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A B O U T  G R E E N P A T H  E N E R G Y  

GreenPath Energy Ltd. is North America’s premier emissions management service provider for the oil and 

gas and petrochemical industries, specializing in emissions measurement and reduction solutions. This 

includes equipment inventory collection, leak detection and repair (LDAR) for fugitive emissions, and 

methane emissions reduction project development. Our technical expertise and diverse experience in 

emissions management ensures that we provide clients with solutions which allow for efficient use of 

capital while achieving significant emission reductions and regulatory compliance. 

Our expertise in building ‘best practice’ fugitive and vented emission management solutions has been 

developed over the past nine years through our extensive instrumentation backgrounds and by using the 

best available technology. We engage regularly with government, regulatory bodies, industry associations 

and technology providers to ensure we are at the leading edge of solutions for emissions management 

programs.    
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E X E C U T I V E  S U M M A R Y  

Throughout North America, federal and provincial or state level governments are developing methane 

emissions regulatory frameworks to be implemented in the coming years with a target of achieving a 40 to 

45% reduction in methane emissions from the upstream oil and gas industry by 2025.  Alberta has 

committed to a 45% reduction by 2025, with enhanced leak detection and repair likely to be one of the first 

policy frameworks which will be used to help achieve this objective.   

The three most critical components to a Leak Detection and Repair (LDAR) program are facility inspection 

frequency, measurement standards, and repair requirements. To date, there is a significant gap in 

evaluating the current fugitive emissions management practices of the upstream oil and gas industry.  The 

2014 CAPP Update of Fugitive Equipment Leak Factors by Clearstone Engineering (2014 Clearstone Study) 

was designed to update leak factors for the National Inventory Report on Greenhouse Gases,1 was based 

on a significantly smaller data set (approximately 120 facilities) and did not examine the effect of multiple 

inspections in different years on leaks at facilities.  This document – the Historical Canadian Fugitive 

Emissions Management Program Assessment (FEMP Assessment) – is the first step to fill this gap. 

The FEMP Assessment attempts to evaluate current industry LDAR practices, measurement methodologies, 

reporting mechanisms, leak and vent categorizations, and repair rates from a significant sample of 

Canadian oil and gas producers. It is the first study of its kind to closely evaluate the performance of these 

programs and methodically analyze the data to determine the primary sources and associated volumes of 

leaks and vents from upstream operations.  This evaluation primarily serves to more accurately define 

fugitive emission management practice in Canada, and as the foundation for policy-makers to 

systematically evaluate regulatory options with regards to LDAR practices.  The key output from this study 

is a large dataset on Canadian LDAR which can be expanded and further analysed at limited incremental 

cost and made available to stakeholders.  GreenPath obtained fugitive emission management data from 14 

different companies, accounting for more than 1,000 facilities, representing more than 1,200 different 

facility inspections, which detected over 10,000 leaks.   

The data showed that, in general, existing FEMP programs have been targeting facilities with the highest 

leak rates.  However, the sample size on small facilities (well-sites, batteries without compression, etc.) is 

too small to draw definitive conclusions on the leak rates by facility.    

  

                                                        
1 http://www.capp.ca/publications-and-statistics/publications/238773 
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C O N C L U S I O N  # 1 :  I N C O N S I S T E N T  H I S T O R I C A L  L D A R  D A T A  

The most important finding of the study is the need for industry to capture consistent, credible data: good 

data drives good decisions.  As the industry moves forward to address the challenge of reducing methane 

emissions, the capture of concise, consistent, credible data will be critical to develop regulations which 

minimize cost to industry while maximizing methane reductions.  To that end, GreenPath Energy has 

developed a standardized data capture template best practice recommendation which should be 

considered in go-forward FEMP programs.  This template is attached in Appendix E.  This data capture 

template has also been vetted by several LDAR subject experts, and has been deemed to contain the 

information required to produce credible, and consistent data sets, which will assist industry in drawing 

valuable conclusions from future data collected.   

A key gap in the report is the lack of leak repair data.  This study captures a wide array of data on leaks at 

upstream oil and gas facilities, but does not comment on repair effectiveness. The study also identifies the 

opportunity for improved consistency in measurement and reporting mechanisms for fugitive emissions. 

An investment in these opportunity areas will build a complete profile of fugitive emissions management 

practices that will improve industry performance and will ultimately support government’s objective of 

achieving significant methane emissions reductions in the upstream oil and gas industry in Canada.  

C O N C L U S I O N  # 2 :  D A T A  A N A L Y S I S  S H O W S  V A L U A B L E  T R E N D S  

Figure 1: 80/20 Rule - Canadian LDAR Data 

 

As depicted in the figure above, it appears that the 80/20 rule applies to Canadian LDAR data.  

Approximately 80% of the total leak volume comes from approximately 20% the total leak count.  This 

information supports the notion that a multi-layered cost-effective LDAR program methodology may be 

viable as it would allow for high level screening of large emission sources followed up by focused on-site 

assessments/repair.  Technologies are rapidly developing to cost effectively identify major emission 

sources, and when paired with existing LDAR practice may serve to increase overall cost-effectiveness of 

LDAR programs.   
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Within the data set, we can also see that historical Canadian LDAR programs which focus on large complex 

facility types (Gas Plants, Gas Gathering Systems including Compressor Stations, and Oil Batteries) appear 

to be effectively targeting the highest probable leak rate facilities.  This can be shown in Figure 2 below.  

Another important conclusion that can be drawn from the current data set is that smaller/less complex 

facility types (wellsites) are less leak prone.  The one limitation on this conclusion is the small sample size 

related to wellsites and smaller facilities.   

Figure 2: Average Leak Rate by Facility Type (CFM) 

 

Table 1: Average Leak Rate by Component Type 

Component Type Number Total Rate (CFM) avg/leak 

Connector 6539 573 0.09 

Control Valve 2044 215 0.10 

Valve 661 47 0.07 

Unknown 431 178 0.41 

Open Ended Line 249 172 0.69 

Pressure Regulator 91 18 0.20 

Pressure Relief Valve 52 192 3.69 

Total 10067 1395 0.14 

 

As shown in Table 1 above, the most common leaking components are connectors and control valves, but 

on average these leak point sources are small in volume.  On the other hand, pressure relief valves are 

seldom found leaking, but when they do leak, could result in significant leak volumes.  Appendix B provides 

more detail on the frequency distribution of leak volumes by component type.   

