TECHNICAL REPORT

Jan 11, Development of N₂O Emission Factors for Upstream 2016 Oil and Gas Fired Equipment

Prepared For: Petroleum Technology Alliance Canada (PTAC) Suite 400, Chevron Plaza, 500 - 5 Ave. SW Calgary, AB T2P 3L5

Prepared By: Clearstone Engineering Ltd. 700, 900 - 6th Avenue S.W. Calgary, AB T2P 3P2

DISCLAIMER

While reasonable effort has been made to ensure the accuracy, reliability and completeness of the information presented herein, this report is made available without any representation as to its use in any particular situation and on the strict understanding that each reader accepts full liability for the application of its contents, regardless of any fault or negligence of Clearstone Engineering Ltd.

EXECUTIVE SUMMARY

Limited data is currently available on N_2O emissions from natural gas-fired equipment in the upstream oil and gas (UOG) industry and the N_2O emission factors presently in use have high uncertainties. The primary objective of this study was to determine N_2O emission factors for selected types of natural gas-fired equipment commonly used in the UOG industry, namely, process heaters, reciprocating engines, and stationary gas turbines. In addition, emission factors were determined for CH₄, CO, CO₂, and NO_x.

Measurement campaigns were conducted in May 2014, December 2014, and April 2015 at five sweet gas processing plants in southern Alberta. A total of twenty-one sources were surveyed including ten process heaters, eight reciprocating engines, and three stationary gas turbines.

A mobile combustion laboratory featuring an array of continuous analysers and temperature sensors was used to monitor the fuel and flue gas compositions and exhaust gas temperature for each source. Three cavity ringdown spectrometers were used to measure N₂O, CO, CO₂, CH₄, O₂, and H₂O concentrations in the flue gas and a chemiluminescence analyser was used to measure NO and NO₂ concentrations. The fuel gas was analyzed for CO₂ and C₁ to C₅₊ compounds using an optical gas chromatograph. A heated filter, heated sample line, and chiller were used to condition the sample gas in accordance with US Environmental Protection Agency (EPA) Recommended Operating Procedure (ROP) No. 56. The setup described above is the final version; modifications were made after the first two campaigns to enhance the system capabilities. Measurements at each source were conducted for an average of 25 minutes.

Flue gas concentrations of N₂O were <1 ppm for all but one source (i.e., a 4-stroke leanburn reciprocating engine). N₂O flue gas concentrations are expected to be <5 ppm from all combustion sources except for fluidized beds due to the fast destruction reactions of N₂O during combustion at high temperatures (Hayhurst and Lawrence 1992).

N₂O emission factors determined from the measurements were less than 1.5 ng/J for all sources expect for one 4-stroke lean-burn reciprocating engine. N₂O emission factors for gas turbines agree with those published by the US EPA, while measured N₂O emission factors for process heaters and reciprocating engines are about five times less than reference values published by the US EPA and Environment Canada (EC), but within the assessed uncertainty bounds of those values. The reference US EPA and EC values are based on studies of limited sources conducted during the 1990s. A sampling bias is known to be present in N₂O measurements conducted in this era using grab samples (Ryan and Karns 1993; Hayhurst and Lawrence 1992). This may explain the discrepancy between the reference emission factors and those determined in the present study.

TABLE OF CONTENTS

DISCLAIMERi
EXECUTIVE SUMMARYii
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES v
LIST OF ACRONYMS
1 INTRODUCTION
2 SCOPE OF WORK
3 METHODOLOGY 4
3.1 Mobile Combustion Laboratory Setup
3.2 Test Procedures
4 RESULTS
4.1 N ₂ O Emission Factors7
4.2 Supplementary Emission Factors
5 CONCLUSIONS AND RECOMMENDATIONS
6 REFERENCES 17
Appendix A RAW DATA 19
A.1 Measured Exhaust Gas, Fuel Gas, and Ambient N ₂ O Concentrations
A.2 N ₂ O Time Series Concentrations for Process Heaters
A.3 N ₂ O Time Series Concentrations for Reciprocating Engines
A.4 N ₂ O Time Series Concentrations for Stationary Gas Turbines
Appendix B EMISSION FACTOR DEVELOPMENT METHODOLOGY 29
Appendix C COMBUSTION ANALYSIS RESULTS

