities will be funded by the provider or through an 

alternative funding source. 

6.2.2 Truck-based TDLAS 

The provider calculated emission estimates using the backwards Lagrangian stochastic technique. 

The UW team will derive a second set of emission estimates using the simpler inverse gaussian 

modelling (IGM) analysis, as was the case from the first field trial data. The UW team will also 

investigate how accuracy is impacted by wind-direction variability, as well as distance from the 

source location. This work will help form the basis of future uncertainty analysis involving 

Bayesian analysis. 

6.2.3 Availability of technologies 

The outcomes of the first and second field campaigns highlight that quantification accuracy 

depends strongly on environmental factors, and, under some conditions, it may be impossible to 

obtain a reliable emission estimate for a given technology. The UW team will work on developing 

a metric to assess the availability of each technology, based on the fraction of time the technology 

may be considered deployable for a given location (taken to be Brooks, AB) over the calendar 

year. This endeavor will be based on historical climate data, manufacture-specified operating 

limits, data from the field campaigns, and the MDL calculator shared by the airborne LWIR HS 

imaging provider.  
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6.2.4 Uncertainty analysis 

Finally, the UW team are developing a generic Bayesian framework for estimating the accuracy 

and bias in emission estimates. The UW team will initially focus on truck-based TDLAS, since 

the instrument model that connects the concentration measurements to emission rates is well 

defined. The analysis will consider how uncertainty in the concentration measurements, 

environmental parameters (e.g., wind) and approximations in the measurement model propagate 

into a PDF of the emission rate. 
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APPENDIX A: PHASE 1 SUMMARY 

Table A.1: Summary of available methane quantification technologies 

Technology 
Survey 

Type 

Detection 

Level 

Concentration 

Dimension 

Minimum 

Detection 

Limit (MDL) 

Precision Applicability Limitations 

Technology 

Readiness 

Level 

(TRL) 

Ultraviolet 

Doppler Optical 

Absorption 

Spectroscopy 

Fixed 

Location 

Facility Point 

Concentration 

(0D) 

0.5-1 ppm-m 95% LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

Rain, snow, fog, 

and/or clouds 

reduce 

measurement 

abilities due to 

strong attenuation 

in the UV-Vis 

region. 

9 

OGI/QOGI 

Camera 

Handheld Component Single Channel 

(1D) 

0.44 m3/day 50-80% LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

Require a 

temperature 

difference between 

the emission plume 

and the local 

background (0.5 

degrees to detect 

the gas; 3.0 degrees 

to quantify the 

mass flow rate). 

Must be between 

1.5-4.6 m from the 

plume. Operating 

temperatures 

between -20 to +50 

degrees Celsius. 

7+ 

Dual Frequency 

Comb 

Spectroscopy 

Fixed 

Location 

Facility Single Channel 

(1D) 

2.10 m3/day within 0.222 

kg/hr with 

absolute 

deviation of 

27% 

LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

Precipitation 

reduces signal path. 

4-7 
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Airborne 

TDLAS  

(Bridger) 

Aerial Facility 

/Site 

Imaging (2D) 29.22 m3/day 

at 1 m/s wind  

 

73.06 m3/day 

at 3 m/s wind  

 

21.92 m3/day 

under ideal 

conditions 

68% Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Standing water and 

snow absorb 

incident laser, 

leading to 

conservative 

emission estimates. 

Research is 

ongoing in 

developing a 

system that 

addresses this 

problem. Wind 

speed estimations 

limit accuracy of 

quantification (>3 

m/s). A sufficient 

swath is required to 

meet the maximum 

efficiency of the 

technology. Drone 

applications are 

also less efficient 

than aircraft-

mounted TDLAS. 

9 

Multispectral IR 

Camera 

Handheld Component Imaging (2D) 13.211 m3/day 1 K from -

15°C to 

150°C 

LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

Most MS cameras 

have warm filters, 

which disallows 

measurements of 

gases at near 

ambient 

temperatures. (MS 

cameras with cold 

filters are being 

developed.) 

9 



77 

 

Spectrometry 

WAF-P 

(GHGSat) 

Satellite Facilities 

/Site 

Imaging (2D) 36,529 m3/day 

in 3 m/s wind 

speeds 

13-60% Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Requires clear skies 

for observations; 

can revisit a site 

every 2 weeks. 