N E X T  S T E P S  

Tools and methods have been built to analyse large volumes of data quickly and consistently.  As additional 

historical and future LDAR data becomes available, more detailed analysis can be undertaken.   
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A C R O N Y M S  A N D  K E Y  T E R M S  

AER Alberta Energy Regulator 

BMP Best Management Practice 

CAPP Canadian Association of Petroleum Producers 

CFM Cubic Feet Per Minute 

CO2e Carbon Dioxide Equivalent 

CSV Comma-separated values 

DLS Dominion Land Survey of Canada 

EPEA Environmental Protection and Enhancement Act (Alberta) 

FEMP Fugitive Emission Management Plan 

GHG Greenhouse Gas 

IPCC Intergovernmental Panel on Climate Change 

LDAR Leak Detection and Repair 

LSD Legal Subdivision (smallest units in DLS) 

NTS National Topographic Service 

OGI Optical Gas Imaging 

PTAC Petroleum Technology Alliance of Canada 

QA Quality Assurance 

QC Quality Control 

UOG Upstream Oil and Gas 

UWI Unique Well Identifier 

VRU Vapour Recovery Unit 
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I N T R O D U C T I O N  

GreenPath Energy Ltd. (GPE) of Calgary, Alberta was contracted by the Petroleum Technology Alliance of 

Canada (PTAC) to perform a desktop analysis of the existing Canadian Fugitive Emissions Management 

Plans, as well as leak detection and repair (LDAR) data. 

Participant companies accounted for approximately 50% of all wells and facilities and approximately 33% 

of Alberta’s barrel of oil equivalent (BOE) production.  It should be noted that the data in the report does 

not represent all leak detection and repair data from these operators as some data could not be obtained 

or could not be integrated into the data set due to format (PDF instead of XLS or CSV files) and limited data 

processing budget.  For example, in one producer’s data set, only one sixth of the data could be processed, 

but that sixth processed represented 2,300 emission records, suggesting that the data set could be 

expanded considerably with additional resources/budget.    

This study provides a robust data set upon which an analysis of LDAR practices in Canada can be evaluated. 

The objective was to provide qualitative data on current leak detection and repair practices in Canada and 

an analysis of existing data, which could be used to form an assessment of the effect of different inspection 

frequencies on emissions on leak rates from facilities.  This data could be used to help inform policy-makers 

on the effectiveness of potential regulatory prescriptions regarding LDAR in Canada.      
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B A C K G R O U N D  

Leak detection and repair practices in the oil and gas industry have been evolving significantly over the last 

decade.  The main driver behind the evolution of leak detection and repair practice has been technology 

such as optical gas imaging (OGI).  Pioneered by FLIR Systems of Sweden (which introduced the Gas Find IR 

Camera in 2004), OGI can visualise methane and other gaseous hydrocarbons on oil and gas sites.  Prior to 

the introduction of OGI, standard leak detection approaches required the use of toxic vapour analyzers 

(the “Method 21” approach), a time-consuming process. 

The use of OGI as an alternative work practice (AWP) for leak detection was approved by the US EPA in 

2008.2  Canada was an early adopter of OGI for leak detection, as OGI was integrated into the Canadian 

Association of Petroleum Producers Best Management Practice for leak detection and repair in 2007 (CAPP 

BMP)3.  There have been recent increases in regulatory requirements for leak detection activities in several 

states (Colorado, Wyoming, Pennsylvania, Utah, Ohio and California), as well as the US EPA New Source 

Pollution Standard (NSPS) and Bureau of Land Management (BLM) regulations.  

Studies such as the Economic Analysis of Methane Emission Reduction Opportunities in the Canadian 

Natural Gas Industry4 (ICF Study) and the Carbon Limits Study Quantifying Cost Effectiveness of Systemic 

Leak Detection and Repair Programs Using Infrared Cameras 5 (Carbon Limits Study) have framed leak 

detection and repair programs as highly cost-effective methods of reducing methane emissions from 

upstream oil and gas.  

  

                                                        
2 Timeline of Optical Gas Imaging Regulation in United States and Europe.  
http://www.flir.com/uploadedFiles/Automation/Resources/Timeline-of-OGI-Regulations-January-2015.pdf 
3 Canadian Association of Petroleum Producers, Best Management Practice for Fugitive Emissions Management 
http://www.capp.ca/publications-and-statistics/publications/116116 
4 ICF, Economic Analysis of Methane Emission Reduction Opportunities in the Canadian Oil and Natural Gas Industries, 
https://www.pembina.org/reports/edf-icf-methane-opportunities.pdf 
5 Carbon Limits Quantifying Cost-Effectiveness of Systemic Leak Detection and Repair Programs Using Infra Red 
Cameras, http://www.catf.us/resources/publications/files/Carbon_Limits_LDAR.pdf 
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D A T A  

Leak detection and repair (LDAR) programs using optical gas imaging (OGI) have been in Canada since the 

mid-2000s by various producers. In 2007, the Canadian Association of Petroleum Producers (CAPP) Best 

Management Practice for Fugitive Emissions was published to provided best practice for leak detection and 

repair practice across Canada, and was subsequently integrated into the regulatory framework in Alberta 

and British Columbia in the flaring and venting guidelines of the AER (2011-35), and OGC Flaring and 

Venting Guidelines (2013).  Data has been collected from producers with internal LDAR programs and third 

party LDAR service providers. The CAPP BMP allows for significant flexibility, including procedures for the 

collections and management of data.  However, this data has not been previously compiled and analyzed in 

a consistent manner. This study uses advanced analytic techniques to compile dissimilar data sources to 

develop a more consistent dataset on emission leak detection and repair activities from 2007 to 2016.   

In relation to the 2014 Clearstone Study, the data set analyzed in this study represents a larger number of 

facilities and attempts to determine if patterns emerge among facilities that have been inspected multiple 

times.  In relation to the Carbon Limits study, a wider array of data has been analyzed from multiple third 

party LDAR providers as well as producers with LDAR programs.  The Carbon Limits study data set includes 

data from American operations, whereas this study includes only Canadian data.   

This data set is also focused on leaks as opposed to vents; the initial data request that went out to industry 

partners requested leak data, but some companies provided LDAR data with both leaks and vents.  The 

data set within this study should not be used to analyze venting, as LDAR surveys are designed to focus on 

the detection and quantification of leaks. 

 

 

S T U D Y  O B J E C T I V E S  

There were three main objectives within the study:  

 Analyse all available historical Canadian FEMP data. 

