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Abstract

Vegetation phenology and productivity drive resource use by wildlife. Vegeta-

tion dynamics also reveal patterns of habitat disturbance and recovery. Moni-

toring these fine-scale vegetation patterns over large spatiotemporal extents can

be difficult, but camera traps (CTs) commonly used to survey wildlife popula-

tions also collect data on local habitat conditions. We used CTs (n = 73) from

2016 to 2019 to assess impacts of habitat change in a boreal landscape of north-

ern Canada, where seismic lines for petroleum exploration disturbed wildlife

habitat and prompted vegetation restoration efforts. First, we quantified vegeta-

tion dynamics from CTs, comparing them to satellite-based estimates that are

typically used to monitor vegetation at broad spatial scales. We then used

understory phenology and productivity estimated from CT time-lapse images to

assess vegetation recovery on seismic lines. Finally, we related vegetation

dynamics with the habitat use of three wildlife species: sandhill cranes Grus

canadensis, woodland caribou Rangifer tarandus, and white-tailed deer Odo-

coileus virginianus. CTs provided unique insight into vegetation dynamics that

were different from signals measured by satellites, with temporally inconsistent

and even some negative correlations between CT and satellite metrics. We

found some indication of vegetation recovery on seismic lines that had received

restoration treatment, with understory patterns more similar to undisturbed

habitat than to seismic lines that did not receive restoration treatment. CTs also

provided inferences about wildlife activity related to vegetation resources, which

approaches using satellite data failed to detect. Wildlife habitat use tracked veg-

etation phenology, but did not always increase with vegetation productivity at

weekly, 16-day, or annual intervals. Instead, associations with vegetation pro-

ductivity depended on species, temporal scale, and productivity metrics. Given

the widespread and growing use of CTs to monitor terrestrial wildlife, we rec-

ommend their use to simultaneously monitor habitat conditions to better

understand the mechanisms that govern wildlife habitat use in changing envi-

ronments.

Introduction

Wildlife respond to temporal and spatial patterns in habi-

tat conditions to survive and complete their life cycles.

For example, many northern species molt with shortening

day-length to maintain camouflage from predators during

winter conditions (Mills et al., 2018; Zimova et al., 2018).

Herbivores track seasonal forage, such as the moving

front of emerging spring vegetation (i.e., “surfing the

green wave”; Merkle et al., 2016) or periodic flushes in

flowering and fruiting (Armstrong et al., 2016; Sakai &

Kitajima, 2019). In turn, predators track herbivores. Vege-

tation phenology (timing) and productivity (quantity)

can thus reflect forage quantity and quality that influence

how wildlife use habitat (Gentry & Emmons, 1987;

Iversen et al., 2014). When natural and anthropogenic
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changes modify the phenology and productivity of

resources such as forage (Visser & Both 2005), wildlife

must move, adapt, or risk reduced fitness and survival

(Zimova et al., 2016). Monitoring vegetation dynamics is

key to understanding how wildlife use resources and for

conserving biodiversity under habitat change.

Camera trapping has typically focused on sampling

wildlife (Burton et al., 2015), and is increasingly used to

also sample local, ground-level habitat conditions (Bater

et al., 2011; Ide & Oguma, 2010; Sirén et al., 2018).

Accordingly, the scalability and cost-efficiency (Steenweg

et al., 2017) of camera traps (CTs) have created new

opportunities for linking wildlife to resource conditions

(e.g., Hofmeester et al., 2019). Networks or arrays of CTs

can potentially monitor vegetation more frequently with

automated data collection compared with repeated man-

ual measurements of, for example of stem counts (Filicetti

et al., 2019) or vegetation green-up (Denny et al., 2014).

To achieve a similar temporal resolution, manual sam-

pling with limited resources would be spatially restricted

to smaller extents or fewer sampling locations. Con-

versely, above and near-ground sensing with satellites

(Zhang et al., 2003), unmanned aerial vehicles (Ancin-

Murguzur et al., 2020; Tóth, 2018), and phenocams

(Seyednasrollah et al., 2019) can increase spatial coverage

but often with coarser spatial or temporal resolution

(Zeng et al., 2020). Above and near-ground remote sens-

ing of understory signals are also subject to physical

obstruction and bias by canopy vegetation (Lopatin et al.,

2019; Tuanmu et al., 2010), which have their distinct

dynamics (Richardson & O’Keefe, 2009). Thus, ground-

level CTs are a promising method for balancing tempo-

rally continuous and spatially extensive monitoring for

understory vegetation.

Monitoring vegetation and biodiversity is important

given rapid habitat change characteristic of the Anthro-

pocene (Lewis & Maslin, 2015). Habitat loss and degrada-

tion can shift vegetation composition, phenology, and

productivity (Sankey et al., 2013), portending declines in

ecosystem function and mismatched species interactions

(Doyle et al., 2020; Morellato et al., 2016; Torre Cerro &

Holloway, 2020). Subsequent habitat recovery and

restoration may be characterized by changes in vegetation

dynamics due to early seral vegetation growth, plant suc-

cession (Connell & Slatyer, 1977; Finnegan et al., 2018),

and wildlife activity returning to reference conditions

(Gann et al., 2019; Miller & Hobbs, 2007). Thus, linking

vegetation dynamics and wildlife activity is essential for

assessing habitat change and restoration effectiveness

(Alberton et al., 2017; Buisson et al., 2017; Walker & Sou-

lard, 2019).

Canada’s boreal forests provide critical ecosystem func-

tions and services including carbon sequestration and

wildlife habitat, yet they are increasingly transformed by

industrial disturbance (Bradshaw et al., 2009; Schindler &

Lee, 2010), including mining and logging (Robinne et al.

2016). In particular, linear features cut for petroleum

exploration (i.e., seismic lines) have disturbed >1.5 mil-

lion km2 of forest and wetlands in northern Alberta and

occur at a mean density of 1.5 km/km2 (Dabros et al.,

2018; Lee & Boutin, 2006), contributing to a novel land-

scape with widespread anthropogenic manipulation and

disturbances (Pickell et al., 2015). Extensive coverage of

seismic lines and their slow habitat recovery have had

varying effects on wildlife species (Fisher & Burton, 2018;

Mahon et al., 2019; Wittische et al., 2021). Notably, seis-

mic lines have caused declines in woodland caribou Ran-

gifer tarandus (Hebblewhite, 2017; Hervieux et al., 2013),

which are federally listed as threatened in Canada

(Canada & Environment Canada, 2015). Caribou face

increased predation from wolves Canis lupus that travel

farther and faster on the treeless, compacted terrain of

seismic lines (Dickie et al., 2017, 2019; McKenzie et al.,

2012), and experience apparent competition with other

prey species including moose Alces alces and range-

expanding white-tailed deer Odocoileus virginianus (Dawe

et al., 2014; Fisher et al., 2020; Latham et al., 2011).