LIST OF TABLES

TABLE 1:	LIST OF SURVEYED FIRED EQUIPMENT INCLUDED IN MEASUREMENT CAMPAIGN 1	(MAY 2014), 2
(DEC	EMBER 2014) AND 3 (APRIL 2015)	3
TABLE 2:	GROSS, NET AND REFERENCE GHG AND CAC EMISSION FACTORS FOR PROCESS	HEATERS ON AN
ENER	GY-INPUT BASIS	12
TABLE 3:	GROSS, NET AND REFERENCE GHG AND CAC EMISSION FACTORS FOR RECIPROCATING	G ENGINES ON AN
ENER	GY-INPUT BASIS	13
TABLE 4:	GROSS, NET AND REFERENCE GHG AND CAC EMISSION FACTORS FOR STATIONAL	RY GAS TURBINE
ENGI	NES ON AN ENERGY-INPUT BASIS	13
TABLE 5:	AVERAGE GROSS, NET AND REFERENCE GHG AND CAC EMISSION FACTORS A	ND CONFIDENCE
INTE	RVALS (CI) ¹	14
TABLE 6:	SURVEYED EQUIPMENT SPECIFICATIONS	15
TABLE 7:	MEASURED EXHAUST GAS CONCENTRATIONS AT EACH SOURCE OBTAINED DURING	MEASUREMENT
CAM	PAIGNS 1, 2 AND 3 IN MAY 2014, DECEMBER 2014 AND APRIL 2015, RESPECTIVELY	20
TABLE 8:	MEASURED FUEL COMPOSITIONS AT EACH SOURCE.	21
TABLE 9:	Measured Ambient N_2O Concentrations	21
TABLE 10:	TYPICAL COMPOSITION OF AIR	

LIST OF FIGURES

FIGURE 1:	$ MOBILE \ \ COMBUSTION \ \ LABORATORY \ \ SETUP \ \ USED \ \ TO \ \ ANALYZE \ \ FUEL \ \ AND \ \ EXHAUST \ \ GAS $
COMPOS	SITIONS
FIGURE 2:	Comparison of the average gross N_2O emission factors determined for natural gas
FUELED	PROCESS HEATERS, RECIPROCATING ENGINES TURBINES TO CORRESPONDING REFERENCE VALUES9
FIGURE 3:	Measured concentrations of O_2 and N_2O in the exhaust gas of utility heater PTAC.3.11.
	10
FIGURE 4:	$Measured \ N_2O \ \text{time series concentration for process heater} \ PTAC.1.122$
FIGURE 5:	$Measured \ N_2O \ \text{time series concentration for process heater PTAC.1.3}22$
FIGURE 6:	$Measured \ N_2O \ \text{time series concentration for process heater PTAC.1.4}23$
FIGURE 7:	$Measured \ N_2O \ \text{time series concentration for process heater} \ PTAC.1.523$
FIGURE 8:	$Measured \ N_2O \ \text{time series concentration for process heater PTAC.1.623}$
FIGURE 9:	$Measured \ N_2O \ \text{time series concentration for process heater} \ PTAC.2.924$
FIGURE 10:	$Measured \ N_2O \ \text{time series concentration for process heater} \ PTAC.2.1024$
FIGURE 11:	$Measured \ N_2O \ \text{time series concentration for process heater} \ PTAC.3.11 \dots 24$
FIGURE 12:	Measured N_2O time series concentration for 2-stroke lean-burn reciprocating engine
PTAC.2	.12
FIGURE 13:	Measured N_2O time series concentration for 4-stroke lean-burn reciprocating engine
PTAC.3	.13
FIGURE 14:	Measured N_2O time series concentration for 2-stroke lean-burn reciprocating engine
PTAC.3	.15
FIGURE 15:	Measured N_2O time series concentration for 4-stroke lean-burn reciprocating engine
PTAC.4	.16
FIGURE 16:	Measured N_2O time series concentration for 4-stroke lean-burn reciprocating engine
PTAC.4	.18
FIGURE 17:	Measured N_2O time series concentration for 4-stroke lean-burn reciprocating engine
PTAC.5	5.20
FIGURE 18:	$Measured N_2O \text{time series concentration for gas turbine PTAC. 1.2} \dots 28$
FIGURE 19:	$Measured \ N_2O \ \text{time series concentration for gas turbine PTAC. 1.7} \dots 28$
FIGURE 20:	$Measured \ N_2O \ \text{time series concentration for gas turbine PTAC.} 1.8 \ldots 28$

LIST OF ACRONYMS

CAC	Criteria air contaminant
CDIAC	Carbon Dioxide Information and Analysis Center
EC	Environment Canada
EPA	Environmental Protection Agency
GHG	Greenhouse gas
IPCC	Intergovernmental Panel on Climate Change
THC	Total hydrocarbon
UOG	Upstream oil and gas
WCI	Western Climate Initiative

1 INTRODUCTION

There is very little measurement data available on N_2O emissions from combustion sources, and the reliability of the emission factors currently used by the upstream oil and gas (UOG) industry to estimate these greenhouse gas (GHG) emissions is unclear.

The primary objective of this study was to determine N_2O emission factors for natural gas-fired combustion equipment commonly used in the UOG, namely: process heaters, reciprocating engines, and stationary gas turbine engines. In addition, emission factors were also determined for CO_2 , CH_4 , NO_x and CO.