 Determine the occurrence and importance of "super-emitters" in relation to fugitive emissions, and 

determine what percentage of leak volume comes from a specified percentage of leaks (e.g. does 

the 80-20 rule apply?). 

 Provide a significant, yet anonymous dataset which could be analyzed further to draw meaningful 

and influential conclusions (such as LDAR program effectiveness and changes in inspection 

frequency on leak rates)  
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S U P E R - E M I T T E R S  

The concept of “super-emitters” is a new term which has recently entered the lexicon in discussions of 

emissions from oil and gas operations from academic papers published in the United States by the 

Environmental Defense Fund (EDF), and into public discourse on methane emissions largely due to FLIR 

Systems’ videos of the methane leak at the SoCal Aliso Canyon natural gas storage facility near Los Angeles, 

California. 

The term was further expanded upon in academic papers.6  For the purposes of this paper, we have 

defined a super-emitter as: “an individual component emitting greater than 6 SCFM (standard cubic feet 

per minute) or a facility with emissions greater than 30 SCFM”.  The existence of “super-emitters” helps 

resolve a disconnect in academic literature on methane emissions in the oil and gas sector, where top-

down surveys (aerial, drive-by mass spectrometer) do not match with bottom-up emission factor 

estimates. 

The concept of super-emitters is not limited to unintentional releases of methane, and thus includes 

sources which are designed to release methane such as tank venting or venting from compressor wet seals 

or other high emission sources on site. 

Figure 3: Graphical Description of Super-Emitter Concept 
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In relation to leak detection and repair programs, the super-emitters of interest are in the top right corner 

with high leaking emission rates.  High-volume vented emissions, shown in the top left, have other 

technology and best practice solutions for mitigation.   

  

                                                        
6 Methane Leaks from Natural Gas Systems Follow Extreme Distributions 
http://pubs.acs.org/doi/abs/10.1021/acs.est.6b04303 
Reconciling divergent estimates of oil and gas methane emissions.  
http://www.pnas.org/content/112/51/15597.abstract 
Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites, 
http://pubs.acs.org/doi/abs/10.1021/acs.est.6b00705,  
Methane Emissions from the Natural Gas Transmission and Storage System in the United States 
http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b01669 

http://pubs.acs.org/doi/abs/10.1021/acs.est.6b04303
http://www.pnas.org/content/112/51/15597.abstract
http://pubs.acs.org/doi/abs/10.1021/acs.est.6b00705
http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b01669
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M E T H O D O L O G Y

This section outlines GreenPath Energy's approach and methodology used to complete this study including 

data collection, data processing, data analysis, and production of results. 

D A T A  C O L L E C T I O N  

Data was provided by 14 oil and gas producers in Canada, with most of the data pertaining to leak 

detection and repair within Alberta.  Individual meetings held with several producers indicated their 

interest in providing data; the response was positive overall, though not all data could be processed prior 

to the publication of this study due to the large volume and inconsistent format of data contributed.  

The Fugitive Emissions Management Plans (FEMP) outline company policies about inspection frequency 

and repair practice when and where leaks are detected.  Appendix A: Fugitive Emission Management Plans  

provides a tabular comparison of FEMPs made available to GreenPath. 

Data was provided in several formats; this in addition to variations in data capture process meant that not 

all data provided could be used in a meaningful fashion. Many files received were in PDF format, unable to 

be fully "scraped" for their contents to be integrated into the data set.  In the case of other firms, third-

party service providers did not provide quantified or estimated emissions rates, making the data of limited 

value in determining leak rates.  Over 200 hours were spent gathering and processing data, and developing 

tools to pull data from disparate sources into a common data set that would allow for comparisons.  The 

tools developed for this project are flexible, such that GreenPath can add large volumes of additional data 

to the data set at minimal cost.   

Firms engaged in the study have signed non-disclosure agreements with GreenPath Energy. As such, all 

data within the report is confidential with respect to company name, facility location, and fugitive emission 

management plans.   

In relation to the FEMP operating companies, a letter code has been used to replace company names.  Only 

GreenPath Energy is privy to the code which attributes FEMPs to a given company.   

D A T A  P R O C E S S I N G  

GreenPath Energy developed a customized set of data analysis and processing tools for this study, as 

necessary to implement a sufficiently robust process to combine the non-uniform data received from 

multiple sources.   

The data processing involved the following tasks and is described in the figure below: 

1. Checking and validating input data (mostly manual). 

2. Identification and labelling of data (automated with manual supervision). 

3. Combining data into one data file (automated). 

4. Categorization of data (manual with assistance from a text classification algorithm). 

5. Removal of company-sensitive and unnecessary information (automated). 
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Figure 4: Data Processing Diagram 

 

Participating companies submitted leak detection and repair data in three different document formats: 

Adobe PDF (pdf), Microsoft Excel (xls/xlsx), and Text file (csv). 

In some cases, data from multiple leak detection surveys was already combined into one fileand in others 

we received multiple files from a company.  The table below summarizes the number of files received from 

each company, the number loaded, and the total number of records extracted from each company. 

 
Table 2. Inventory of Source Data Files 

Company Number of files provided Number of files loaded Number of emission records processed  

P 2 2 919 

N 231 37 2,380 

K 11 11 3,667 

T 4 4 31 

F 83 46 754 

Q 1 1 754 

L 16 16 2,109 

H 2 2 1,020 

A 25 25 384 

S 3 3 768 

M 1 1 3,110 

E 1 1 525 

TOTAL 380 149 16,421 
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A large portion of the overall data provided by operators was loaded and processed.  The main exceptions 

were many files from Company N and Company F, provided in PDF.  Although we identified tools to extract 

data from tables in a PDF document, it is cost-prohibitive to extract the entirety of the data provided in this 

way, so a limited amount of data was used from the sample. 

Early on, we decided to automate the data process using the Python scripting language.7  One of the critical 

advantages of automating data processing is that it can be re-executed numerous times, allowing new data 

(provided sporadically over the course of the project) to be added and easily reprocessed with the entire 

data set.  At each step of the process, we reviewed and checked the outputs of the script to ensure it was 

working correctly. 

M E R G I N G  D A T A  

One of the biggest challenges was to identify similar data in each source file and combining it into one 

logical data file.  Leak surveys carried out at different times by different service providers, with individuals 

recording unique data types and labels are put into a uniform format so that analysis can be undertaken.   

For example, site locations were described in nine different ways.  This resulted in the development of a 

reliable system of combining all columns that contained similar data by establishing 'dictionaries' for each 

data type common to most surveys.  Leak rates were recorded in seven different units with different 

combinations of units reported by operators and leak detection and repair firms. 