Returning vegetation on seismic lines to undisturbed con-

ditions is therefore critical to restoring wildlife interac-

tions (Filicetti et al., 2019). However, restoration

effectiveness has not been well studied, with scant evi-

dence of short-term success based on coarse descriptions

of habitat conditions [e.g., anthropogenic vs. natural,

restoration treatment vs. no treatment (Fisher & Burton,

2018; Serrouya et al., 2020; Tattersall et al., 2020a)].

Assessing early habitat responses following restoration

efforts has also been hampered by slow tree growth (Fin-

negan et al., 2019; Lupardus et al., 2019). Dynamics of

early seral vegetation, instead, may be more discriminat-

ing of initial vegetation patterns that impact wildlife and

the trajectory of habitat recovery.

Here, we demonstrate how CTs can simultaneously

measure early seral and understory vegetation dynamics

(phenology and productivity) and wildlife activity to

assess impacts of habitat change. We capitalized on a

multiyear CT study of wildlife on seismic lines in boreal

forests of northern Canada. First, we established the feasi-

bility and value of quantifying vegetation dynamics from

CTs, using an automated extraction method and com-

pared results to those from common satellite datasets. We

anticipated weak similarities between CT and satellite-

based metrics due to the different components of vegeta-

tion structure that they capture (Table 1). Second, we

examined vegetation conditions on seismic lines following

restoration treatment by comparing their understory veg-

etation dynamics to undisturbed reference conditions
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(Table 1). We predicted that sites that received restora-

tion and had regenerating vegetation would have longer

growing seasons and greater vegetation productivity.

Finally, we tested links between understory vegetation

dynamics and wildlife habitat use, focusing on three spe-

cies that rely on understory vegetation and differ in eco-

logical and conservation characteristics: migratory

sandhill crane Grus canadensis, threatened woodland cari-

bou, and range-expanding white-tailed deer (Table 1). We

predicted: (1) the annual timing of crane detections

would be concordant with the vegetation growing season

given their seasonal presence and dependence on boreal

breeding habitat (Hobson et al., 2006), while detections

of resident deer and caribou would occur across seasons

due to their year-round activities including foraging, calv-

ing, rutting, and seasonal movements (Rettie & Messier,

2001); (2) habitat use by all species would increase with

vegetation productivity throughout the year, particularly

for deer given their dependence on early seral forage; and

(3) annual habitat use over the landscape for all species

would be greater in areas with more vegetation productiv-

ity.

Materials and Methods

Study area

The 570 km2 study area in northern Alberta (Fig. 1) lay

within the Athabasca Oil Sands Region and the range of

the East Side Athabasca River woodland caribou popula-

tion. Inactive seismic lines from petroleum exploration

were the most significant anthropogenic disturbance, with

an average density of 1.1 km/km2 (Lee & Boutin, 2006;

Tattersall et al., 2020a). Habitat restoration had occurred

from 2011 to 2015 on approximately 264 ha of seismic

lines originating as far back as the 1970s (Nexen & Silva-

com, 2015). Restoration treatments involved either an

“active” approach by actively planting 400–1,200 stems/ha

of black spruce Picea mariana seedlings in addition to

mechanical mounding of soil and application of coarse

woody materials, or a “passive” approach by protecting

natural regeneration of plants ≥1.5 m in height and

>50% crown cover by application of coarse woody mate-

rials at the beginning of seismic lines to block access by

people. Boreal habitat included lowland terrain (58%)

Table 1. Summary of the three objectives related to vegetation dynamics and linkages to habitat disturbance and wildlife activity, with associated

hypotheses and predictions addressed with CT images from n = 73 CT sites in the study area in northern Alberta, Canada, from January 2016 to

November 2019.

Objective Hypotheses Associated predictions References

Quantifying and

comparing

vegetation

dynamics

CTs and satellites captured dynamics of

different components of vegetation

structure – understory/early seral and

canopy, respectively.

CT and satellite metrics would be positively but

weakly correlated

Richardson and O’Keefe

(2009), Lopatin et al.

(2019) and Tuanmu

et al. (2010)

Impacts on

vegetation

dynamics:

disturbance and

restoration

Anthropogenic disturbance and restoration

altered vegetation dynamics on seismic

lines, with areas off seismic lines retaining

undisturbed vegetation conditions

Length of growing season and DHI values

would increase from lowest to highest, from

unrestored Human Use/Control to Active to

Passive sites on seismic lines.

Steinaker et al. (2016)

and Emmett et al.

(2019)

Offline sites would have the longest growing

seasons, largest DHI values, and most

consistent green-up and senescence dates

across years

Linking wildlife

habitat use to

vegetation

dynamics

Timing and use of habitat use by wildlife

were related to understory and early seral

vegetation to due forage availability

Phenology: Migratory crane detections would

be concordant with the vegetation growing

season, while resident deer and caribou

detections would extend past the growing

season.

Rettie and Messier (2001)

and Hobson et al.

(2006)

Productivity: Species’ detections would

temporally increase with greenness and be

more numerous at sites with greater

greenness

Mueller et al. (2008) and

Razenkova et al. (2020)

Effect sizes would be greater for deer than for

caribou

Dawe et al. (2014) and

Fisher et al. (2020)