7+ 

Hyperspectral IR 

Camera 

Fixed 

Location 

Component

/Facility 

Imaging (2D) 5.81 m3/day 

(3.4 m 

distance)  

10.34 m3/day 

(5.9 m 

distance)  

at 4.5 m/s 

wind speed 

up to 0.25 

cm⁻¹ 

LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

Operating 

temperatures 

between -20 and 

+40 degrees 

celsius. Sensitive to 

high wind speeds. 

Measurement 

distance must be 

within 100 m of the 

sources. 

7+ 

Spectrometry 

TROPOMI 

Satellite Site Imaging (2D) 153,424 

m3/day 

0.60% Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Limited by the 

visibility of the 

atmosphere (i.e., 

cloud coverage). 

Solar zenith can 

also limit the ability 

for detection. 

7+ 

Gas Filter 

Correlation 

Radiometer 

Aerial, 

Satellite 

Site Single Channel 

(1D) 

Satellite: 

547.95 m3/day 

Developing; 

theoretically 

within 1 

ppm 

Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Requires clear skies 

for observations. 

Measurements 

require a high solar 

zenith angle. 

4/7 
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Pellistor 

(Catalytic Bead) 

Handheld, 

Fixed 

Location,  

Component

/Facility 

Point 

Concentration 

(0D) 

500 ppm - 5% 100% LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

Sensitive to high 

humidity, large 

temperature 

differentials, and 

environmental 

contaminants. 

9 

FTIR 

Spectroscopy 

Vehicle, 

Aerial, 

Fixed 

Location 

Facility Single Channel 

(1D) 

11.4 ppb 63-73% Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

The survey time 

required for 

measurements is 

inversely 

proportional to the 

spectral resolution 

(distance travelled 

by the mirror in the 

interferometer). 

9 

Ultrasound 

Imaging 

Handheld, 

Fixed 

Location 

Component Single Channel 

(1D) 

8.5 g/hr 90% LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

Requires pressure 

drop to detect 

emissions. 

4/7 

MethaneSAT 

Spectrometry 

Satellite Site Imaging (2D) 2 ppb over 1.5 

km2 

Satellite 

observations 

typically fall 

between <1-

5% (not 

Methane 

SAT 

specific) 

Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Sensitive to low 

solar zenith and 

high wind speeds. 

7+ 

Metal Oxide 

Semiconductor 

(MOS) 

Handheld, 

Fixed 

Location 

Facility 

/Site 

Point 

Concentration 

(0D) 

2-10 ppm Within 0.36 

ppm 

Continuous 

monitoring of 

emissions on sites. 

LDAR Programs. 

Sensitive to high 

humidity, large 

temperate 

differentials, and 

environmental 

contaminants. 

Exposure to large 

concentrations may 

de-sensitize the 

sensor irreversibly. 

9 
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Mass-Flow 

Meter 

Handheld, 

Fixed 

Location 

Component Point 

Concentration 

(0D) 

1.4 standard 

liters per 

minute 

Within 2% LDAR programs 

(standalone or in 

combination with 

screening 

technologies) 

No longer 

manufactured. 

Highly dependent 

on daily calibration 

procedures. 

9 

Laser Absorption 

Spectroscopy - 

Cavity Output 

Fixed 

Location, 

Handheld 

UAVs, 

Vehicle 

Facility Point 

Concentration 

(0D) 

30 ppb 87% Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Moderate 

interference from 

moisture - dried 

samples preferred 

for optimal 

analysis. 

7+ 

Laser Absorption 

Spectroscopy - 

Closed Path 

(Multi) 

Fixed 

Location, 

UAVs, 

Vehicle 

Facility Point 

Concentration 

(0D) 

100 ppb within  

79 ppb 

Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Require specific 

environmental 

requirements for 

measurement.  

7+ 

Mass 

Spectrometry 

Handheld, 

Fixed 

Location 

Component Single Channel 

(1D) 

1 ppb Within 3.4% Continuous 

monitoring of 

emissions on sites. 

LDAR Programs. 

Requires controlled 

environment (i.e., 

vacuum system). 

9 

Gas 

Chromatography 

Handheld, 

Fixed 

Location 

Component Single Channel 

(1D) 

1 ppb Within 3% 

to 6% of 

true conc. 

Continuous 

monitoring of 

emissions on sites. 