Although each leak survey report contained different data, we chose a set of data which appeared to be 

most useful for the analysis and then attempted to match data in each report.  We manually added key 

fields such as 'Company', 'Year', 'Province' and 'Source Filename', which were not included in the survey 

reports to maintain company confidentiality.

                                                        
7 Python (http://python.org) is a general-purpose, high-level programming language that is excellent for customized 
data processing and analysis tasks. 

http://python.org)/
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Table 3: Desired Data Types and Number of Records Found 

 

GreenPath manually reviewed each input data source, identifying matches between the data types 

provided and the desired data types, then automating the merging process by building a Python dictionary 

to act as a correspondence table between input data labels and desired data types.  This allowed for an 

automatic merging of the data from dissimilar sources. 

 

The following code extract shows an entry in the column label dictionary to illustrate how the script dealt 

with inconsistencies in source data labelling.  In this example, it identified nine possible data as the site 

location and assigns the desired type labelled 'Location'. 

'Location': ['Location', 'Site', 'Site LSD', 'siteName', 'Site Name (LSD)',                  

'Site Name', 'Facility Land Location', 'Facility LSD (xx-xx-xxx-xx-WxM)', 'LSD'], 

 Data Type %  of total Number of records filled 

Company 100 16,508 

Year 100 16,508 

Location 100 16,508 

Survey Date 99 16,505 

Source Filename 99 16,421 

Intentional 99 16,465 

Province 92 15,220 

Building/Process Unit 88 14,532 

Component Category 83 13,807 

Leak Rate [CFM] 82 13,649 

Emission Description 72 12,000 

Facility Name 70 11,713 

Leak Rate [e3m3/year] 63 10,418 

Tag ID 62 10,377 

Component 55 9,218 

Area 54 9,045 

Quantification Method/Estimated 39 6,515 

Gas Type 35 5,910 

Leak Notes 33 5,603 

Facility Type 19 3,264 

Leak Rate [L/min] 12 2,129 

Leak Rate [MmBTU/ year] 12 2,029 

Leak Rate [e3m3/day] 12 2,017 

Repair Date 12 2,036 

Successfully Repaired 8 1,482 

Instrument Type 3 522 

Leak Rate [SCFY] 2 378 

Vent Rate [e3m3/day] 0 7 
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I D E N T I F Y I N G  U N I Q U E  S I T E S  A N D  L O C A T I O N S  

To track changes in the leaks detected over time (LDAR effectiveness), we needed to link surveys carried 

out at the same site at different times, which proved difficult because of inconsistencies in reporting facility 

names and facility land locations.  To solve this problem, we wrote a script that identifies a potential land 

location code (either LSD or NTS) and converts it to a standardised version of the code that can be used to 

identify a unique site. 

The table shows examples of land locations from survey reports, and the standardised versions after 

conversion by the algorithm. 

 
Table 4: Examples of Standardized Site Location Codes 

 

By applying the standardisation algorithm, we reduced the number of apparently unique sites by 192 by 

identifying matches between site names where the name was reported inconsistently.  It was noted that in 

some cases, these represented facilities where ownership had changed hands, facilities with multiple 

owners during the study period represented only one site. 

Further processing and analysis of Company N’s data, who acquired several facilities from other operators 

may increase the number of sites with multiple owners over time. 

U N I T S  O F  M E A S U R E M E N T  

Leak rate data was reported by service providers in a variety of units including: 

 British thermal units per year 

(MMBTU/year) 

 Litres per minute (L/min) 

 Cubic feet per minute (CFM) 

 Standard cubic feet per year(SCFY) 

 1000 cubic metres per day (e3m3/day) 

 1000 cubic metres per year (e3m3/year) 

 Cubic meters per hour (m3/hour) 

 

 

Standardized Codes Examples of Data Reported 

'02-08-017-13W4' '02-08-017-13-W4 ', '2-8-17-13w4' 

'02-17-063-08W6' '02_17_063_08W6M', '2-17-63-8-W6' 

'09-27-079-17W6' '9-27-79-17-W6', '09-27-079-17' 

'10-09-073-13W6' '10-9-73-13-W6', '10_09_073_13 W6M' 

'10-10-071-08W6' '10-10-071-8W6', '10-10-071-8W6M', '10_10_071_08 W6M' 

'15-08-056-23W5' '100/15-8-56-23 W5' 

'A-029-H/093-P-09' 'A-029-H 093-P-09', 'A_029_H_093_P_09' 

'B-100-B/093-P-08' 'B-100-B 093-P-08', 'B_100_B/093_P_08' 

'C-067-K/094-O-08' 'C- 067-K/094-O-08' 

'D-073-B/093-P-08' 'D-073-B 093-P-08', 'D_073_B/093_P_08' 
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D A T A  E R R O R S  

Although we were not able to fully validate all the data we received, we are aware of inconsistencies, with 

the most obvious example from a survey report carried out in 2011. 

The table below shows a subset of the data in this report. 

Depending on which figures you choose to use to convert to standard cubic feet per minute (CFM), it 

appears to show multiple leaks in excess of 50 CFM at the same site.  Likely the true reading was the 

l/minute figure but tracing back to the leak survey document, it was unclear what the direct reading was, 

the only way to confirm volume would have been to obtain the original leak videos and make a qualitative 

assessment of volume.    

Considering the inconsistencies between figures reported for litres per minute (L/min) and CFM, this seems 

to be a reporting error.  We removed this survey from the data.  No other data was removed from the 

dataset.  An evaluation matrix was created to flag data where leak rates for the same leak were 

incongruous.  Only the data from this survey was flagged for exclusion.   

 
Table 5: Leak Data with Inconsistencies 

Leak Rate 

[MmBTU/ 

year] 

Leak Rate 

[L/min] 

Leak 

Rate 

[CFM] 

Leak Rate 

[SCFY] 

Leak Rate 

[e3m3/ 

year] 

Leak Rate 

[e3m3/ 

day] 

Leak Rate 

[m3/ 

hour] 

Converted 

Leak Rate 

[CFM] 

Year 

Surveyed 

64,493 0     1,826 5.00   123 2011 

27,087 10     767 2.10   52 2011 

32,247 15     913 2.50   61 2011 

128,987 10     3,653 10.00   245 2011 

32,247 0     913 2.50   61 2011 

128,987 0     3,653 10.00   245 2011 

128,987 10     3,653 10.00   245 2011 

    200   2,977     200 2014 

    100   1,488     100 2014 

    150   0     150 2016 

 

  



 

 
 

13 

S I T E  T Y P E  C L A S S I F I C A T I O N  

As part of the analysis, we wanted to understand how leak frequencies and leak rates are determined by 

the type of site or facility. 