Section 2 presents details of the surveyed sources. Section 3 discusses the mobile combustion laboratory used to conduct the testing and the test procedures that were followed.

The developed emission factors, along with the specifications of the equipment tested, are presented in Section 4. The emission factors are expressed on an energy-input basis as nanograms (ng) of pollutant emitted per joule (J) of fuel consumed (based on the higher heating value of the fuel).

The conclusions and recommendations of this study are presented in Section 5, while the raw data, detailed results and methodology are provided in the appendices. Appendix A presents the exhaust gas concentrations and fuel compositions measured at each source. Appendix B delineates the methodology used to determine the emission factors from the measurement data. The required calculations were performed using Clearstone's web-based CSimOnline engineering analysis software application. Appendix C provides the combustion analysis reports created by CSimOnline.

2 SCOPE OF WORK

Developing the emission factors requires analyzing the fuel or waste gas input for each combustion source and the flue gas emitted by the source. Three measurements campaigns were conducted, the first in May 2014, the second in December 2014, and the third in April 2015. A total of five sweet gas processing plants were surveyed in southern Alberta using a mobile combustion laboratory designed to provide continuous real-time analysis of the fuel and flue gas compositions. In most cases, the stack temperatures were also continuously monitored. Twenty one sources were tested, including ten process heaters, eight reciprocating engines, and three stationary gas turbines. The sources surveyed are listed in Table 1.

Table 1:List of surveyed fired equipment included in MeasurementCampaign 1 (May 2014), 2 (December 2014) and 3 (April 2015).											
Type of Co	mbustion Source	Unit ID	Facility	Measurement							
Primary	Sub-Category		ID	Campaign							
Category	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
Process	> 29 MW	PTAC.1.19	PTAC.1	2							
Heater	< 29 MW,	PTAC.1.4	PTAC.1	2							
	Low NOx Burner										
	≤ 29 MW	PTAC.1.1	PTAC.1	2							
		PTAC.1.3	PTAC.1	2							
		PTAC.1.5	PTAC.1	2							
		PTAC.1.6	PTAC.1	2							
		PTAC.1.18	PTAC.1	2							
		PTAC.2.9	PTAC.2	3							
		PTAC.2.10	PTAC.2	3							
		PTAC.3.11	PTAC.3	3							
Reciprocating	2-stroke lean burn	PTAC.2.12	PTAC.2	3							
Engine	4-stroke lean burn	PTAC.3.13	PTAC.3	3							
		PTAC.3.15	PTAC.3	3							
		PTAC.4.16	PTAC.4	3							
		PTAC.4.18	PTAC.4	3							
		PTAC.5.20	PTAC.5	1							
	4-stroke rich burn	PTAC.4.17	PTAC.4	3							
		PTAC.3.14	PTAC.3	3							
Turbine	All	PTAC.1.2	PTAC.1	3							
Engine		PTAC.1.7	PTAC.1	3							
		PTAC.1.8	PTAC.1	3							

3 METHODOLOGY

The equipment setup and instrumentation used to conduct the measurements are described in Section 3.1, while Section 3.2 outlines the procedures followed during testing.

3.1 MOBILE COMBUSTION LABORATORY SETUP

The setup of the mobile combustion laboratory used to conduct the source testing is shown in Figure 1. At each source continuous measurement of the exhaust gas composition, fuel gas composition, and exhaust gas temperature was conducted.

A heated filter and heated sample line (set to 120 °C) were used to ensure that water did not condense in the lines before reaching the chiller. The chiller removes moisture from the exhaust gas, decreasing the gas dew point to 4 °C. The exhaust gas is then pumped to the analyzer bank. Three cavity ring-down spectrometers were used to measure the N₂O, CO, CO₂, O₂, CH₄, and H₂O content of the exhaust gas. NO and NO₂ concentrations in the exhaust gas were measured using a chemiluminescence analyzer. The fuel gas was analyzed for CO₂ and C₁ to C₅₊ compounds using an optical gas chromatograph. The chiller was sized to have a pump with a flow rate greater than the combined flow rate drawn by the analyzers. To avoid problems due to the presence of pumps in both the chiller and the analyzers, a bypass with a check valve was installed in parallel with the analyzers. A rotameter was installed in the bypass line to allow visual confirmation that the pump flow rate exceeded the draw of all of the analyzers.

The setup shown in Figure 1 was upgraded between each set of measurement campaigns to enhance system performance and address some challenges that were encountered during initial attempts to measure N₂O emissions from engines. During the first two measurement campaigns, the heated filter, heated sample line, and chiller were not present. No condensation was observed in the sample lines during the first campaign but some condensation did occur during the second campaign and was trapped using a small inline Teflon impinger. Additionally, during the first measurement campaign, O₂, NO, and NO₂ measurements were conducted using a TESTO 350 XL combustion analyzer. During the second campaign, three cavity ring-down spectrometers were used to measure O₂, NO, and NO₂. The spectrometers were sufficient for the second campaign due to the low NO and NO₂ concentrations of the process heaters that were tested. In the third measurement campaign, the NO and NO₂ spectrometers were replaced with a chemiluminescence analyzer capable of measuring high concentrations of NO and NO₂ (i.e., as observed in engine exhaust). All but one engine were tested during Measurement Campaign 3.