Due to forage needs, terrestrial wildlife

depended on understory and early seral

vegetation more than canopy vegetation

Species detections would be better explained

by greenness from CTs than satellites

Pauley et al. (1993) and

Lone et al. (2014)
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with fens, bogs, and mesic upland forests (31%) with pri-

marily tamarack Larix laricina, aspen Populus tremuloides

and balsam poplar Populus balsamifera, white and black

spruce Picea glauca, P. mariana, and jack pine Pinus

banksiana tree species (Burton et al. 2017). Understory

vegetation included Labrador tea Ledum groenlandicum,

wild rose Rosa acicularis, and bog rosemary Adromeda

polifolia. Elevation ranged from 333 to 562 m, with a

mean of 502 � 36 m (standard deviation, SD); slope ran-

ged from 0 to 0.8°, with a mean of 0.04 � 0.0° (1SD);

aspect ranged from 0 to 360° (1 SD of 105°).
We deployed n = 73 Reconyx PC900 HyperFire cam-

eras (Holmen, WI, USA) between November 2015 and

November 2019 to assess the effects of seismic line

restoration treatment on predator use and mammal com-

munity structure (Tattersall et al. 2020a). Each site con-

sisted of an un-lured CT set approximately 1 m high on a

tree facing across a seismic line (but also facing north as

much as possible to avoid false triggers). Sixty CTs were

set across four sampling strata in a stratified random

design (Table 2): “Active” sites (n = 22) that had received

planting-based restoration treatment, “Passive” sites

(n = 12) with only protection-based treatment, “Human

Use” sites (n = 14) left untreated for access by human

resource-users (e.g. trappers, energy workers), and “Con-

trol” sites (n = 12) designated for restoration but left as

untreated controls. A fifth stratum of randomly selected

“Offline” sites (n = 13) was added in November 2017 on

game trails in undisturbed areas ≥100 m from seismic

lines as a reference assumed to reflect end-goal vegetation

conditions after complete, successful habitat restoration.

Sites represented upland forest, lowland forest, and non-

forested habitats roughly in proportion to their presence

on the landscape at the 250 m resolution, with a mean

elevation of 518 � 14 m (mean � 1 SD) (range: 484–
576 m), mean slope of 0.01 � 0.01° (range: 0–0.09°), and
aspect that ranged from 11 to 360° with a SD of 97°
(Table 2). CTs operated continuously, taking one image

per motion trigger with no delay between triggers and

daily time-lapse images at 12:00 PM to record functionality

and daily local environmental conditions. We visited CTs

to collect data each spring and fall.

We used CT time-lapse and wildlife images taken dur-

ing 2016–2019, excluding 2015 to focus on annual cycles.

We identified wildlife species in images using Camelot

software (Hendry & Mann, 2018). Detections of a species

per site were aggregated into a single independent detec-

tion event if they occurred ≤30 min, and considered

separate events when >30 min apart (Rovero & Zimmer-

mann, 2016).

Quantifying and comparing vegetation
dynamics

Our first objective was to evaluate the utility of CTs for

characterizing the dynamics of understory vegetation (in-

cluding early seral vegetation, i.e., below the tree canopy)

(Table 1). We used the “phenopix” package (Filippa

et al., 2016) in program R (R Core Team, 2019) and

focused on the foreground in time-lapse images, where

terrestrial wildlife interact with understory vegetation, by

delineating the region with a quadrilateral (Fig. S1). We

redrew quadrilaterals for each period between field visits

because CT handling during visits may have changed

fields of view. We calculated a relative greenness index

per time-lapse image averaged over the red, green, and

blue values extracted across pixels within the quadrilat-

eral, which we assumed to be representative of the local

vegetation and greenness conditions even beyond the

immediate view of the CT. We filtered greenness indices

to remove noise and outliers using “phenopix” default

parameter values, and fit a smoothing spline with the

“splinefit” function to all years with ≥220 time-lapse

images (i.e., >60% of the annual growth cycle) for each

CT site (Fig. S2).

We calculated annual vegetation phenology and pro-

ductivity metrics from splines (Table 3). For phenology,

we defined onset dates of vegetation green-up and senes-

cence as the earliest and latest dates that greenness

reached 15% and 90% of the maximum value, respec-

tively (Bolton et al., 2020). Growing season length was

calculated as the number of days between green-up and

senescence. For productivity, we used greenness index val-

ues as site-specific proxies (Moore et al. 2016; Toomey

et al. 2015). While Westgaard-Nielsen et al. (2017) found

that the relationship between greenness and productivity

is site- and camera model- specific, our standardized

camera set up (e.g., height, angle, make, and model)

allowed for comparison of greenness values across sites.

To characterize annual vegetation productivity, we calcu-

lated at each site a Dynamic Habitat Index (DHI; Coops

et al., 2008; Radeloff et al., 2019), composed of three

components of site-specific greenness: maximum green-

ness (rather than minimum values in the original formu-

lation due to lack of variation in minimum values),

cumulative greenness, and seasonality of greenness; these

Figure 1. Location of the study area in northern Alberta, Canada, with an inset showing the location of n = 73 camera trap sites across 5

sampling strata that collected wildlife detections and daily time-lapse images between November 2015 and November 2019. Major habitat

distinctions and seismic lines are also shown.
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were calculated as the peak value, area under the curve,

and coefficient of variation across daily values, respec-

tively, for each annual spline.

For comparison, we calculated the same vegetation

phenology and productivity metrics using satellite data at

two spatiotemporal scales (Table 3). We obtained normal-

ized difference and enhanced vegetation indices (NDVI,

EVI) per site at 250 m resolution and 16-day frequency

from the MOD13Q1 v6 product (Didan, 2015), using the

“MODISTools” package (Tuck et al. 2014) in program R.

NDVI quantifies vegetation based on chlorophyll pigment

content and internal leaf structure from red and near-

infrared spectral bands (Zeng et al., 2020); EVI better

accounts for atmospheric and canopy background noise

with an additional blue spectral band (Hobi et al., 2017).

We fit splines to NDVI and EVI values to derive the same

metrics described above. We included another set of met-

rics derived from finer-scale EVI2 data at 30 m resolution

and 1–4 day frequency from harmonized Landsat 8 and

Sentinel 2 (HLS2; Bolton et al., 2020) (Table 3). EVI2 is

similar to EVI but does not use the blue band (Jiang

et al., 2008). We calculated Pearson correlation coeffi-

cients between CT and satellite metrics annually across all

sites and across years. Hereafter, we refer to “CT metrics”

and “satellite metrics” as reflecting understory vegetation

and canopy patterns, respectively.

Impacts on vegetation dynamics:
disturbance and restoration

Our second objective was to assess understory vegetation

conditions on seismic lines with CT metrics (Table 1).