 
Table 6: Number of Unique Sites by Province and Type 

Site Type AB BC SK Unknown Totals 

Unknown8 528 30 44 6 608 

Compressor 178 85 0 0 263 

Gas Plant 45 15 0 0 60 

Battery 56 9 0 0 65 

Oil Battery 2 0 0 0 2 

Wellsite (unknown 

commodity) 
11 28 0 0 39 

Meter Station 1 36 0 0 37 

Compression 29 4 0 0 33 

Gas Well 1 0 0 0 1 

Gas Gathering System 12 0 0 0 12 

SAGD Pad 11 0 0 0 11 

Multi Well Heavy Oil Pad 5 0 0 0 5 

Processing Battery 0 3 0 0 3 

Single Well Battery 3 0 0 0 3 

Single-Well Gas Battery 2 1 0 0 3 

Pipeline Gathering 0 2 0 0 2 

Dehydrator 2 0 0 0 2 

Gas Multiwell Group Battery 0 0 0 0 0 

Gas Sales Meter 0 1 0 0 1 

Shared Facilities 0 1 0 0 1 

Totals 886 215 44 6 1151 

 

There were two major challenges in allocating leaks to different facility types.  First, a large volume of the 

data did not identify based on DLS or NTS co-ordinates; for example, “Large Rock Facility” cannot be placed 

into DLS or NTS co-ordinates and/or matched in the AER or BCOGC data sets.    The naming system as well 

as potential errors in the records of DLS and NTS locations limited the ability of GPE to classify all facilities.   

In cases with provided DLS or NTS co-ordinates, many co-ordinates matched with multiple permitted types.   

Some facilities matched between 4 and 9 different permitted types with the AER data set.  Where multiple 

matches were found, the “largest” facility type was assigned.  For example, Gas Plant > Gas Gathering 

System> Compressor Station > Battery > Well.  

                                                        
8 Note almost all of unknown facilities are likely assets with compression on site (compressor or gas plant).   
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If a facility match produced all four facility types, the facility would be manually assigned the category “Gas 

Plant”.   The challenges with facility identification resulted in 31% of the leak volume not being attributable 

to a specific facility type. 

Additionally, the facility categories employed by the AER, are too diverse to draw meaningful categories 

with 37 potential types of facilities.  In further studies GreenPath has suggested that facilities be classified 

in the following matrix: [well, multi-well, battery, compressor, plant], commodity [oil or gas primary] and 

service [sweet or sour]. 

 

E M I S S I O N  T Y P E  C L A S S I F I C A T I O N  

At a high level, emissions detected as part of a FEMP program can be put into two primary categories, leaks 

(unintentional releases of methane) and vents (intentional releases of methane).  Table 6 below shows the 

typical classification of leaks versus vents in most LDAR data.  Within the data, compressor seal venting 

(reciprocating compressor packing venting and centrifugal compressor seals) was inconsistently 

categorized as a leak or a vent.   GreenPath has manually categorized emissions from compressor seals as 

vents.   

Table 7: Examples of Leaks versus Vents in LDAR Data 

Leak (unintentional)  Vent (intentional) 

Loose connection Pneumatic Controller Vent 

Valve passing Pneumatic Pump Vent 

Valve diaphragm Dehydrator Vent 

Pressure Release Valve Passing Compressor Rod Packing Vent 

Valve stuck open Wet-Seal Venting 

Unintentional hole in pressure system Casing head gas venting 

Venting from tank (if VRU down) Venting from Tank (if no VRU in place) 

Non-routine venting Unlit flare 

 

Within the data, concepts of leaks or vents are not universally categorized as such.  For example, one LDAR 

firm within their own data set used the following terms to differentiate leaks versus vents: with 

‘Intentional’ as the column heading, valid responses were: True, False, Yes, No, I, U, I, Leak, Vent.  Within 

the data set were some inconsistencies in terms of how leaks or vents were defined. 

Some firms did not inventory or quantify vents and thus the difference in definition of leaks and vents 

could result in some material discrepancies between two firms examining the same site.  GreenPath did 

not correct these potential errors except in relation to compressor seal venting.  In terms of the data, the 

use of uncontrolled documents and forms, small changes such as Vent vs vent, or Leak vs leak would result 

in different categories.  GreenPath developed a matrix to translate different leak and vent definitions into a 

common framework. 
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Table 8: Leak and Vent Categorization 

Separating out a simple binary data identifier 

proved to be a complex task that required 

significant manual manipulation of the data.  

Certain data sets had “deep-dives” undertaken 

to examine irregularities. 

A manual examination of the top ten leaks and 

vents by volume showed that three were 

misclassified (see Appendix C: QA/QC of the 

Largest leaks and Vents).  A manual examination 

of the top ten leaks showed that four “leaks” 

were, in fact, tank vents.  The inconsistencies of 

the binary choice highlight the issue of a lack of 

standardization of leak and repair data.  

A further random sample of 100 leak records 

were selected to determine if the classification 

as leak or vent were accurate.  From this 

sample, 95 percent were accurately categorized 

leaks or vents.  Errors in categorization were 

generally related to compression seals and tank 

vents.  

All components categorized as “compressor 

seals” have been re-categorized as vents.  Tank vents do not correspond to a specific component type and 

thus could not be rapidly grouped as leaking or venting, as the description of “tank vent” was often 

contained within a freeform text field.  In future analysis, a category for “tank venting” should be created 

to prevent this type of error.   

Leak detection and repair surveys are driven by exceptions, as the fundamental nature of these surveys is 

to report back on unintentional releases of methane. One potential gap in the data set is the number of 

leak-free sites.  The various data systems manage leak-free inspections differently, with some internal 

programs generating a record of a leak-free site, where others retain the formerly leaking value as a “saved 

rate” – to demonstrate the cost-effectiveness of the emissions reduction program.   Thus, there may be 

sites that were inspected, found to be leak free, but no evidence of the inspection is contained in the 

aggregated data set.  Within the data set, there are 94 facilities with an annual emission record of zero, but 

an indication that the facility was inspected.  A facility with zero emissions (no venting) could conceivably 

been inspected but not integrated into the data set.  