All analyzers were calibrated using appropriate span gases. The linearity of the analyzers in the range of measured values was checked by diluting the span gases with a high purity nitrogen mixture. The spectrometer used to measure N_2O cannot measure N_2O in the presence of high

concentrations of CO. During the first two measurement campaigns, the analyzer was not able to measure N_2O if the CO concentrations were above 10 ppm due to interference in the absorption curve; however, this was only an issue for some engines. Only data for one engine from the first campaign was useable. No engines were surveyed during Measurement Campaign 2 because of this limitation. Prior to Measurement Campaign 2, the N_2O analyzer was sent to the manufacturer for an adjustment to the configuration, allowing measurement of N_2O in the presence of CO up to 1000 ppm.

Figure 1: Mobile combustion laboratory setup used to analyze fuel and exhaust gas compositions.

3.2 TEST PROCEDURES

Prior to the start of each measurement the equipment was allowed to reach stable conditions. In particular, the fuel gas analyzer required approximately 30 to 45 minutes at the start of the day to reach the required operating temperature of the monitoring cell; the heated sample lines required approximately 20 minutes to heat up; and the chiller required approximately 20 minutes to reach the set dew point temperature. The rotameter was monitored to ensure that the flow rate supplied by the pump inside the chiller was greater than the flow rate drawn by the analyzers. During the first two measurement campaigns, the sample line was monitored for excessive water condensation. If an excessive amount of water collected in the sample line it was replaced and a

comparison of the old and new readings was done to ensure that the water did not affect the measured concentrations. Measurements were conducted for 10 to 45 minutes, depending on the variability of the source characteristics, with an average duration of 25 minutes. Between test points, ambient air was sampled as a convenient check that the analyzers were performing as expected. Measurements of N₂O concentrations in the ambient air are shown in Table 9 in Appendix A. Ambient N₂O levels are typically very stable and provided a good reference to ensure that the N₂O analyzer was functioning properly.

4 **RESULTS**

The developed emission factors for N₂O, CH₄, CO, CO₂, and NO_x are presented in Table 2, Table 3 and Table 4 for process heaters, reciprocating engines, and stationary gas turbines, respectively. Emission factors were determined using the methodology outlined in Section A.2. All emission factors are stated on an energy-input basis in ng/J, using the higher heating value of the fuel. These factors are based on measured concentrations in the exhaust gas, except for CO₂ emission factors which are calculated knowing the fuel composition and assuming complete combustion of all carbon in the fuel gas. Average emission factors for each source category along with their respective 95% confidence intervals are presented in Table 5. The manufacturer, model, and maximum rated power output of each source are presented in Table 6. The measured exhaust gas concentrations, fuel compositions, and time-series concentration trends of N₂O for each source are presented in Appendix A.

A gross emission factor relates the total emissions of a given substance of interest to the amount of fuel consumed. A net emission factor relates the total emissions of a given substance of interest, minus any input contributions associated with the combustion air, to the amount of fuel consumed. Thus, a net emission factor of zero means that the combustion device is not generating any emissions of the specified substance, and a negative net emission factor means the combustion process is actually removing some of the specified substance of interest from the combustion air.

The US Environmental Protection Agency (EPA) values are referenced from the AP-42 compendium of emission factors and are shown for comparison purposes (US EPA 1998a; US EPA 2000a; US EPA 2000c). The US EPA assumes a fuel composition of 100 percent methane whereas the measured fuel compositions contain C_2^+ fractions. Confidence intervals for US EPA emission factors were calculated using statistical data (number of tests and standard deviation) for the published emission factors (US EPA 1998b; US EPA 2000b; US EPA 2000c) except for N₂O. N₂O confidence intervals are based on default uncertainties published in the IPCC Good Practice Guidelines (IPCC 2006). The N₂O emission factor for reciprocating engines is referenced from an Environment Canada report (Environment Canada [EC] 2014).

4.1 N₂O EMISSION FACTORS

Figure 2 presents a comparison of the average determined gross N_2O emission factors to corresponding reference values from the EPA for heaters and turbines (EPA 1998a; EPA 2000a) and from Environment Canada (EC 2014) for reciprocating engines. The error bars indicate the 95% confidence interval for the presented emission factors.

The average gross N_2O emission factor determined for process heaters is 0.17 ng/J, based on measurements from eight small process heaters and boilers (<5 kW maximum rated power). This value is five times less than the EPA value of 0.9 ng/J. However, this is still within the uncertainty bounds of the EPA value. The EPA emission factor for large wall-fired boilers without controls is based on data from five sources.