We predicted that CT metrics would detect differences in

understory vegetation according to sampling strata, with

sites on seismic lines having vegetation patterns distinct

from the undisturbed, Offline sites, but with Active and

Passive sites more similar to Offline sites than either Con-

trol or Human Use sites. We modeled annual green-up

and senescence dates and growing season length as func-

tions of the sampling strata, using generalized linear

mixed models with CT site and year as random intercepts

to account for non-independence (Table S1). We also

modeled the consistency in green-up and senescence dates

across years (i.e., range between earliest and latest dates

across years when converted to day-of-year) as functions

Table 2. Characterization of sampling strata, habitat type, and topography (mean �1 SD) of n = 73 CT sites in the study area in northern Alberta,

Canada, from January 2016 to November 2019.

Stratum Sites (n) Lowland Upland Non-forest Elevation (m) Slope (°) Aspect (°)

Control 12 10 1 1 516 � 1.0 0.02 � 0 168 � 9

Human use 14 11 0 3 517 � 0.8 0 � 0 173 � 7

Passive 12 8 4 0 513 � 0.7 0.01 � 0 171 � 10

Active 22 20 0 2 517 � 0.5 0.01 � 0 201 � 4

Offline 13 10 1 2 517 � 0.8 0.01 � 0 127 � 7

Table 3. Annual vegetation phenology and productivity metrics

extracted from camera trap (CT) time-lapse images and satellite-based

products for n = 73 CT sites in the study area in northern Alberta,

Canada, from January 2016 to November 2019.

Camera

Trap

(CT)

NDVI

(250 m)

EVI

(250 m)

EVI2

(30 m)

Source Ground Satellite

(MODIS)

Satellite

(MODIS)

Satellite

(Landsat +
Sentinel 2)

Timeframe 2016–
2019

2016–
2019

2016–
2019

2016–2018

Frequency Daily 16-day 16-day Annual (1–
4 days)

Phenology

Date of

green-up

✓ ✓ ✓

Date of

senescence

✓ ✓ ✓

Length of

growing

season

✓ ✓ ✓

Productivity

Maximum

greenness

(DHI)

✓ ✓ ✓ ✓

Cumulative

greenness(DHI)

✓ ✓ ✓ ✓

Seasonality

(DHI)

✓ ✓ ✓

Amplitude ✓

Dates refer to the onset of phenology events, with the length of

growing season as the difference in days. Maximum greenness is the

peak value during each annual cycle; total greenness is the area under

each annual greenness curve; seasonality is the coefficient of variation

across daily values; amplitude is the difference in maximum and mini-

mum values in each annual cycle. Maximum greenness, cumulative

greenness, and seasonality of annual curves are adapted components

of the Dynamic Habitat Index (DHI; Coops et al., 2008; Radeloff

et al., 2019), which originally used minimum rather than maximum

greenness.
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of sampling strata (Table S1). We then compared DHI

components across sampling strata using two-sample t

tests with Bonferroni adjustments for multiple tests (Table

S1).

Linking wildlife habitat use to vegetation
dynamics

Finally, we linked crane, caribou, and deer detections to

vegetation dynamics, using the number of independent

CT detection events per species as a measure of relative

habitat use (Table 1). We assumed similar and high

detection probability across sampling strata of the focal

species given their relatively large body sizes and the use

of independent CT detections events rather than the

number of raw CT detections (Fig. S3). To investigate

vegetation phenology, we evaluated the concordance

between annual periods of habitat use by each species

with annual timings of the vegetation growing season esti-

mated by CTs. We modeled the lack of concordance (in

days) between each species’ first detection and green-up,

and between species’ last detection and senescence (Table

S1). We limited analyses to sites with ≥5 detections for

cranes and deer, and ≥2 detections for caribou to focus

on patterns of repeat habitat use and to minimize one-off

detections from transient movement. Species-specific

thresholds were determined based on plotting the lack of

concordance between phenology and wildlife detection

dates from sites with successively more detections of the

species (Fig. S4).

We then investigated temporal and spatial patterns of

habitat use related to vegetation productivity, using gen-

eralized linear mixed models with negative binomial

response distributions. We modeled temporal patterns

with weekly and 16-day counts of detections as functions

of greenness measured from CTs (Table S1) and also EVI

in 16-day count models. NDVI was not considered due

to high correlation with EVI (NDVI: r2 > 0.50), and

EVI2 was not available for 2019. We included an offset of

the (log) number of days that CTs operated to account

for variable sampling effort. Model sets included all possi-

ble additive linear combinations of greenness predictors.

We selected models with the lowest AICc (Tables S2–S5).
Lastly, we assessed spatial patterns of habitat use related

to vegetation productivity. Per species, we modeled site-

specific annual counts of detections (i.e., Jan–Nov/Dec) as
functions of DHI components and growing season length

estimated from CTs, NDVI, and EVI (Table S1). We used

a multi-stage approach rather than a stepwise approach

(Whittingham et al. 2006) to reduce the number of possi-

ble models and facilitate assessment of the relative

impacts of the vegetation predictors. Specifically, we first

constructed initial model sets for CTs, NDVI, and EVI

each, consisting of all additive linear combinations of

their respective predictors (Tables S6–S9). Top predictors

per model set were determined as those with 95% CI that

did not overlap 0 and ≤2 AICc of the top ranking (lowest

AICc) model. We similarly evaluated and identified top

covariates describing lowland habitat, sampling strata,

and seismic line features to control for habitat and

anthropogenic disturbance (Tables S10–S11, Supplemen-

tary Text). A final model per species included all orthogo-

nal (r2 < 0.5), best-supported productivity predictors and

habitat and anthropogenic covariates.

For the count models, we identified the most sup-

ported variance formulation (quadratic or linear) of the

negative binomial distribution using AICc model selec-

tion. We considered zero inflation and hurdle models to

further address potential overdispersion (Tables S2, S4,

S6, and Supplementary Text). For final models, we calcu-

lated the Ω2 statistic, a measure of goodness of fit that

compares the residual variances to that of the null model

(Xu, 2003). Models were evaluated with “glmmTMB”

(Brooks et al. 2017), “MuMIn” (Barton, 2020), and

“AICmodavg” (Mazerolle, 2019) packages in program R.