 
C O M P O N E N T  T Y P E  C L A S S I F I C A T I O N  

Because of the large number of leak records, we combined processes: manually labelling over 800 records, 

then training a machine learning algorithm to recognize component types from the text data reported by 

the leak survey technicians.   

Original Classifier GreenPath Classification 

I Vent 

UI Leak 

I Vent 

I  Vent 

Leak Leak 

Mandatory Leak Vent 

Mandatory No Emission Vent 

Mandatory Vent Vent 

No Leak 

No Leak NIL 

No Leaks NIL 

No Leaks Found NIL 

U Leak 

UI Leak 

Vent Vent 

Vent (intentional 

emission) 

Vent 

Yes Vent 

FALSE Leak 

TRUE Vent 
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We used a technique common to text data analysis called Multinomial Naïve Bayes classification. The 

algorithm was trained on roughly 600 labelled data points, then tested on the remaining 200 labelled 

points.  Accuracy was found to be 88%, which was deemed satisfactory for this analysis.  

The component-type categories that were generated were derived from the 2014 Canadian Association of 

Petroleum Producers Report – Update of Fugitive Equipment Leak Factors by Clearstone Engineering9. 

Table 9: Component Types 

A category of “unknown” was added where the component 

could not be accurately determined, flagging instances 

where the algorithm was not confident that one of the seven 

types of components could be determined.  Human review of 

the data also showed several leak records where the type of 

leak could not be adequately determined.  Further research 

could be used to classify “unknown” categories or generate a 

more exhaustive list of component categories.   

Once trained, the algorithm could be used to predict the 

classification of the component type for all remaining leak 

records.  As a precaution, we manually checked over 233 records where the predictions of the machine 

learning algorithm were uncertain, and a further 49 randomly selected records (Table 10: Random Sample 

Comparison of Human versus Machine Learning Component Categorization). 

The randomly-selected categorizations showed positive results, with more than 75% of the components 

accurately categorized.   Among common components such as connectors or open-ended lines, the 

machine learning algorithm correctly predicted over 80% of the correct component type. 

The algorithm was less accurate with less common component types, and further manual categorization 

was undertaken on compressor seals.  Control valves and pressure regulators are relatively rare within the 

data set (see Appendix B).  The machine learning algorithm was quite effective in properly classifying these 

component types when a closer examination of these types was undertaken.    

Table 10: Random Sample Comparison of Human versus Machine Learning Component Categorization  

 Human Classification Machine Learning 
Prediction 

Total Samples % Correct 

Compressor Seal 3 1 3 33% 

Connector 27 23 27 85% 

Control Valve 4 4 4 100% 

Open Ended Line 12 10 12 83% 

Pressure Regulator 1  1 0% 

Unknown 1  1 0% 

Valve 1 0 1 0% 

Total 49 38 49 78% 

                                                        
9 http://www.capp.ca/publications-and-statistics/publications/238773 

Component Type 

Connector 

Open-Ended Line 

Pressure Regulator 

Pressure Relief Valve 

Control Valve 

Valve 

Compressor Seal 

Unknown 
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E Q U I P M E N T  T Y P E  C L A S S I F I C A T I O N  

Equipment type was a reasonably common classifier within most data files – for example: compression, 

dehydration, filter/separation.  We provided the capability to label equipment types in the data but did not 

feel it would have added sufficient value; project budgets and timelines did not allow us to complete the 

classification of equipment types.  

L E A K  V O L U M E  C L A S S I F I C A T I O N  

Limited standardization exists in relation to reports generated from leak detection and repair surveys 

between companies.  Leaks are measured in several different formats ranging from MMBTU/minute to 

L/minute, standard cubic feet per minute (SCFM or CFM), as well as e3m3/year and e3m3/day.  CFM was 

chosen as the metric for leak volume, as the primary quantification device (the Bacharach Hi-Flow Sampler) 

reports in CFM. 

Attempts were not made to standardize values to standard temperature and pressure as previous analysis 

has shown that these adjustments do not generate a material change in reported emissions; in addition, 

tracking down often unknown weather and barometric pressure for sites would prove problematic. 

Inconsistencies in the reported leak volumes required additional classification for analysis purposes. One 

issue that was encountered was that leak data was periodically inconsistent.  For example, one leak 

detection and repair company quantified leaks at L/minute, e3m3/year, and occasionally e3m3/day within 

the same report. 

In some surveys, it appeared there were conversion errors in the reported leak volume data.   For example, 

if the e3m3/year value was used to determine CFM, a leak rate of 245 CFM was generated; but if the litre 

per minute value was used, then 0.35 CFM was generated.  It is most likely that the litre per minute figure 

was the actual measurement, as the high flow sample can also output in litres per minute in addition to 

CFM.  These data points were excluded from analysis due to their potential to skew results.   

To standardize leak volumes, a formula was developed which looks first to the CFM value, then the litres 

per minute value, then an e3m3/day value, and finally an e3m3/year value to translate units in CFM.   

In addition to issues in converting leak rates to standard units, leak repair data did not uniformly state 

whether the result was estimated via the operator visualizing the hydrocarbon plume via OGI, or quantified 

using a Hi-Flow Sampler.  An examination of individual data points can often suggest whether data was 

estimated or quantified.  For example, the Hi-Flow Sampler has a maximum rate of 10 CFM, but becomes 

significantly less accurate above 5 CFM and can detect flow rates as low as 0.01CFM.  Thus, rates above 10 

CFM are generally estimated (exceptions are data that can be traced back to a calibrated volume bag or 

other method).     

C O M M E R C I A L L Y  S E N S I T I V E  I N F O R M A T I O N  

To protect companies who provided data and to allow the results to be openly discussed by project 

stakeholders, we chose a policy to remove all company-specific and identifying information from the final 

merged data file and produce a reduced data file with only leak rate, survey date, and assigned categories. 
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To achieve this without aggregating the data, we replaced all site locations with a randomly-generated 'site 

key' and every leak record with a randomly-generated 'leak key'.  The table below shows a section of this 

reduced data table providing the data types and a few data points.  