The average measured net N_2O emission factor for process heaters is -0.07 ng/J, which reflects the fact some units tested emitted less N_2O that was present in the input combustion air. Ambient concentrations of N_2O measured during the three test campaigns were in the range of 320 to 340 ppb. This is consistent with measurements done by the Carbon Dioxide Information and Analysis Center (CDIAC) in 2014 which show ambient N_2O concentrations of 327 ppb (CDIAC 2014).

For reciprocating engines, the average determined gross N_2O emission factor of 0.86 ng/J is based on measurements from five 4-stroke lean-burn engines and one 2-stroke lean-burn engine. Two 4-stroke rich-burn engines were tested; however, N_2O concentrations were not successfully measured due to performance limitations of the analyzer at the time. It should be noted that five out of six engines tested had N_2O emission factors below 0.6 ng/J, while one from the first measurement campaign had a factor of 3.6 ng/J. The average determined gross emission factor is 5 times less than the reference Environment Canada value of 5.72 ng/J. Information on the basis of the reference Environment Canada N_2O factor and its confidence limits was not available. The average net emission factor determined for reciprocating engines is 0.6 ng/J, which is slightly less than the gross value.

For stationary gas turbine engines the average gross N_2O emission factor of 1.0 ng/J was determined based on measurements from three stationary gas turbines, which is in good agreement with the corresponding US EPA value of 1.3 ng/J. The EPA N_2O emission factor is based on measurements from a single gas turbine with steam injection. The average determined net N_2O emission factor is 0.45 ng/J, which is approximately half of the gross value.

Figure 2: Comparison of the average gross N₂O emission factors determined for natural gas fueled process heaters, reciprocating engines turbines to corresponding reference values.

Overall, the gross N_2O emission factors determined during this study for all sources were less than 1.5 ng/J, and are less than the reference values but within their uncertainty bounds. US EPA and EC emission factors are based on measurements conducted in the early to mid-1990s. Details about the sampling methods used in determining the N₂O emission factors published by the EPA and EC studies could not be found; however, the most common technique at the time was to collect grab samples and analyze them using gas chromatography (Ryan and Karns 1993). This technique was found to be susceptible to a sampling artifact where N₂O is generated in the sampling container in the presence of NO_x, sulphur dioxide (SO₂) and moisture (Ryan and Karns 1993; Hayhurst and Lawrence 1992). It is possible that the reference emission factors published by the US EPA and EC were affected by this bias, causing an overstatement of the values.

 N_2O emissions from industrial combustion sources are generally expected to be less than 5 ppm, except for fluidized beds (Hayhurst and Lawrence 1992). This is consistent with measurements obtained during this study, where N_2O emissions were below 1 ppm for all but one source (PATC 5.20). Low N_2O emissions are the result of the destruction of N_2O during high temperature combustion (Hayhurst and Lawrence 1992). This effect can be seen in Figure 3, which shows the concentrations of O_2 and N_2O in the exhaust gas of utility heater PTAC.3.11 during the firing cycling. When the burner is off, the oxygen levels are high and N_2O levels are close to ambient. When the burner is turned on, the oxygen is consumed and the N_2O is destroyed during combustion, causing the concentrations of both to decrease. The negative net N_2O emission factor for process heaters indicates there is a net destruction of N_2O .

Figure 3: Measured concentrations of O₂ and N₂O in the exhaust gas of utility heater PTAC.3.11.

4.2 SUPPLEMENTARY EMISSION FACTORS

For the one large heater tested (>29 MW), the determined CH₄ and CO emission factors are 2000 and 35 times greater than the US EPA values, respectively, due to the fact the unit was poorly tuned (it was used infrequently in a backup role). The average determined CH₄, CO, CO₂, and NO_x emission factors are comparable to (i.e., within in the confidence limits of) the US EPA values.

The CH₄ emission factor determined for the sole 2-stroke lean-burn engine is eight times greater than the US EPA value, while the NO_x emission factor determined is 50 times less than the US EPA value, indicating the unit is somewhat out of tune. This engine was only used in backup service. The CO emission factors determined for the two 4-stroke rich-burn engines tested are both ten times greater than the US EPA value. The NO_x emission factors determined for these two engines are 24 times less than the US EPA value. All other average measured CH₄, CO, CO₂, and NO_x emission factors for the reciprocating engines are comparable to US EPA values.

For stationary gas turbine engines the determined CH₄, CO₂, CO, and NOx emission factors are all comparable to the corresponding US EPA emission factors.