LDAR Programs. 

Calibration and 

purge required prior 

to use. Calibration 

frequency varies 

based on 

instrument. 

9 
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Printed 

Nanotube 

Sensors 

Fixed 

Location 

Facility Point 

Concentration 

(0D) 

5 ppm Developing 

- Currently 

focused on 

detection 

rather than 

actual 

quantificatio

n 

Continuous 

monitoring of 

emissions on sites. 

LDAR Programs. 

Unknown 4/7 

Laser Absorption 

Spectroscopy - 

Open Path 

Fixed 

point, 

UAVs, 

Vehicle 

Facility Single Channel 

(1D) 

2 ppm*m 90-97% Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arragements of well 

sites. Screening 

technology for 

LDAR programs. 

Measurement path 

length from 5 - 500 

m. Wind limitations 

2-10 m/s 

7+ 

Etalon Handheld, 

Vehicle, 

Fixed 

Location 

Component Single Channel 

(1D) 

100 ppb 0.1 µm + 0.3 

µm/m 

Continuous 

monitoring of 

emissions on sites. 

LDAR Programs. 

Highly dependent 

on surface 

reflectivity of the 

crystals; reflecting 

surfaces must be 

parallel and flat. 

7+ 

Laser Absorption 

Spectroscopy - 

Closed Path 

(Single) 

Fixed 

point, 

UAVs, 

Vehicle 

Facility Point 

Concentration 

(0D) 

Relative to 

total pressure 

of the cell; 88 

ppb 

90-97% Monitoring emissions 

from pipeline along 

ROW and 

remote/sparse 

arrangements of well 

sites. Screening 

technology for 

LDAR programs. 

Require specific 

environmental 

requirements for 

measurement.  

7+ 
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APPENDIX B: SUMMARY OF FIRST FIELD TRIAL KEY FINDINGS 

Summary table of key statistics and findings from first field trial. 

Technology Average Error Average Bias Key Findings 

Aerial NIR 

Hyperspectral 
41% -34% 

- Reliability issues with cloud 

cover and turbulence 

- Windspeed error may cause 

significant systematic errors 

Truck-based 

TDLAS 

(BLS) 

57% +19% 

- Might be less susceptible to wind 

direction variability with BLS 

model. 

- Performed worse with lower 

emission rates 

- Performed worse with tanks than 

stacks 

Truck-based 

TDLAS 

(IGM) 

47% -35% 

- Systematically underestimated 

true rate; potentially due to coarse 

meteorological data and wind 

direction variability 

AGAT Labs 

MWIR QOGI 
67% -46% 

- Struggled with high flowrates 

causing underestimation; 

potentially due to limitations of 

hardware/software for estimating 

plume velocity at high flowrates 

FLIR GF320 

QOGI 
55% -26% 

- Increased wind and flowrates 

caused underestimation due to 

GF320 framerate 

- Tank measurements less accurate 

than stack measurements; perhaps 

due to increased measurement 

distance 
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APPENDIX C: FLOW CONTROLLER DATA LOGGING EXAMPLE 

Excerpt of flow controller data log from September 27th, 2023, between 11:21AM and 11:23AM. 

Time (Local) Flowrate 

(m3/day) 

Pressure 

(kPa) 

Temperature 

(ᵒC) 

Setpoint 

(m3/day) 