 
Table 11: Reduced Data Table 

Leak Key Assigned 

Component 

Category 

Assigned 

Emission 

Type 

Assigned 

Equipment 

Type 

Converted 

Leak Rate 

[CFM] 

Province Site 

Key 

Site Type Survey 

Date 

Nm6nndnV Unknown Vent Unknown 0 AB 05S5

w2 

Unknown 23/05

/2013 

5bz52vIB Unknown Leak Unknown 0.35 AB 0IjjZ

p 

Unknown 7/10/

2011 

QIBHqGX6 Open Ended 

Line 

Vent Unknown 10 AB 0IjjZ

p 

Unknown 7/10/

2011 

9JqII63I Open Ended 

Line 

Vent Unknown 5 AB 0IjjZ

p 

Unknown 7/10/

2011 

y5mdD1zN Open Ended 

Line 

Vent Unknown 0.52 AB 0IjjZ

p 

Unknown 7/10/

2011 

ryCyjtJq Connector Leak Unknown 0.12 AB 0IjjZ

p 

Unknown 7/10/

2011 

LSs9ay4q Connector Leak Unknown 0.08 AB 0IjjZ

p 

Unknown 7/10/

2011 

… … … … … … … … … 

… … … … … … … … … 

 

There is currently a total of 14,764 data points in the reduced output data file.  With the approval of PTAC 

and project participants, this anonymous data file has been shared with all stakeholders. 

D A T A  A N A L Y S I S  

Data has been analysed using a combination of Python notebook outputs and Microsoft Excel to parse the 

data into meaningful categories.   

Q A / Q C  

Throughout the process, data points have been checked for integrity.  This review resulted in the discovery 

of a mismatch in leak rates within a survey; it should be noted that the error only related to one specific 

survey.  This anomaly was only detected due to the very large volume results presented.   

Samples within the data set have also been evaluated for consistency, the top ten leaks and vents have 

been evaluated and errors within rectified. 

Examining the top 10 emitters also showed inconsistency in how LDAR companies and oil and gas 

producers determine whether compressor seals were leaks or vents; GreenPath has manually re-

categorized those components correctly (see Appendix C: QA/QC of the Largest leaks and Vents). 
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A random sample of ten leaks were traced back through the merging process to original documents to 

determine if the data had been corrupted (leak volumes, categorization, etc.) and no errors were found.  

Further QA/QC via manual verification of data is recommended on the data set prior to distribution. 

C O N F I D E N T I A L I T Y  

To maintain the confidentiality of participating companies, the data went through a rigorous process to 

remove identifying information.  In the global data set, company names were replaced with a randomly 

generated key code.  Only GreenPath Energy has access to the lookup table that links the key codes to the 

company and site location information and facility names. 

F U G I T I V E  E M I S S I O N  M A N A G E M E N T  P L A N  R E V I E W  

In addition to the raw data from fugitive emission management plans, nine individual company Fugitive 

Emission Management Plans were provided to GreenPath Energy for analysis.  All existing FEMPs are based 

upon the existing CAPP Fugitive Emission Best Management Practice. 

The CAPP BMP framework allows for flexibility in directed inspection and maintenance approach.  Some 

plans are based on a US EPA “Method 21” toxic vapour analyzer approach, whereas current practice 

commonly employs optical gas imaging.  There is significant variation in inspection frequency, data 

collection, roles and responsibilities.  

A tabular summary of the FEMP review is provided in Appendix A: Fugitive Emission Management Plans .  

The existing CAPP framework allows for flexibility in addressing fugitive emissions, but the variations in 

implementation and execution generated some of the challenges related to compiling the data set used in 

this study; as discussed in a following section.  Not all FEMPs submitted were accompanied by useful leak 

data.  For example, some companies did not report volumetric leak information.   
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R E S U L T S  

The data has been compiled and analysed using the following charts and graphs to present leaks from 

upstream oil and gas emissions in Canada. 
 

Figure 5: Total number of survey reports processed by year in this study 

 
 

Figure 6: Average number of leaks detected by survey per year 

 

There are several possible explanations for the increasing trend in leaks reported per survey.  Increased use 

of the FLIR GF320 has increased the ease of spotting leaks with OGI; with decreased budgets, some firms 

have focused their LDAR efforts on known high-emission facilities.   
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Figure 7: Average leak volume per survey per year 

 

Note: The spike in leak volume in 2016 is primarily attributed to the discovery of a substantial leak in 2016.  

The leak was found by GreenPath Energy, and estimated using a calibrated volume bag.  This leak filled the 

calibrated volume bag in under two seconds; it is very important to note that the leak was resolved within 

two weeks.   

 

Figure 8: Leak volume per survey (substantial leak removed) 
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Figure 9: Frequency distribution of leak and vent rates 

 

The frequency distributions of leaks show that the clear majority of leaks, but a small number of outliers 

raise the average emissions.  

 

Figure 10: Cumulative probability distribution of all leaks 

 

The cumulative probability distribution of all leaks shows that less than 20% of all leaks are responsible for 

80% of all leak volumes.  Thus, targeting components with high potential leak volumes is of significant 

benefit.   A breakdown of the charts above by component types is available in Appendix B. 
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Table 12 illustrates that pressure relief valves are disproportionately responsible for large emissions.  A 

leaking pressure relief valve is more likely to result in a super-emitter based on the data.  

Human categorization is required to determine the “unknown” emitting components.  Even with expert 

opinion some “unknown” components could not be categorized with confidence.  The component type 

“open-ended line” was excluded as most of these were attributed to vents; improper categorization could 

skew results.        

Table 12: Components with leak rates >6CFM 

 Connectors Pressure Relief Valves Control Valves and Valves Unknown 

# of leaks >6CFM 13 3 18 3 

% leaks >6CFM 0.2% 5.45% 0.53% 5.45% 
 

Table 13: Leak count and rate by component type 

Component Type Number Total Rate (CFM) avg/leak 

Connector 6539 573  0.09  

Control Valve 2044 215  0.10  

Valve 661 47  0.07  

Unknown 431 178  0.41  

Open Ended Line 249 172  0.69  

Pressure Regulator 91 18  0.20  

Pressure Relief Valve 52 192  3.69  

Total 10067 1395  0.14  

 

Table 14: Total leak rates by facility types (CFM) 

Facility Type  Total Leak Rate Grand Total 

Battery 65.44  165.36  

Compressor 653.26  1,289.43  

Gas Gathering System 13.55  34.77  

Gas Plant 224.82  326.82  

Gas Sales Meter 0.52  1.14  

Meter Station 2.67  8.19  

Multi Heavy Oil Well Pad 0.51  0.51  

Oil Battery 0.06  0.06  

Pipeline Gathering 1.37  4.10  

Processing Battery   7.73  

SAGD Pad 2.74  2.74  

Shared Facilities 
 

0.91  

Single Well Battery 0.68  0.68  

Unknown 426.29  1,308.66  

Wellsite 2.62  11.79  

Grand Total 1,395.08  3,165.16  
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Table 15: Average leak and vent rates per facility10 