Table 2:	Table 2: Gross, net and reference GHG and CAC emission factors for process heaters on an energy-input basis.													
Equipment	Unit ID	Emission Factors (ng/J of Fuel ¹)												
Category		N_2O^2			CH	[4	CO ₂		CC)	NO _x		NO	NO ₂
		Gross	Net	EPA	Gross	EPA	Net	EPA	Gross	EPA	Gross	EPA	Gross	Gross
> 29 MW	PTAC.1.19 ²	NA	NA	0.9	2301.3	1	49697	50579	1203.2	35	9.8	118	9.7	0.1
\leq 29 MW,	PTAC.1.4	0.07	-0.12	0.26	6.8	1	49697	50579	0.0	35	14.6	21	13.9	0.7
Low NOx														
surner < 20 MW	PTAC 1 1	0.04	0.14	0.0	0.4	1	/0607	50570	0.1	35	25.2	42	23.3	1 0
≤ 2.9 IVI VV	TTAC.1.1	0.04	-0.14	0.9	0.4	1	49097	50579	0.1	35	25.2	42	23.5	1.9
	PTAC.1.3	0.05	-0.16	0.9	0.1	1	49697	50579	0.1		25.4	42	24.9	0.5
	PTAC.1.5	0.03	-0.18	0.9	0.3	1	49697	50579	0.6	35	34.4	42	31.6	2.8
	PTAC.1.6	0.03	-0.19	0.9	7.5	1	49697	50579	0.1	35	43.6	42	40.8	2.8
	PTAC.1.18 ²	NA	NA	0.9	22.2	1	49697	50579	90.1	35	10.9	42	5.6	5.3
	PTAC.2.9	0.70	0.02	0.9	2.8	1	50741	50579	12.9	35	30.5	42	28.1	2.4
	PTAC.2.10	0.15	0.15	0.9	0.5	1	50741	50579	3.8	35	13.5	42	10.0	3.5
	PTAC.3.11	0.29	-0.01	0.9	2.1	1	50870	50579	19.8	35	24.0	42	16.9	7.1
	Average	0.19	-0.07	0.9	4.5	1	50105	50579	15.9	35	25.4	42	22.7	2.7

NA Not available

1. Referenced based on the gross (or higher) heating value of the fuel.

 $2. \quad N_2O \text{ was not successfully measured from two heaters due to analyzer performance limitations.}$

Table 3:	Gross, net a	s, net and reference GHG and CAC emission factors for reciprocating engines on an energy-input basis.												
Equipment	Unit ID Emission Factors (ng/J of Fuel ¹)													
Category			N_2O		CH	[4	CO	O_2	CO)	NC	x	NO	NO ₂
		Gross	Net	EC ²	Gross	EPA	Net	EPA	Gross	EPA	Gross	EPA	Gross	Gross
2-Stroke Lean Burn	PTAC.2.12	0.24	-0.10	5.72	5,236.3	624	50741	47291	53.2	152	18.5	834	3.1	15.4
4-Stroke	PTAC.4.16	0.26	0.05	5.72	187.5	537	50871	47291	196.7	239	371.8	364	289.9	81.9
Lean Burn	PTAC.4.18	0.54	0.33	5.72	229.1	537	50871	47291	253.8	239	552.3	364	461.7	90.6
	PTAC.3.13	0.27	0.02	5.72	518.8	537	50870	47291	141.7	239	94.8	364	81.2	13.6
	PTAC.3.15	0.23	0.01	5.72	193.6	537	50870	47291	200.9	239	190.0	364	127.2	62.9
	PTAC.5.20	3.62	3.31	5.72	241.1	537	49628	47291	1.3	239	274.7	364	269.7	4.9
	Average	0.99	0.74	5.72	274.0	537	50622	47291	158.9	239	296.7	364	245.9	50.8
4-Stroke	PTAC.3.14 ³	NA	NA	5.72	208.9	99	50870	47291	15613.5	1509	45.7	976	45.5	0.2
Rich Burn	PTAC.4.17 ³	NA	NA	5.72	388.6	99	50871	47291	16498.1	1509	36.3	976	32.9	3.4
	Average	NA	NA	5.72	298.7	99	50870	47291	16055.8	1509	41.0	976	39.2	1.8

1. Referenced based on the gross (or higher) heating value of the fuel.

2. There are no EPA AP-42 N₂O emission factors for reciprocating engines. The N₂O emission factor for reciprocating engines is from an Environment Canada repot (EC 2014)

3. N₂O was not successfully measured from the four stroke rich burn engines due to analyzer performance limitations.

Table 4:	: Gross, net and reference GHG and CAC emission factors for stationary gas turbine engines on an energy-input													
	basis.													
Equipment	Unit ID		Emission Factors (ng/J of Fuel ¹)											
Category		N ₂ O			CH ₄		CO ₂		СО		NO _x		NO	NO ₂
		Gross	Net	EPA	Gross	EPA	Net	EPA	Gross	EPA	Gross	EPA	Gross	Gross
All	PTAC.1.7	1.09	0.37	1.29	14.8	3.7	50036	47291	63.5	35	64.6	138	39.1	25.6
	PTAC.1.8	0.75	0.23	1.29	2.7	3.7	50119	47291	5.2	35	71.4	138	60.9	10.5
	PTAC.1.2	1.28	0.76	1.29	0.2	3.7	50119	47291	35.5	35	237.0	138	196.4	40.6
	Average	1.04	0.45	1.29	5.9	3.7	50091	47291	34.7	35	124.3	138	98.8	25.6