Volume 

Flow 

2022-09-27T11:21:00.463 34.1 411.6 24.69 34 8.3 

2022-09-27T11:21:01.501 34.1 411.7 24.7 34 8.3 

2022-09-27T11:21:02.554 34.1 411.6 24.7 34 8.3 

2022-09-27T11:21:03.592 34.2 411.6 24.71 34 8.3 

2022-09-27T11:21:04.629 36.2 411.4 24.71 34 8.9 

2022-09-27T11:21:05.667 35.4 411.3 24.72 34 8.8 

2022-09-27T11:21:06.704 34.3 411.3 24.72 34 8.4 

2022-09-27T11:21:07.742 34.1 411.4 24.73 34 8.4 

2022-09-27T11:21:08.781 34 411.4 24.73 34 8.3 

2022-09-27T11:21:09.833 34 411.5 24.73 34 8.3 

2022-09-27T11:21:10.887 34 411.5 24.74 34 8.3 

2022-09-27T11:21:11.940 34 411.6 24.75 34 8.3 

2022-09-27T11:21:12.978 34 411.7 24.75 34 8.3 

2022-09-27T11:21:14.031 34 411.7 24.75 34 8.3 

2022-09-27T11:21:15.069 33.9 411.8 24.76 34 8.3 

2022-09-27T11:21:16.138 33.9 411.9 24.76 34 8.3 

2022-09-27T11:21:17.176 33.9 411.9 24.77 34 8.3 

2022-09-27T11:21:18.245 33.9 412 24.77 34 8.3 

2022-09-27T11:21:19.283 33.9 412.1 24.78 34 8.3 

2022-09-27T11:21:20.352 33.9 412.1 24.78 34 8.3 

2022-09-27T11:21:21.390 33.9 412.2 24.78 34 8.3 

2022-09-27T11:21:22.460 33.9 412.3 24.79 34 8.3 

2022-09-27T11:21:23.497 33.9 412.3 24.79 34 8.3 

2022-09-27T11:21:24.551 33.9 412.4 24.8 34 8.3 

2022-09-27T11:21:25.604 33.9 412.5 24.8 34 8.3 

2022-09-27T11:21:26.690 33.9 412.5 24.8 34 8.3 

2022-09-27T11:21:27.727 33.9 412.6 24.81 34 8.3 

2022-09-27T11:21:28.765 44.9 411.9 24.81 51 11 

2022-09-27T11:21:29.803 51.1 410.3 24.81 51 12.6 

2022-09-27T11:21:30.913 51.7 409.9 24.81 51 12.8 

2022-09-27T11:21:31.974 51.9 410.2 24.82 51 12.8 

2022-09-27T11:21:33.011 51.9 410.5 24.82 51 12.8 

2022-09-27T11:21:34.065 51.9 410.8 24.82 51 12.8 

2022-09-27T11:21:35.118 51.9 411.1 24.83 51 12.8 

2022-09-27T11:21:36.163 51.7 411.5 24.83 51 12.7 

2022-09-27T11:21:37.241 51.9 411.8 24.83 51 12.7 
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2022-09-27T11:21:38.295 51.3 412.2 24.83 51 12.6 

