

Equilibrium Environmental Inc.

Development of a Proposed Ecological Direct Soil Contact Selenium Guideline and Supporting Research

Prepared for:

Petroleum Technology Alliance Canada 400-500 – 5th Ave S.W. Calgary, Alberta T2P 3L5

Prepared by:

Equilibrium Environmental Inc. 3004 Ogden Road SE Calgary, Alberta T2G 4N5

Tel: (403) 286-7706 Cell: (403) 862-7758 Fax: (403) 286-8173 www.eqm.ca

Email: tknafla@eqm.ca vwinter@eqm.ca

Project Number: Date of Submission: PT-14 February, 2019

EXECUTIVE SUMMARY

Selenium (Se) toxicity and interaction with sulphate (SO₄) was assessed for potentially updating the soil Se ecological direct contact guideline in Alberta and Canada. Se is an essential nutrient for plants but can cause toxicity at higher concentrations. The current soil Se guideline of 1 mg/kg is based on two studies (conducted in 1991 and 1974) of limited in scope that involved a small number of plant species. Research activities conducted under funding by the Petroleum Technology Alliance Canada (PTAC), combined with previously published work, demonstrates elevated soil SO₄ concentrations (a common occurrence in the Western Canadian Sedimentary Basin) can ameliorate Se toxicity. This deficiency can potentially occur at Se background concentration ranges in Canada (up to 4.7 mg/kg) when SO₄ concentrations are relatively high.

Six plant species (alfalfa (*Medicago sativa*), barley (*Hordeum vulgare*), carrot (*Daucus carota*), cucumber (*Cucumis sativus*), northern wheatgrass (*Elymus lanceolatus*), red fescue (*Festuca rubra*)) and two invertebrate species (earthworms (*Eisenia andrei*) and springtails (*Folsomia candida*)) were tested in coarse and fine soils under control, low, medium, and high Se and SO₄ concentrations, to evaluate Se toxicity as a function of variable SO₄ concentrations. Se concentrations ranged from <0.3 to 31 mg/kg (administered as selenate) and SO₄ concentrations ranged from 28 to 1,482 mg/kg. Benchmark Dose Software (BMDS) was used to characterize and test dose-response curves and calculate 25% Effect Concentration (EC₂₅) values for use in guideline derivation. Plant toxicological enpoints included number of live adults, juveniles, and dry weight of juveniles for invertebrates. EC₂₅ values were plotted to derive a Species Sensitivity Distribution (SSD) as a function of soil texture and SO₄ concentration, following a detailed statistical analysis of model fit. The 25th percentile from each SSD was used for ecological guidelines development, as a function of SO₄ concentration.

Results for coarse textured soils suggest that under variable SO₄ concentrations, the existing Se guideline of 1 mg/kg may be appropriate and protective. However, of all the experiments conducted, those involving coarse soils were associated with the highest response variability, and lowest relative confidence, particularly with increasing SO₄ concentrations. It was postulated that this was due to difficulties in dosing plant roots growing in a readily drainable coarse soil with a water soluble substance (*i.e.*, Se as selenate), given the requirement of regular water addition for plant growth. Results for fine textured soils suggest a more appropriate minimum baseline Se soil quality guideline of 2 mg/kg is appropriate. At higher SO₄ concentrations (*i.e.*, > 1000 mg/kg), a guideline of 5 mg/kg would be more appropriate due to the amelioration of Se toxicity at higher SO₄ concentrations; higher Se concentrations overcome SO₄ induced low Se dose nutritional deficiency; and, SO₄ may induce a distinct toxic effect at higher SO₄ concentrations. Further research work with coarse soils may improve the accuracy of the Se-SO₄ interaction and may allows for a more variable guideline to be developed as a function of SO₄ concentration.

DISCLAIMER: PTAC does not warrant or make any representations or claims as to the validity, accuracy, currency, timeliness, completeness or otherwise of the information contained in this report, nor shall it be liable or responsible for any claim or damage, direct, indirect, special, consequential or otherwise arising out of the interpretation, use or reliance upon, authorized or unauthorized, of such information.

The material and information in this report are being made available only under the conditions set out herein. PTAC reserves rights to the intellectual property presented in this report, which includes, but is not limited to, our copyrights, trademarks and corporate logos. No material from this report may be copied, reproduced, republished, uploaded, posted, transmitted or distributed in any way, unless otherwise indicated on this report, except for your own personal or internal company use.