1. Referenced based on the gross (or higher) heating value of the fuel.

Table 5:Average gross, net and reference GHG and CAC emission factors and confidence intervals (CI) ¹ .																			
Equipment	N ₂ O							CH4				CO				NOx			
Category	Gross		Net		EPA		Gro	Gross		EPA		Gross		1	Gross		EPA		
	Mean ²	CI ³	Mean	CI	Mean	CI	Mean	CI	Mean	CI	Mean	CI	Mean	CI	Mean	CI	Mean	CI	
> 29 MW	NA	NA	NA	NA	0.9	900	2301.3	NA	1.0	37	1203.2	NA	35.0	36	9.8	NA	78.0	23	
\leq 29 MW, Low	0.17	114	-0.07	136	0.3	900	6.8	NA			0.0	NA			14.6	NA	21.0	67	
NOX Burner	-																		
\leq 29 MW					0.9	900	4.5	400			15.9	162			25.9	34	42.0	25	
2-Stroke Lean	0.86	165	0.60	232	5.7	NA	5236.3	NA	624.0	13	53.2	NA	152.0	23	18.5	NA	834.0	36	
Burn																			
4-Stroke Lean							274.0	63	537.0	12	158.9	75	239.0	22	296.7	74	364.0	125	
Burn																			
4 -Stroke Rich	NA	NA	NA	NA			298.7	382	99.0	NA	16055.8	35	1509.0	185	41.0	145	976.0	18	
Burn																			
Turbines	1.04	64	0.45	152	1.3	900	5.9	329	3.7	177	34.7	208	35.0	47	124.3	195	138.0	19	

NA Not available

1. CO₂ emission factors are based on the fuel composition and not on the measured exhaust gas concentration of CO₂. As a result, they are in good agreement with EPA values and were not included in this table.

2. Mean emission factors expressed on an energy-input basis in ng/J.

3. 95% confidence interval expressed as a percent of the mean.

Table 6: Surveyed equipment specifications												
1	Type of Combus	stion Source	Unit ID Facility N		Manufacturer	Model	Rated					
Primary Category	Sub- Category	Description		ID			Power (kW)					
Process	> 29 MW	Heat Medium Oil Heater	PTAC.1.19	PTAC.1	Born Inc.	NA	38650					
Heater	≤ 29 MW, Low NOx Burner	Regeneration Gas Heater	PTAC.1.4	PTAC.1	Wheco	NA	4276					
	\leq 29 MW	Regeneration Gas Heater	PTAC.1.1	PTAC.1	Maloney Steel	NA	1347					
		Regeneration Gas Heater	PTAC.1.3	PTAC.1	Maloney Steel	NA	1347					
		Utility Heater	PTAC.1.5	PTAC.1	Napanee	554 100 HW	1010					
		Utility Heater	PTAC.1.6	PTAC.1	JR Stephenson	4A-150K-M8	1245					
		Reboiler	PTAC.1.18	PTAC.1	Broach	NA	3462					
		Free Water Knockout	PTAC.2.10	PTAC.2	Natco	NA	1261					
		Utility Heater	PTAC.3.11	PTAC.3	Propak Systems	NA	NA					
		Heat Medium Oil Heater	PTAC.2.9	PTAC.2	Parker	NA	1337					
Reciprocating Engine	2-Stroke Lean Burn	NA	PTAC.2.12	PTAC.2	Ajax	K06581	186					
	4-Stroke	NA	PTAC.4.16	PTAC.4	Caterpillar	3516	858					
	Lean Burn	NA	PTAC.4.18	PTAC.4	Caterpillar	3512	NA					
		NA	PTAC.3.13	PTAC.3	White	8GT-825	783					
		NA	PTAC.3.15	PTAC.3	Caterpillar	3516	1044					
		NA	PTAC.5.20	PTAC.5	Waukesha/Worthington	L5790GS1/0F6H4	984					
	4-Stroke	NA	PTAC.3.14	PTAC.3	Waukesha	L7042GSIU	895					
	Rich Burn	NA	PTAC.4.17	PTAC.4	Caterpillar	D398	298					
Turbine	All	NA	PTAC.1.2	PTAC.1	Rolls Royce	RB211	28000					
Engine		NA	PTAC.1.7	PTAC.1	General Electric	M5261	16260					
		NA	PTAC.1.8	PTAC.1	General Electric	M5372B	26850					

NA Not available

5 CONCLUSIONS AND RECOMMENDATIONS

A measurement program was undertaken to quantify N_2O emission factors from natural gasfueled equipment in the upstream oil and gas sector. Twenty one total sources were tested at five facilities, including ten process heaters, eight reciprocating engines, and three stationary gas turbines. While the primary compound targeted by this study was N_2O , emission factors were also determined for CH₄, CO, CO₂, and NO_x.