Results

Quantifying and comparing vegetation
dynamics

Using CTs, date of green-up was 24 April �1.4 days

(mean � 1 standard error) (range: 8 March–4 June)

across all sites and years. Date of senescence was 13

August �1.6 days (range: 13 June–13 September). Nota-

bly, CT and satellite metrics of vegetation dynamics dif-

fered, with variable but generally low and even negative

correlations. Annual correlations across sites had a mode

value of r = −0.23 (range: −0.68 to 0.72; inner quartile

range: −0.14 to 0.15). Across years, only 13 of 44 correla-

tions were significant (P < 0.05; Fig. 2). Of the CT met-

rics, seasonality of greenness was significantly correlated

every year with satellite metrics, but had the largest range

and therefore inconsistencies in correlation (2018:

r = −0.68 with amplitude of EVI2, P < 0.001; 2016:

r = 0.72 with cumulative EVI2, P < 0.001). The most dis-

tinctive CT metric was maximum greenness, correlating

the least frequently, and on average the most weakly, with

satellite metrics across years (Fig. 2).

Impacts on vegetation dynamics:
disturbance and restoration

Vegetation dynamics across sampling strata were similar

according to CT metrics, but with some differences sug-

gestive of understory recovery (Fig. 3). As predicted,
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Offline sites had the longest growing season, due to the

earliest mean green-up date (13 April �4 days) and latest

mean senescence date (19 August �2 days). Passive sites

had similar dates, and thus growing season length, to the

Offline reference conditions. Active sites and unrestored

Human Use and Control sites had shorter growing sea-

sons (P < 0.01) (Fig. 3A). Specifically, Human Use and

Control sites had significantly later green-up by 16 � 5

(P < 0.01) and 20 � 5 days (P < 0.01), respectively,

while Active and Control sites had significantly earlier

senescence by 8 � 4 (P = 0.04) and 10 � 5 (P = 0.03)

days, respectively. Active and Passive sites had inconsis-

tent senescence dates across years, ranging an additional

20 � 6 (P < 0.01) and 13 � 5 (P < 0.01) days, respec-

tively, compared with Offline sites (5 � 4 days,

P = 0.17). Sampling strata were indistinguishable accord-

ing to two DHI components: cumulative greenness and

seasonality of greenness (Fig. 3B). However, maximum

greenness was lower at Offline sites (542 � 34) than at

Active (753 � 43, P < 0.001) and Control sites

(787 � 60, P < 0.001).

Linking wildlife habitat use to vegetation
dynamics

Crane, caribou, and deer were detected in all sampling

strata and in all habitat types (Table S12). Cranes were

detected a total n = 1,476 times from 2016 to 2019

(n = 201, 299, 358, and 618 in successive years); deer

were detected n = 1,786 times (n = 246, 323, 437, and

780 in successive years); caribou were detected n = 469

times (n = 52, 88, 143, and 186 in successive years).

Annual timings of crane, caribou, and deer detections

across sites and years were concordant with vegetation

phenology measured by CTs. Cranes were detected within

the growing season, shortly after green-up (5 � 9 days

after, P = 0.54) until 14 � 7 days (P = 0.05) before

senescence (Fig. 4, Fig. S5). By contrast, caribou and deer

were detected throughout each year (Fig. 4, Fig. S5),

although post-hoc chi-squared tests indicated their detec-

tions occurred more during the average growing season

than expected based on season length and accounting for

camera operation (X2
deer ¼ 221:56, X2

caribou ¼ 199:36;

d.f. = 1, P < 0.01). Caribou detections past the growing

season were most pronounced at Human Use sites

(n = 84, 58 � 26 days after senescence, P = 0.03;

Fig. S6).

Habitat use by the three wildlife species did not always

increase temporally or spatially with vegetation productiv-

ity, contrary to predictions. Also, concordance was not

always greater with CT metrics than with satellite metrics.

Instead, habitat use patterns depended on species, tempo-

ral scale, and choice of metric. For all species, weekly

counts of detections increased with greenness measured

by CTs (βcrane = 0.76 � 0.04, P < 0.01; βcaribou =
0.64 � 0.06, P < 0.01; βdeer = 0.37 � 0.03, P < 0.01)

(Fig. 5). However, 16-day counts did not increase with

greenness measured by CTs and increased instead with

Figure 2. Pearson correlations between CT (camera trap) and satellite-based phenology and productivity metrics, across n = 73 CT sites and

years in the study area in northern Alberta, Canada, from January 2016 to November 2019. Metrics included annual values of maximum,

cumulative, and seasonality of greenness, length of annual growing season (LOS), and annual amplitude (Amplitude) of the greenness cycle.

Comparisons with EVI and NDVI are for the entire 2016–2019 study period; comparisons with EVI2 are for 2016–2018. Asterisks indicate

statistical significance at the α = 0.05 level.
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EVI (βcrane = 2.26 � 0.15, P < 0.01; βcaribou =
0.84 � 0.08, P < 0.01; βdeer = 0.63 � 0.09, P < 0.01)

(Fig. 5). Also contrary to predictions, greenness had a

greater effect size on caribou counts than on deer counts.

Final models for crane, caribou, and deer had low

explanatory power, with Ω2 statistics of 0.16, 0.09, and

0.23 at the weekly scale, respectively, and 0.04, 0.15, and

0.29 at the 16-day scale, respectively.

Spatial patterns of habitat use related to vegetation pro-

ductivity were also unexpected (Fig. 6). Annual counts of

detections were not always positively associated with vege-

tation productivity, nor did they increase more with CT

metrics than with satellite metrics. While caribou and

deer detections were greater at sites with greater

maximum greenness measured by CTs (βmaxCT_caribou =
0.17 � 0.08, P = 0.02; βmaxCT_deer = 0.29 � 0.08,

P < 0.01), crane and deer detections respectively were

fewer at sites with greater cumulative greenness measured

by CTs (βcumCT_crane = −0.26 � 0.06, P < 0.01) and max-

imum greenness measured by EVI (βmaxEVI_deer = −0.19
� 0.10, P = 0.05). Cumulative greenness measured only

by NDVI was a top predictor for the annual count of

deer detections at a site (βcumNDVI_deer = 0.36 � 0.13;

P < 0.01). Length of growing season measured by CTs,

seasonality of NDVI and EVI, and cumulative EVI had

no support in initial models for any species and were

excluded from subsequent consideration. Final annual

models for cranes, caribou, and deer had high explanatory

Figure 3. Comparisons across sampling strata of (A) green-up and senescence dates, with outliers for each respectively represented by circles and

triangles, and (B) DHI components extracted from n = 73 camera traps at sites in the study area in northern Alberta, Canada from January 2016

to November 2019. DHI components included cumulative greenness (calculated as the area under annual curves) maximum greenness (peak value

in annual curves), seasonality of greenness within each year (coefficient of variation across daily values). Statistically significant differences across

sampling strata are indicated with P-values.
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power, with Ω2 statistics of 0.93, 0.85, and 0.86, respec-

tively.