Facility Type Avg Leak Rate Per 

Facility (CFM) 

Count of Facilities 

Battery 1.01  65 

Compressor 2.21  296 

Dehydrator 0.26 2 

Gas Gathering System 1.13  12 

Gas Plant 3.75  60 

Gas Sales Meter 0.52  1 

Meter Station 0.07  37 

Multi Heavy Oil Well Pad 0.10  5 

Oil Battery 0.03  2 

Pipeline Gathering 0.69  2 

Processing Battery -    3 

SAGD Pad 0.25  11 

Shared Facilities -    1 

Single Well Battery 0.23  6 

Unknown 0.70  608 

Wellsite 0.07  40 

Grand Total 1.21  1151 

 

  

                                                        
10 Note:  Approximately 36% of the data could not be adequately classified by facility type.   
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D I S C U S S I O N  O F  R E S U L T S  

One of the major limitations of this study is the lack of consistency in relation to data collection and 

methodologies.  For example, some firms inventory and measure vents in addition to leaks.  Some firms 

quantify only leaks; others do not quantify leaks at all.  GreenPath has removed vent records from the leak 

data via algorithm and human classification of the top leaks but all 3,082 leaks in the data set have been 

individually inspected to determine if they are leaks or vents.  Additionally, there are 2,664 leak points with 

an emission rate of zero, a record of a leak resolved (based on the most common data platform). 

The inconsistencies in the data create challenges in drawing inferences from the data, combined with the 

lack of time series data on facilities to show the effectiveness of leak detection and repair programs.   

Table 16: Number of facilities by number of consecutive years surveyed 

Number of years surveyed Number of facilities 

5 11 

4 45 

3 50 

2 89 

1 689 

 

A visual representation of the count of leaks and sum of volumes at the 11 most-inspected facilities shows 

no discernable pattern, as can be seen in the figure below.  Among sites inspected four times there is a 

more discernable pattern.   One possible cause may be that in the most inspected sites, there are 

sometimes multiple inspections per year and thus two inspections are added together to make one 

inspection for the year, and currently those inspections are not broken out.  A revised Python script should 

be able to parse out multiple inspections per year.  

One potential source of the variability is the introduction of the FLIR GF320 in 2012-13.  The GF320 makes 

the detection of leaks much more user friendly relative to the original Gasfind IR camera, and would offer a 

partial explanation for the spike in leaks found in 2012-13 at the most inspected sites.   

The following visuals show results for the most consistently-inspected facilities, each with five years of 

recorded inspections.
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Figure 11: Top 11 most inspected sites - by leak rate (CFM) (five inspections per year) 

 

 

Figure 12: Top 11 most inspected sites - by leak count 

 

Site 7GrX6o shows a high leak count in 2012, but a high leak rate and low leak count in 2013.  The reason 

for this disconnect between leak volume and leak count between the two surveys is a 6CFM leak from a 

connector.   
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Figure 13: Sites with four Inspections - leak count 

 

 

Figure 14: Oscillating leak rates 

 

Further analysis is required to dig through the data to understand why random patterns such as those 

shown in Figure 11 exist, as well as understand what drives downward trends such as Figure 12 or 13, or 

cases where low emissions suddenly spike.    
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Figure 15: Declining leak rate trend 

 

 

Figure 16: Facilities with leak rate spike 
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S U P E R - E M I T T E R  F I N D I N G S  

In analyzing the data, 37 leaks greater than 6 CFM were identified which could be classified as super-

emitters.  One very large leak was detected (estimated at 150CFM via calibrated volume bag) and resolved 

within two weeks.  

An issue within the data is the lack of consistency whether an emission rate was quantified or estimated.  

By looking at the individual records it can sometimes be determine if a leak value was estimated or 

quantified (via high flow sampler or other methods), but most data sets did not include a field for 

“estimated or measured”.  Further analysis is required to determine how many of these 37 super-emitter 

leaks were resolved; these account for approximately 23% of the total leak volume in the survey.  Then, 

removing the one 150 CFM leak, these “super-emitters” account for 12% of total leak volume. 

Only 14 facilities in the survey would meet the definition of a facility super-emitter (total site emissions 

greater than 30 CFM). Of those 14 facilities, only three cases included emissions driven by leaks, with the 

remainder driven by tank venting emissions. 

It is important to note that, currently, LDAR teams do not deploy with measurement tools capable of 

quantifying emissions from tank vents; therefore, these estimates are largely based on operator “best 

guesses” with significant variability around the accuracy in relation to tank vents. 

A further issue to raise is the tracking of repairs, which is inconsistent within the data set obtained from 

producers.  Only a small subset of the data was recorded when a leak was resolved, and those repair 

records are not well integrated within the data.  Further analysis would be required to determine the fate 

of super-emitter leaks, which would require being able to link leak detection database systems with 

operational and maintenance logs, or follow-up surveys on the same facility to ensure that super-emitter 

leaks have been resolved.    
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C O N C L U S I O N  A N D  
R E C O M M E N D A T I O N S  

Historical LDAR practice in Canada is currently highly variable.  The variation in data collection, 

maintenance and analysis practices was not known prior to undertaking the study.  Over 80% of the hours 

allocated to this project related to processing data to the point where meaningful analysis could be made.  

The tools developed to process the data will allow for additional information to be added at a relatively low 

time and cost commitment, but building the tools to create a viable data set were very costly and time-

consuming.   

The largest criticism of LDAR in Canada is the lack of consistency in data collection, not just with regards to 

leak detection, but with attention to the tracking of repairs.  The existing CAPP Best Management Practice 

has provided flexibility to operators to design their own internal FEMP, this in turn, results in each operator 

having different data collection methods creating challenges with inconsistencies in data collection, quality 

assurance and quality control, and most notably the tracking of repairs.    

As Canadian and American legislators strive to achieve a 45% reduction in methane from the upstream oil 

and gas sector, enhancements to leak detection and repair practice will be part of the regulatory 

framework.  For credit for progress towards this goal to be claimed by the upstream oil and gas industry, 

better data management, guidance, and methodologies for leak detection and repair must be developed.  

In Appendix E of this report, GreenPath has developed a spreadsheet-based tool for data collection which 

will standardize further leak detection data collection efforts and make updates to this report less onerous.   

The development of a comprehensive, credible and consistent data set will assist with the ultimate 

objective of minimizing cost to industry while maximizing methane reductions.  

 