It was confirmed that natural gas-fueled combustion equipment have relatively low N₂O emission factors. N₂O concentrations in the exhaust gas were expected to be below 5 ppm (Hayhurst and Lawrence 1992), and the measured concentrations were below 1 ppm for all but one source (a 4-stroke lean-burn reciprocating engine). The determined N₂O emission factors are presented on both a gross and net basis. The gross values assume that all emitted N₂O is generated by the combustion process, and the net values correct for the background concentrations of N₂O present in the input combustion air. Gross N₂O emission factors determined for process heaters, reciprocating engines, and stationary gas turbines were all below 1.5 ng/J and less than reference values from the US EPA and EC. For process heaters, the net N₂O emission factor was negative, indicating a net destruction of N₂O. The large uncertainties associated with the reference emission factors precludes any statistically meaningful comparison between the determined emission factors and the reference values. However, the fact the reference N_2O emission factors are appreciably greater than the determined values may reflect a positive bias in the reference values due to sampling issues known to occur before the mid-1990s, which is when the studies upon which the reference values are based were performed (Ryan and Karns 1993; Hayhurst and Lawrence 1992).

Except for several outliers caused by the units being out of tune, the determined CH_4 , CO, CO_2 , and NO_x emission factors were comparable to US EPA reference values.

6 **REFERENCES**

- Carbon Dioxide Information and Analysis Center (CDIAC). 2014. CDIAC concentration of compounds measured by AGAGE GM-MS (ADS) System. Dataset available at http://www.eea.europa.eu/data-and-maps/data/external/cdiac-concentration-of-compounds-measured-1.
- Environment Canada. 2014. UOG Emissions Inventory Volume 4, Compendium of Factors and Terminology. Available upon request.
- Hayhurst, A.N., A.D. Lawrence. 1992. *Emissions of Nitrous Oxide from Combustion Sources*. Progress in Energy and Combustion Science. Volume 18. Issue 6.
- Intergovernmental Panel on Climate Change (IPCC). 2006. *Guidelines for National Greenhouse Gas Inventories: Volume 2 - Energy*. Available from: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html.
- Ryan, J.V., and S.A. Karns. 1993. Development of Sampling and Analytical Methods for the Measurement of Nitrous Oxide from Fossil Fuel Combustion Sources. Air and Energy Engineering Research Laboratory. U.S. Environmental Protection Agency. Research Triangle Park, NC.
- U.S. Environmental Protection Agency (EPA). 1998a. Compilation of Air Pollutant Emission Factors - Volume I: Stationary Point and Area Sources. AP-42 Fifth Edition, Supplement D, Section 1.4, Natural Gas Combustion (Final Section). Available at: http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf.
- U.S. Environmental Protection Agency (EPA). 1998b. Compilation of Air Pollutant Emission Factors - Volume I: Stationary Point and Area Sources. AP-42 Fifth Edition, Supplement D, Section 1.4, Natural Gas Combustion (Background Document). Available at: http://www.epa.gov/ttn/chief/ap42/ch01/bgdocs/b01s04.pdf.
- U.S. Environmental Protection Agency (EPA). 2000a. Compilation of Air Pollutant Emission Factors - Volume I: Stationary Point and Area Sources. AP-42 Fifth Edition, Supplement F, Section 3.1 Stationary Gas Turbines for Electricity Generation (Final Section). Available at: http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s01.pdf.
- U.S. Environmental Protection Agency (EPA). 2000b. Compilation of Air Pollutant Emission Factors - Volume I: Stationary Point and Area Sources. AP-42 Fifth Edition, Supplement

F, Section 3.1 Stationary Gas Turbines for Electricity Generation (Background Document). Available at: http://www.epa.gov/ttn/chief/ap42/ch03/bgdocs/b03s01.pdf.

- U.S. Environmental Protection Agency (EPA). 2000c. Compilation of Air Pollutant Emission Factors - Volume I: Stationary Point and Area Sources. AP-42 Fifth Edition, Supplement F, Section 3.2 Natural Gas-fired Reciprocating Engines (Background Document). Available at: <u>http://www.epa.gov/ttn/chief/ap42/ch03/bgdocs/b03s02.pdf</u>.
- Western Climate Initiative (WCI). 2011. Final Essential Requirements for Mandatory Reporting 2011 Amendment for Harmonization of Reporting in Canadian Jurisdictions.