Discussion

Understanding the linkages between wildlife and their

habitat is critical for biodiversity conservation in the face

of global landscape change. Our findings establish the

ability of CTs to detect vegetation patterns based on auto-

mated extraction of greenness using an a priori approach

with standardized time-lapse sampling, building on post

hoc analyses with “by-catch” vegetation data. Importantly,

CTs revealed vegetation dynamics that differed markedly

from those derived from satellite data, and suggested new

patterns of wildlife habitat use related to vegetation pro-

ductivity. CTs detected slow and ongoing understory veg-

etation recovery but also evidence of persistent habitat

disturbance from petroleum exploration despite restora-

tion efforts, highlighting the importance of long-term

monitoring with a diverse set of metrics and indicators of

habitat condition.

Discrepancies between satellite and CT metrics (Fig. 2)

may have been partially due to differences in spatiotem-

poral resolution. MODIS satellite data were collected as

infrequently as every 16 days and at lower spatial

resolution (30–250 m) than the size of 8-m-wide seismic

lines, while CTs captured vegetation patterns every day at

this higher spatial resolution. CT and satellite metrics

provided similar but different signals of vegetation pro-

ductivity even when greenness from CTs was grouped to

match the 16-day resolution and dates of the MODIS-

derived NDVI and EVI (Fig. S7), consistent with other

research demonstrating that the relationship between local

greenness measured by digital imagery and gross primary

productivity is site specific (Westergaard-Nielsen et al.,

2017). Thus, CTs are a valuable tool for investigating

local vegetation dynamics. Furthermore, differences in

spatial resolution necessarily resulted in satellites captur-

ing canopy signals beyond the 8-m width of seismic lines,

and may have been compounded by vertical habitat struc-

ture and overhead angles of satellites that would have

blocked understory vegetation from view and led to poor

detection of the understory (Borowik et al., 2013; Fortin

et al., 2019; Liu et al., 2017). Such physical obstruction

can be especially problematic in boreal landscapes with

snow cover and coniferous canopies (Karkauskaite et al.,

2017; Yun et al., 2018). Even within satellite measures

(Figs. 2 and 6), observed differences underscore the con-

sequences of choosing appropriate metrics and scales of

inference in heterogeneous landscapes (Dronova et al.,

2021). Our findings are consistent with known discrepan-

cies between satellite and ground-level sensing of under-

story vegetation patterns (McClelland et al., 2019;

Figure 4. Number of independent detections per week per site of

sandhill crane, woodland caribou, and white-tailed deer at n = 73

camera trap (CT) sites across sampling strata in the study area in

northern Alberta, Canada from January 2016 to November 2019.

Independent detections were identified based on a 30 min maximum

threshold for images to be considered part of the same detection

event. Background rectangles show the vegetation growing season

estimated from the extracted dates of understory green-up to

senescence using CT time-lapse images.

Figure 5. Estimated effect sizes of top vegetation productivity

(greenness) predictors in models of weekly and 16-day counts of

detections for sandhill crane, woodland caribou, and white-tailed deer

per site at n = 73 camera trap (CT) sites within the study area in

northern Alberta Canada, from January 2016 to November 2019.

Mean estimates with 95% confidence intervals are shown. Results are

from generalized linear mixed models with year and camera trap as

random intercepts and (log) number of days of CT operation as an

offset.
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Tuanmu et al., 2010; Zhao et al., 2020), but also demon-

strate a way forward through CTs to acknowledge these

differences when making ecological inferences.

Our CTs detected differences in understory phenology

and productivity patterns across sampling strata, with

some evidence that vegetation regeneration has been

occurring on seismic lines due to restoration treatment.

Topography (i.e., elevation, slope, aspect) was similar

across sites (Table 2), and thus likely was not responsible

for the range of observed vegetation differences. However,

seismic line orientation can influence microclimate condi-

tions and potentially also vegetation (Franklin et al.

2021). As such, the significant variation in senescence

dates across years at only sites that received restoration

treatments (Active and Passive sites) could be due to

plant succession with higher species turnover typical of

annual species. Our findings lay the foundation and moti-

vation for future research to identify the particular plant

species and plant compositions contributing to observed

patterns within and across sampling strata – either

through manual identification (Vartanian et al. 2014,

Hofmeester et al. 2019) or automated approaches based

on machine learning (Rzanny et al. 2019; Tabak et al.,

2019; Wäldchen & Mäder, 2018). Identifying plant species

in CT images could provide insight into how various dis-

turbances such as seismic lines, forest harvest practices,

forest fires, and climate change differentially impact local

vegetation dynamics and their links to wildlife foraging.

Thus, CTs can play an important role in relating habitat

change to specific vegetation dynamics.

Monitoring restoration effectiveness in this landscape is

important due to its role in caribou conservation, as vege-

tation growth on seismic lines is expected to help restore

altered interactions between threatened caribou and their

competitors and predators. Restoring vegetation patterns

to undisturbed conditions should reduce forage subsidies

that attract apparent competitors such as deer, and

impede movement of predators including wolves and

bears (Dickie et al., 2017, 2019; McKenzie et al., 2012).

Despite some differences, many similarities remained

across sites on seismic lines. Thus, given that regeneration

of herbaceous and woody materials can take decades in

disturbed boreal landscapes (van Rensen et al., 2015) and

restoration began ≤8 years prior to this study, continued

assessment of response to restoration treatments and fur-

ther vegetation recovery through either passive or recur-

rent active restoration efforts (Finnegan et al., 2018) will

be necessary to achieve vegetation functions and wildlife

interactions consistent with natural boreal conditions.