2022-09-27T11:21:39.332 51.1 412.6 24.83 51 12.5 

2022-09-27T11:21:40.370 51 413 24.83 51 12.5 

2022-09-27T11:21:41.455 51 413.5 24.83 51 12.5 

2022-09-27T11:21:42.493 51 413.8 24.83 51 12.5 

2022-09-27T11:21:43.578 50.8 414.2 24.82 51 12.5 

2022-09-27T11:21:44.632 51 414.5 24.82 51 12.5 

2022-09-27T11:21:45.718 51 414.8 24.82 51 12.5 

2022-09-27T11:21:46.755 51 415.1 24.82 51 12.4 

2022-09-27T11:21:47.840 50.8 415.4 24.82 51 12.4 

2022-09-27T11:21:48.888 51 415.6 24.82 51 12.4 

2022-09-27T11:21:49.963 51 415.8 24.82 51 12.4 

2022-09-27T11:21:51.017 51 415.9 24.82 51 12.4 

2022-09-27T11:21:52.087 51 416.1 24.82 51 12.4 

2022-09-27T11:21:53.124 51 416.2 24.82 51 12.4 

2022-09-27T11:21:54.177 51 416.4 24.82 51 12.4 

2022-09-27T11:21:55.231 51 416.5 24.82 51 12.4 

2022-09-27T11:21:56.269 51 416.6 24.82 51 12.4 

2022-09-27T11:21:57.322 51 416.7 24.82 51 12.4 

2022-09-27T11:21:58.360 51 416.7 24.82 51 12.4 

2022-09-27T11:21:59.402 51 416.8 24.82 51 12.4 

2022-09-27T11:22:00.458 50.8 416.9 24.82 51 12.4 

2022-09-27T11:22:01.537 50.8 416.9 24.82 51 12.4 

2022-09-27T11:22:02.590 51 417 24.82 51 12.4 

2022-09-27T11:22:03.659 51 417 24.82 51 12.4 

2022-09-27T11:22:04.697 51 417 24.82 51 12.4 

2022-09-27T11:22:05.775 50.8 417 24.82 51 12.4 

2022-09-27T11:22:06.804 50.8 417.1 24.82 51 12.4 

2022-09-27T11:22:07.889 50.8 417.1 24.82 51 12.4 

2022-09-27T11:22:08.927 51 417.1 24.82 51 12.4 

2022-09-27T11:22:09.997 50.8 417.1 24.82 51 12.4 

2022-09-27T11:22:11.034 50.8 417.1 24.82 51 12.4 

2022-09-27T11:22:12.120 50.8 417.1 24.82 51 12.4 

2022-09-27T11:22:13.173 50.8 417.1 24.83 51 12.4 

2022-09-27T11:22:14.211 51 417.2 24.83 51 12.4 

2022-09-27T11:22:15.248 51 417.2 24.83 51 12.4 

2022-09-27T11:22:16.286 51 417.2 24.83 51 12.4 

2022-09-27T11:22:17.324 51 417.2 24.83 51 12.4 

2022-09-27T11:22:18.398 51 417.2 24.83 51 12.4 

2022-09-27T11:22:19.431 51 417.2 24.83 51 12.4 

2022-09-27T11:22:20.484 51 417.2 24.83 51 12.4 
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2022-09-27T11:22:21.549 50.8 417.2 24.83 51 12.4 

2022-09-27T11:22:22.607 51 417.2 24.84 51 12.4 

2022-09-27T11:22:23.645 51 417.1 24.84 51 12.4 

2022-09-27T11:22:24.730 51 417.1 24.84 51 12.4 

2022-09-27T11:22:25.768 51 417.1 24.84 51 12.4 

2022-09-27T11:22:26.853 51 417.1 24.84 51 12.4 

2022-09-27T11:22:27.907 50.8 417.1 24.85 51 12.4 

2022-09-27T11:22:28.968 51 417.1 24.85 51 12.4 

2022-09-27T11:22:30.014 50.8 417.1 24.85 51 12.4 

2022-09-27T11:22:31.068 50.8 417.1 24.85 51 12.4 

2022-09-27T11:22:32.129 51 417.1 24.85 51 12.4 

2022-09-27T11:22:33.179 51 417.1 24.86 51 12.4 

2022-09-27T11:22:34.229 51 417.1 24.86 51 12.4 

2022-09-27T11:22:35.266 51 417.1 24.86 51 12.4 

2022-09-27T11:22:36.335 51 417.1 24.86 51 12.4 

2022-09-27T11:22:37.373 51 417 24.87 51 12.4 

2022-09-27T11:22:38.411 51 417 24.87 51 12.4 

2022-09-27T11:22:39.464 51 417 24.87 51 12.4 

2022-09-27T11:22:40.502 51 417 24.87 51 12.4 

2022-09-27T11:22:41.555 51 417 24.88 51 12.4 

2022-09-27T11:22:42.609 51 417 24.88 51 12.4 

2022-09-27T11:22:43.662 51 417 24.88 51 12.4 

2022-09-27T11:22:44.700 51 416.9 24.89 51 12.4 

2022-09-27T11:22:45.769 51 416.9 24.89 51 12.4 

2022-09-27T11:22:46.814 51 416.9 24.89 51 12.4 

2022-09-27T11:22:47.861 51 416.9 24.89 51 12.4 

2022-09-27T11:22:48.898 51 416.9 24.9 51 12.4 

2022-09-27T11:22:49.936 51 416.9 24.9 51 12.4 

2022-09-27T11:22:50.974 51 416.8 24.9 51 12.4 

2022-09-27T11:22:52.011 51 416.8 24.91 51 12.4 

2022-09-27T11:22:53.048 51 416.8 24.91 51 12.4 

2022-09-27T11:22:54.118 51 416.8 24.92 51 12.4 

2022-09-27T11:22:55.155 51 416.7 24.92 51 12.4 

2022-09-27T11:22:56.193 51 416.7 24.92 51 12.4 

2022-09-27T11:22:57.231 51.1 416.7 24.92 51 12.4 

2022-09-27T11:22:58.284 51.1 416.7 24.93 51 12.4 

2022-09-27T11:22:59.338 51.1 416.7 24.93 51 12.4 

2022-09-27T11:23:00.391 51 416.6 24.93 51 12.4 
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APPENDIX D: FIELD TRIAL NOTEBOOK 

 

Release Type Time 

Start 

Release Rate 

(m3/day) 