TABLE OF CONTENTS

Page

1 INTF	RODUCTION AND SCOPE	1
2 BAC	KGROUND INFORMATION	3
2.1	Selenium in the Environment	3
2.2	Selenium Forms in Environment	3
2.3	Background Selenium in Alberta Soils	4
2.4	Selenium Toxicity and Deficiency	4
2.5	Selenium Uptake by Plants and Animals and Sulphate Interactions	5
2.6	Effects of Sulphate on Selenium Toxicity	7
2.7	Selenium Guideline Levels	7
3 MET	HODOLOGY	8
3.1	Toxicity Testing	8
3.2	Quality Assurance	9
3.3	Endpoint Calculation	9
3.4	Species Sensitivity Distribution	9
3.5	Best Model Fit	10
3.6	Plant Uptake and Tissue Concentrations	10
4 EXP	ERIMENTAL STUDIES SUMMARY (2012 TO 2017)	10
4.1	Se Toxicity to Alfalfa (2012 Testing)	11
4.1.1 4 1 2	Study Design	11
42	Se Toxicity to Plants (2014 Testing)	13
4.2.1	Study Design	13
4.2.2	2 Observation	13
4.3	Se Toxicity to Plants (2015 to 2016 Testing)	16
4.3.1 4.3.2	2 Observation	16
4.4	Se toxicity to Invertebrates (2016 to 2017 Testing)	19
4.4.1	Study Design	19
4.4.2 4 4 3	2 Observation: Springtails	22
5 DAT	A ANALYSIS AND INTERPRETATION	23
51	Dose-Response Curves	23
5.1.1	EC ₂₅ Calculation	23
5.1.2	2 SO ₄ – Se Interaction	30
5.1.4	Quality Assurance and T-tests	35
5.1.5	5 EC ₂₅ Summary	36
5.2	Plant Bioconcentration	39
5.3	Saturated Paste vs Acid Extractable Se	42
6 DER	IVATION OF PRELIMINARY ECOLOGICAL DIRECT SOIL CONTACT GUIDELINES	45
6.1	Species Sensitivity Distributions	45

	6.1.1	Se Species Sensitivity Distribution Curves	45
	6.1.2	SO ₄ Species Sensitivity Distribution Curves	49
	6.2	Potential SRGs	52
7	DISC	USSION	54
	7.1	General Conditions	54
	7.2	Considerations	54
	7.3	Bioconcentration Factors	55
8	CLO	SURE	56
9	REFE	ERENCES	57

LIST OF APPENDICES

- Appendix A. Se Toxicity to Plants and Invertebrates: Dose-Response Data
- Appendix B. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2014 Plants
- Appendix C. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2015 Plants
- Appendix D. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2016 Invertebrates
- Appendix E. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2017 Plants and Invertebrates
- Appendix F. BMDS (Hill Model) Output Curve and SO₄ EC₂₅ Calculations: 2015-2017
- Appendix G. Quality Assurance: T-tests
- Appendix H. 2014-2017 Experiment Observation Data
- Appendix I. 2015-2017 Soil Chemistry Data
- Appendix J. Se and S Plant Tissue Chemistry Data
- Appendix K. Se Saturated Paste Soil Chemistry Data

1 INTRODUCTION AND SCOPE

Selenium (Se) is an essential nutrient in plants, present in soils throughout Alberta and Canada. The Alberta Environment and Parks (AEP, 2019) Tier 1 guideline is 1 mg/kg, which is identical to the Canadian Council of Ministers of the Environment (CCME, 2009) soil quality guideline (SQG). It was based on protection of the ecological direct contact pathway and derived from two toxicological studies of limited scope (Carson, 1991; Singh and Singh, 1979).

It is not uncommon to find naturally occurring Se at concentrations above the 1 mg/kg guideline (Penny, 2004; CCME, 2009). It is furthermore not uncommon to find elevated Se in drilling waste disposal areas associated with oil and gas activities, as well as waste water discharges from coal mines. This leads to a challenge in determining whether an anthopogenic activity has lead to an increase in soil Se above the guideline, or whether it was simply a naturally elevated area of soil Se that was encountered.

A final question remains regarding the relevance of the guideline to natural systems. If 1 mg/kg Se is toxic towards soil dependent biota, it might be expected that areas with naturally elevated soil Se would be associated with reduced plant growth and health. No published information could be identified where naturally elevated selenium in Canadian soils was associated with such an effect. Clearly, there is a complexity of interaction at play, which may be in part related to Se being both an essential nutrient for, and a relatively low concentration toxicant towards, soil dependent biota. And the nutritional as well as adverse toxicological effects may be strongly dependent on factors such as soil texture, pH, redox conditions, etc. Another plausible explanation is that sulphate (SO₄) has the potential to alter the toxicity of Se via competition for uptake with soluble forms of Se (such as selenate or selenite), and a considerably large area of Canada is associated with elevated SO4 concentrations in soil that may overlap with areas of elevated Se.