Uniquely, understory vegetation dynamics measured

from CTs contributed to inferences about wildlife habitat

use not possible with only satellite metrics. Caribou and

deer use increased with weekly and annual maximum

understory greenness, consistent with their tracking of tem-

poral and spatial patterns of understory food resources,

including deciduous shrubs, soft mast, and other seral veg-

etation (Dawe et al., 2017; Denryter et al., 2017). The

unexpected weaker effect of understory greenness on

weekly and 16-day counts for deer compared with caribou

(Fig. 5) may be due to differences in forage preference and

Figure 6. Estimated effect sizes of top vegetation productivity predictors in final models of annual counts of detections for sandhill crane,

woodland caribou, and white-tailed deer per site at n = 73 camera trap (CT) sites in the study area in northern Alberta, Canada, from January

2016 to November 2019. Cumulative greenness is the area under each annual greenness curve; maximum greenness is the peak value during

each annual cycle; seasonality is the coefficient of variation across daily values; length of growing season (LOS) is the annual difference in days

between green-up and senescence. Mean estimates with 95% confidence intervals are shown. Results are from generalized linear mixed models

with year and CT site as random intercepts and (log) number of days of CT operation as an offset.
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movement patterns, and highlights additional research

opportunities to identify the mechanisms underlying the

observed relative effect sizes. Deer have lower forage selec-

tivity and higher rates of daily summer movement (Crête

et al., 2001; Ferguson & Elkie, 2004; Webb et al., 2010),

which would have supported foraging at more sites with

less understory productivity. Indeed, deer were detected at

18 (25%) more sites than caribou (n = 59 vs. n = 41).

Identifying plant species in CT images could elucidate if

deer, which have been rarely studied at the northern limit

of their expanding range (Fisher & Burton, 2018; Laurent

et al. 2021), were foraging on a greater diversity of species

or selecting more commonly distributed species. Also, sea-

sonal differences in movement dynamics related not just to

vegetation but also timing of parturition and other life-

history strategies (Ferguson & Elkie, 2004) likely con-

tributed to the stronger effect of greenness on caribou and

could be further investigated. Un-modeled factors con-

tributing to cranes, including soil conditions that affect

prey availability in the understory (Davis et al., 2006; Mul-

lins & Bizeau, 1978), may have contributed to the low

explanatory power of weekly and 16-day count models and

explain why crane counts were not always greater in areas

of higher vegetation productivity (Fig. 6). Notably, wildlife

habitat use varied with spatiotemporal scale (McNeill et al.,

2020), indicated by the positive associations between

weekly counts exclusively with understory greenness and

16-day counts exclusively with EVI (Fig. 5). Wildlife were

likely tracking understory vegetation at shorter time scales

due to faster changes in understory resources, compared

with canopy changes. Considering only satellite-based met-

rics, canopy productivity would have failed to detect these

understory and scale-specific patterns.

Detection probability of animals around CT sites was

undoubtedly imperfect, with wildlife using areas adjacent

to the relatively small CT zone of detection. However,

individuals of the three focal species were unlikely to be

missed when passing in front of the CT due to their fairly

large body sizes, camera placement, and relatively low

vegetation height (Fig. S3). Also, independent detection

events were less likely to miss all instances of individuals

passing by within a 30 min period, as cranes, deer, and

caribou respectively had independent detection events

composed of an average 5, 9, and 10 CT images. For

smaller species, imperfect and variable detection probabil-

ity could render detections an unreliable relative measure

of habitat use, and motivate a modeling approach that

may better account for detectability (McKenzie et al.,

2012, Burton et al. 2015; but see Neilson et al. 2018 and

Stewart et al. 2018 for discussions of the limitations of

applying occupancy models to CT surveys). Perhaps more

subtly, imperfect detection due to individuals using simi-

lar habitat adjacent to the CT detection zone could have

led to biased site-specific estimates and imprecise across-

site estimates of concordance between focal species and

vegetation phenology. However, accounting for imperfect

detection would not have changed our inferences. Even

with imperfect detection, deer and caribou were already

detected throughout the year and the concordance across

sites between crane detections, and the growing season

was not so imprecise as to result in statistical differences.

Furthermore, given that all focal species were detected in

all sampling strata and habitat types, there was no reason

to expect systematic biases in detection probability or pat-

terns of movement around CTs that would have war-

ranted alternative approaches to estimating concordance

between vegetation phenology and wildlife habitat use

(e.g., Roth et al. 2014).

Our results highlight the need for a diverse set of vege-

tation and wildlife tools to monitor landscape change and

biodiversity responses. In addition to general patterns of

vegetation phenology and productivity, CTs may also be

used to identify plant species, focusing on specific ones

(Vartanian et al. 2014), and to measure the abundance or

intensity of phenological stages such as flowering or fruit-

ing (Denny et al., 2014; Hofmeester et al. 2019; Vartanian

et al., 2014). Satellite data that pre-date CT monitoring

may help determine longer-term trends and historical

habitat baselines. Satellite data also provide spatially con-

tinuous habitat data useful for predictions – an advantage

over CTs, which provide data at point locations with an

unclear effective sampling area beyond the immediate

field of view (Foster & Harmsen, 2012). Ultimately, moni-

toring habitat changes should consider intra- and inter-

specific biotic interactions as these reflect underlying eco-

logical processes and ecosystem function (Lomov et al.,

2009; Torre Cerro & Holloway, 2020). Indeed, observed

differences in understory dynamics between sampling

strata in our study area have not been associated with

noticeable wildlife recovery – caribou, their predators,

and competitors have all continued to use seismic lines

(Tattersall et al., 2020a,b). The return of species interac-

tions to pre-seismic line conditions is therefore ongoing.

We recommend long-term, multimethod approaches that

monitor both vegetation dynamics and wildlife habitat

use (Miller & Hobbs, 2007; Taddeo & Dronova, 2018;

Wagner et al., 2008).

Coordinated, long-term monitoring of wildlife and the

resources they rely on is important for building a mecha-

nistic understanding of how species track resources and

interact with changing environments (Campeau et al.,

2019). CTs promise to be a valuable and cost-effective

tool in this endeavor (Steenweg et al., 2017), with novel

lines of inquiry and methodologies in development. For

example, in addition to vegetation signals measured from

the greenness values in CT images, the red, blue, and even
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brightness values may be informative about wildfire and

snow regimes; both affect wildlife habitat use (Fisher

et al., 2020; Fisher & Wilkinson, 2005; Serbin et al., 2009)

and are shifting due to climate change (Hansen et al.,

2011; Price et al., 2013). Careful sampling design will help

capture environmental signals of interest and move CT

surveys away from post hoc analyses of by-catch vegeta-

tion data, while automated extraction can help scale up

such efforts. Another promising line of research is the

development of integrated canopy and understory met-

rics, such as with satellites and CTs, to characterize habi-

tat conditions across spatiotemporal scales (e.g., Baumann

et al., 2017; McClelland et al., 2019). In the face of

increasing habitat disturbance in the Anthropocene and

the need for effective wildlife conservation, we strongly

advocate for the use of long-term camera trapping surveys

in disturbed landscapes to investigate wildlife and habitat

patterns to understand the processes underlying ecological

interactions and habitat change.
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Tóth, V.R. (2018) Monitoring spatial variability and temporal

dynamics of phragmites using unmanned aerial vehicles.