Wind Speed 

(m/s) 

Wind Direction Pressure 

(kPa) 

Temp (ᵒC) from 

mass-flow 

controller 

SEPTEMBER 25TH 

Large stack 10:00 0 1 SW N/A N/A 

Large stack 10:20 340 1.5 S 207.9 21.29 

Large stack 10:36 1200 1 SW 380.6 22.71 

Large stack 10:51 1690 1.5 WSW 380.9 17.28 

Large stack 11:07 710 1.5 W 410.2 12.52 

Large stack 11:20 1350 1.5 W 389.2 19.66 

Large stack 11:29 2720 1.5 W 317.7 16.6 

Short stack 1.7m 11:38 2720 2.5 W 315.9 4.88 

Short stack 1.7m 11:51 0 1 W 0 0 

Short stack 1.7m 11:54 710 2.5 W 406.8 14.01 

Short stack 1.7m 12:03 1200 2.5 WNW 387.6 21.14 

Short stack 1.7m 12:20 340 2.5 NW 421 23.58 

Short stack 1.7m 12:38 0 1 WSW 0 0 

Short stack 1.7m 12:44 1690 1.5 W 290.5 30.18 

Short stack 1.7m 13:08 1350 2.5 SW 356.4 19.26 

Large stack 13:12 0 1.5 SW N/A N/A 

Large stack 13:22 1350 1.5 SSW 338.3 28.6 

Large stack 13:31 170 2.5 SW 421.5 28.52 

Large stack 13:39 1200 3 SW 337.5 30.66 

SEPTEMBER 26TH 

1.7m Stack 09:31 170 0 NA 307 21.41 

1.7m Stack 10:02 51 0 NA 285 26.62 

1.7m Stack 10:23 710 1 SW 282.4 25.81 

1.7m Stack 10:52 8.5 0 NA 228 28.77 
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1.7m Stack 11:05 0 1 SW 0 0 

1.7m Stack 11:21 51 1.5 E 243.8 30.2 

1.7m Stack 11:31 710 1.5 SSE 227.5 32.18 

1.7m Stack 11:42 8.5 1.5 E 377.2 30.53 

1.7m Stack 11:53 51 1.6 SE 320.7 31.8 

1.7m Stack 12:04 710 1.5 SE 262.7 32.98 

1.7m Stack 12:12 8.5 2 SE 347 31.57 

1.7m Stack 12:24 0 1.4 S 0 0 

1.7m Stack 12:33 710 2 S 334.9 33.03 

1.7m Stack 12:52 710 2 S 334.9 33.03 

1.7m Stack 12:59 51 1.5 SE 427.6 33.9 

1.7m Stack 13:18 8.5 2.5 S 409.7 34.72 

Flare stack 13:39 1690 3.5 S 397.7 33.35 

Flare stack 14:09 710 2.5 SW 435.4 25.31 

Flare stack 14:23 1200 3.5 SW 423.6 31.28 

Flare stack 14:37 1350 3 SW 413.7 30.15 

Flare stack 14:50 340 3 SW 420.7 30.57 

Small stack (3 

piece - 4.84m) 

15:06 0 3 SW 0 0 

Small stack (3 

piece - 4.84m) 

15:10 170 3 SW 397.2 32.65 

Small stack (3 

piece - 4.84m) 

15:31 1690 2 SSW 234.5 34.83 

Small stack (3 

piece - 4.84m) 

15:42 710 2 S 407.8 29.4 

Small stack (3 

piece - 4.84m) 

15:51 1200 2.5 S 380.9 30.99 

Small stack (3 

piece - 4.84m) 

16:02 1350 1.4 S 377.8 30.37 

Small stack (3 

piece - 4.84m) 

16:13 340 2 S 420.7 29.34 

Small stack (3 

piece - 4.84m) 

16:24 0 2.6 SSW 445.6 31.92 
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Small stack (3 

piece - 4.84m) 

16:32 8.5 1.7 S 432.031.8 31.8 

Small stack (3 

piece - 4.84m) 

16:40 85 2.5 S 412.5 32.31 

Small stack (3 

piece - 4.84m) 

16:50 51 2 S 420.5 32.19 

SEPTEMBER 27TH 

Green tank 09:28 170 2.5 SSE 446.2 12.65 

 09:58 85 2.8 SSE 414.5 12.68 

 10:09 0 2 SSE 428.8 14.5 

 10:19 340 2.6 SSE 411.1 15.03 

 10:31 8.5 2.4 SSE 425 15.91 

 10:35 51 2.4 SSE 417 16.53 

 10:48 34 2.2 SSE 417.5 17.18 

Green tank 

reversed hose 

orientation 

11:08 34 1.8  412 21.14 

 11:21 51 1.9 S 410.1 24.83 

 11:29 8.5 2.8 S 423.6 26.46 

 11:38 340 2.1 S 410.4 27.77 

 11:50 0 2.2 S 429.4 28.49 

 11:58 85 3 S 414.2 29.95 

 12:08 170 1.5 S 416 31.65 

Short stack, 1.7 

height 

14:23 1690 1.5 SW 384.4 39.64 

 14:36 34 2.5 SW 428 35.5 

 14:44 710 2.5 W 423.5 37.7 

 14:51 8.5 3 W 430.4 38.2 

 14:58 0 3 W 0 0 

 15:08 1200 2.5 W 413.5 39.59 

 15:14 51 3 W 430 39.04 

 15:20 170 1.4 W 421.3 38.89 

 15:26 85 3 WSW 424.5 39.63 
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 15:32 340 1.2 W 427.7 39.52 

 15:40 1350 1.5 WSW 402.4 40.03 

 15:50 51 1.4 W 453.2 37.29 

 15:59 8.5 1.5 W 442.9 39.05 

 16:06 0 3.1 W 437.8 39.17 

 16:13 710 3.2  420.6 38.26 

 16:21 51 2.5 WSW 430.8 37.55 

 16:29 8.5 3.1 W 431 38.08 

 16:36 710 1.5 SW 421.3 38.05 

 16:44 51 0 NA 429.5 38.25 

 16:50 8.5 1.2 N 428 38.78 

 17:00 710 1.7 W 424.4 38.25 

SEPTEMBER 28TH 

1.7m stack 09:23 1350 1.7 S 338.6 16.92 

 09:32 1200 0 NA 383.3 18.56 

 09:47 1690 1.7 SSW 358.9 19.12 

 09:57 1200 0 NA 386.3 16.03 

 10:07 1690 1.2 SE 306.7 17.01 

 10:15 1350 1.6 S 384.1 16.86 

 10:29 1690 1.2 SW 393.2 22.93 

 10:39 1350 0.6 SW 361.8 23.2 

 10:47 1200 1.1 SE 381.6 23.21 

Tall 3-piece 

stack 

11:06 1200 1.4 SW 421.1 29.2 

 11:23 340 1.8 S 438.1 27.44 

 11:28 0 0.8 SE 538.7 29.19 

 11:36 85 1 S 460.7 30.77 

 11:45 170 1.7 SSW 447.9 32.76 

 11:51 1690 1.5 SW 385.5 34.97 

Medium 2-piece 

stack 

13:17 1200 0.9 S 409.1 38.51 

 13:36 340 2.4 SE 431.3 34.68 
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 13:43 0 2.7 SE 466.2 35.71 

 13:51 85 1.5 SW 430.9 35.43 

 13:58 170 2 SW 437.1 36.17 

 14:05 1690 2.2 SW 384.5 37.12 

Vent from shack, 

tape on pipe 

15:24 85 N/A N/A 437.1 31.5 

 15:30 51 N/A N/A 436.5 31.77 

 15:36 170 N/A N/A 436 32.1 

 15:44 0 N/A N/A 440.3 32.92 

 15:50 340 N/A N/A 429.9 32.92 

 15:57 8.5 N/A N/A 437 32.77 

Vent from shack, 

tape off 

16:06 340 N/A N/A 429.3 32.77 

 16:14 170 N/A N/A 432.5 33.59 

 16:20 51 N/A N/A 432 33.4 

 16:25 85 N/A N/A 433.5 33.53 

SEPTEMBER 30TH 

Tall Flare Stack 12:55 340 2.3 NNW 431.2 27.38 

 13:28 710 5.2 NW 436.4 31.92 

 13:43 1200 6.5 NW 422.3 29.1 

 13:48 1690 3.8 NW 396.7 26.47 

 13:54 2720 3.3 NW 449.7 20.57 

 14:00 1200 1 NNW 421.5 16.9 

 14:02 1690 1.8 NW 406.9 18.32 

 14:04 0 N/A N/A N/A N/A 

1.7m Stack 14:09 170 3.1 NNW 434.6 25.49 

 14:17 1690 1.9 NNW 422.1 23.48 

 14:23 340 3 N 452.9 27.6 

 14:30 8.5 3.4 NNW 493.6 28.17 

 14:35 0 N/A N/A N/A N/A 

 14:41 1200 3.3 N 441.2 28.72 

 14:47 85 2 NW 461.1 28.83 
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 15:04 51 5 N 464.2 29.69 