Frontiers in Plant Science, 9, 1–11. https://doi.org/10.3389/
fpls.2018.00728

Tuanmu, M.-N., Viña, A., Bearer, S., Xu, W., Ouyang, Z.,

Zhang, H. et al. (2010) Mapping understory vegetation

using phenological characteristics derived from remotely

sensed data. Remote Sensing of Environment, 114, 1833–1844.
https://doi.org/10.1016/j.rse.2010.03.008

Tuck, S.L., Phillips, H.R.P., Hintzen, R.E., Scharlemann,

J.P.W., Purvis, A. & Hudson, L.N. (2014) MODISTools -

downloading and processing MODIS remotely sensed data

in R. Ecology & Evolution, 4(24), 4658–4668.

ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 17

C. Sun et al. Camera Trap Monitoring of Vegetation and Wildlife

https://doi.org/10.1139/z01-156
https://doi.org/10.1139/z01-156
https://doi.org/10.1007/978-1-4419-0026-5_4
https://doi.org/10.1007/978-1-4419-0026-5_4
https://doi.org/10.1071/WF16058
https://doi.org/10.1890/13-1830.1
https://doi.org/10.1890/13-1830.1
https://doi.org/10.1186/s13007-019-0462-4
https://doi.org/10.1111/1440-1703.1131
https://doi.org/10.1016/j.ecolind.2013.02.004
https://doi.org/10.1016/j.ecolind.2013.02.004
https://doi.org/10.1016/j.biocon.2010.04.003
https://doi.org/10.1016/j.agrformet.2008.08.001
https://doi.org/10.1016/j.ecolmodel.2019.108891
https://doi.org/10.1016/j.ecolmodel.2019.108891
https://doi.org/10.1038/s41597-019-0229-9
https://doi.org/10.1038/s41597-019-0229-9
https://doi.org/10.1002/rse2.85
https://doi.org/10.1002/fee.1448
https://doi.org/10.1016/j.jaridenv.2016.05.005
https://doi.org/10.1016/j.jaridenv.2016.05.005
https://doi.org/10.1002/ecs2.2112
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1016/j.ecolind.2018.07.010
https://doi.org/10.1016/j.biocon.2019.108295
https://doi.org/10.1002/ece3.6028
https://doi.org/10.1890/14-0005.1
https://doi.org/10.1111/2041-210X.13519
https://doi.org/10.3389/fpls.2018.00728
https://doi.org/10.3389/fpls.2018.00728
https://doi.org/10.1016/j.rse.2010.03.008


van Rensen, C.K., Nielsen, S.E., White, B., Vinge, T. & Lieffers,

V.J. (2015) Natural regeneration of forest vegetation on

legacy seismic lines in boreal habitats in Alberta’s oil sands

region. Biological Conservation, 184, 127–135. https://doi.
org/10.1016/j.biocon.2015.01.020

Vartanian, M., Nijland, W., Coops, N.C., Bater, C., Wulder,

M.A. & Stenhouse, G. (2014) Assessing the impact of field

of view on monitoring understory and overstory phenology

using digital repeat photography. Canadian Journal of

Remote Sensing, 40, 85–91. https://doi.org/10.1080/07038992.
2014.930308

Visser, M.E. & Both, C. (2005) Shifts in phenology due to

global climate change: the need for a yardstick. Proceedings

of the Royal Society B: Biological Sciences, 272, 2561–2569.
https://doi.org/10.1098/rspb.2005.3356

Wagner, K.I., Gallagher, S.K., Hayes, M., Lawrence, B.A. &

Zedler, J.B. (2008) Wetland restoration in the new

millennium: do research efforts match opportunities?

Restoration Ecology, 16, 367–372. https://doi.org/10.1111/j.
1526-100X.2008.00433.x
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2016 to November 2019.
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2016 to November 2019.
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from January 2016 to November 2019.

Table S9. Model selection results for EVI (satellite,
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caribou, and deer counts per site at n = 73 camera trap

(CT) sites in the study area in northern Alberta, Canada,

from January 2016 to November 2019.

Table S10. Habitat model selection results for annual

crane, caribou, and deer counts per site at n = 73 camera

trap (CT) sites in the study area in northern Alberta,

Canada, from January 2016 to November 2019.

Table S11. Anthropogenic model selection results for

annual crane, caribou, and deer counts per site at n = 73

camera trap (CT) sites in the study area in northern

Alberta, Canada, from January 2016 to November 2019.

Table S12. Number of independent detection events per

species in each sampling stratum and habitat type, across

n = 73 camera trap (CT) sites in the study area in north-

ern Alberta, Canada, from January 2016 to November

2019.

Figure S1. Example images showing the automated pro-

cess for extracting understory vegetation phenology and

productivity patterns from camera trap (CT) time-lapse

images at a site.

Figure S2. Spline curves fit to the greenness indices

extracted from understory vegetation across 5 sampling

strata at n = 73 camera trap (CT) sites in the study area

in northern Alberta, Canada, from January 2016 to

November 2019.

Figure S3. Images of the 3 species, including (A) white-

tailed deer, (B) sandhill crane, and (C) caribou, at camera

trap sites during summer periods, i.e., the peak periods of

vegetation growth, in the study area in northern Alberta,

Canada, from January 2016 – November 2019.

Figure S4. Plots to determine for each species the

threshold minimum number of detections per camera

trap (CT) site used to measure concordance between

repeated wildlife habitat use and understory vegetation

phenology.

Figure S5. Number of total independent detections per

week of sandhill crane, woodland caribou, and white-

tailed deer at n = 73 camera trap (CT) sites across sam-

pling strata in the study area in northern Alberta, Canada

from January 2016 to November 2019.

Figure S6. Number of total independent detections per

month per camera trap (CT) site of sandhill crane, wood-

land caribou, and white-tailed deer across n = 73 CT sites

for each of the sampling strata in the study area in north-

ern Alberta, Canada from January 2016 to November

2019.

Figure S7. Histogram of Pearson correlations between

greenness measured by CTs at n=73 CT sites and EVI

and NDVI.
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