Flare stack 15:36 170 2.5 NNW 465.6 28.94 

 15:44 0 4.3 NNW 92.9 27.31 

 15:47 8.5 4.1 NNW 469 28.59 

 15:54 85 3.7 NNW 458.4 29.48 

 16:00 51 4 NNW 462.4 30.33 

Short stack 16:10 51 3.6 NNW 465.6 28.96 

 16:16 710 2.9 NW 445.3 26.14 

 16:23 2720 3.4 NNW 360.7 22.14 

 17:15 1350 3 NNW 419.7 21.12 

 17:19 340 2 NW 436 20.58 

 17:23 2720 3 NW 350.9 19.42 

 17:27 51 2.5 NNW 457.1 17.17 

 17:32 710 3.4 NNW 438.9 17.11 

 17:37 170 2.5 NNW 450.6 17.47 

OCTOBER 1ST 

Flare stack 10:25:00 170 2.5 NE 439.1 24.98 

Flare stack 10:35:40 8.5 2.5 NE 422 23.93 

Flare stack 10:44:00 1200 2.5 NE 325.6 24.27 

Flare stack 10:49:30 340 1.6 NE 391.1 23.3 

Flare stack 10:55:40 51 2.2 NE 417.3 23.7 

Flare stack 11:02:10 85 2.5 NE 406.5 24.17 

Flare stack 11:08:35 0 1.8 NE - - 

Flare stack 11:15:40 710 2.1 ENE 410.7 26.39 

Flare stack 11:23:00 2720 2 ENE 314.6 25.24 

Flare stack 11:30:10 1690 2.1 ENE 384.7 17.11 

1.4m stack 11:39:40 1690 1.2 E 405.6 19.8 

1.4m stack 11:46:20 2720 0.5 E 335.2 18.59 

1.4m stack 11:52:30 710 0.1 ESE 414.5 18.07 

1.4m stack 11:58:00 0 1.4 ENE - - 
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1.4m stack 12:03:50 85 0 N/A 427.6 22.9 

1.4m stack 12:09:20 51 1 NE 421.5 26.61 

1.4m stack 12:16:15 340 1 NE 427 30.13 

1.4m stack 12:21:50 1200 2.4 NNE 408.2 31.21 

1.4m stack 12:28:10 8.5 0 N/A 465.7 30.87 

1.4m stack 12:33:30 170 2.1 ENE  31.86 

Tank (with 

wind) 

14:20 170 1.5 NE 434.5 34.23 

Tank (with 

wind) 

14:31:15 85 2.2 E 424 34.93 

Tank (with 

wind) 

14:40:00 0 2 ESE - - 

Tank (with 

wind) 

14:47:30 340 2.6 E 425.6 34.86 

Tank (with 

wind) 

14:55:40 8.5 1.9 ENE 429.6 34.84 

Tank (with 

wind) 

15:02:05 51 0.8 NE 432 34.57 

Tank (with 

wind) 

15:08:35 34 2.3 E 427.1 34.93 

flare stack 16:04 170 2.6 E 439.6 26.32 

flare stack 16:15:55 8.5 3.3 ESE 431.7 25.38 

flare stack 16:23:30 1200 2.6 SE 405.6 23.44 

flare stack 16:28:15 340 2.6 SE 430.3 23.25 

flare stack 16:34:00 51 2.4 SE 427.7 23.2 

1.4 m stack 16:39:40 0    
 

1.4 m stack 16:41:35 340 2.0 SE 431.6 22.94 

1.4 m stack 16:47:35 2720 2.1 SE 305.2 22.01 

1.4 m stack 16:53:20 85 1.6 SE 431.4 19.77 

1.4 m stack 16:59:10 1200 1.9 SE 412.1 20.23 
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