This potential research topic of value was brought to the attention of the Petroleum Technology Alliance Canada (PTAC) by Equilibrium Environmental Inc. (EEI) based on an assessment of literature data conducted in 2011. PTAC endorsed the project, selected a Champion to guide activities and progress, and provided the necessary funding. Research was conducted during the years 2011 to 2019 to generate the required toxicological dataset and data analysis, required for an update to the Se SQG. The ultimate objective of the research was to determine whether the existing guideline of 1 mg/kg is adequately supported, and if not, conduct the studies needed to provide a more rigorous and defensible guideline for use in Alberta and potentially across Canada. Additional contractual obligations included designing and managing toxicology studies, analyzing results, and developing a preliminary SQG using protocols and methods developed by CCME (2006).

The first toxicological study was designed and initiated by Equilibrium in 2011, in collaboration with a Masters thesis completed at the Royal Roads University, British Columbia, by Prediger (2012), with linkage to Lakeland College, Alberta. Toxicology lab services were provided by

Alberta Innovates – Technology Futures (who later changed their name to Alberta Innotech). Research was conducted using a single plant species (*Medicago sativa* or alfalfa), artificial soils, with variable Se and SO₄ concentrations.

The second study, proposed and designed by EEI, funded and guided by PTAC, used the lab services of Alberta Innotech in 2014. Six common agricultural and garden species were studied, specifically, *Daucus carota* (carrot), *Elymus lanceolatus* (northern wheatgrass), *Festuca rubra* (red fescue), *M. sativa* (alfalfa), *Hordeum vulgare* (barley), and *Cucumis sativus* (cucumber). EEI provided standard coarse and fine textured soils collected near Vulcan, AB, which were low in SO₄ concentration and represented suitable controls. The primary objective of the 2014 study was to quantify Se toxicity to common plants in background low SO₄ concentration soils, to serve as a baseline for further study.

The third study took place in 2015, using the lab services of Alberta Innotech, involving the same six plant species and soil types as in 2014, but with the addition of low, mid, and high SO_4 concentration exposure groups. The primary objective was to quantify Se toxicity to common agricultural and garden plant species as a function of variable and increasing SO_4 soil concentrations.

In 2016 to 2017, the fourth toxicity study took place using soil invertebrates, for which a very limited Se toxicology dataset exists. Two species, *Folsomia candida* (springtails) and *Eisenia andrei* (earthworms), were selected as standard test organisms and exposed to varying concentrations of Se and SO4 in coarse and fine textured soils. One additional plant and invertebrate experiment was conducted involving a lower SO₄ concentration to investigate threshold ranges in SO₄-Se interactions.

Upon completion of these studies, EEI submitted a subset of soil and plant tissue samples to Exova laboratories (Exova) for further analytical chemistry work. The purpose was to provide some preliminary data on potential plant uptake and bioconcenetration as well as the applicability of developing a soil selenium guideline on a saturated paste basis.

The remainder of this report is organized as follows:

- Background (Section 2);
- Methodology (Section 3)
- 2011 to 2017 Experimental Results Summary (Section 4);
- Data Analysis and Interpretation (Section 5);
- Development of Preliminary Ecological Direct Soil Contact Guidelines (Section 6);
- Discussion (Section 7);
- Closure and References (Sections 8 and 9).

Supporting information is provided in a series of detailed appendices.

- Appendix A. Se Toxicity to Plants and Invertebrates: Dose-Response Data
- Appendix B. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2014 Plants
- Appendix C. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2015 Plants
- Appendix D. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2016 Invertebrates
- Appendix E. BMDS (Hill Model) Output Curve and EC₂₅ Calculations: 2017 Plants and Invertebrates
- Appendix F. BMDS (Hill Model) Output Curve and SO₄ EC₂₅ Calculations: 2015-2017
- Appendix G. Quality Assurance: T-tests
- Appendix H. 2014-2017 Experiment Observation Data
- Appendix I. 2015-2017 Soil Chemistry Data
- Appendix J. Se and S Plant Tissue Chemistry Data
- Appendix K. Se Saturated Paste Soil Chemistry Data

2 BACKGROUND INFORMATION

2.1 SELENIUM IN THE ENVIRONMENT

Selenium (Se) is a naturally occurring trace mineral element, commonly found in Cretaceous marine sedimentary or seleniferous rock (Zhao *et al.*, 2005). Se levels up to 11.7 mg/kg were found in Cretaceous sedimentary rock formations in the White Specks area of central Saskatchewan (Dunn, 1990). Other natural sources include coal and fossil fuel deposits (ASTDR, 2003, CCME, 2009; Rosenfeld and Beath, 2013). Natural surface soil Se concentrations across Canada may reach 4.7 mg/kg (CCME, 2009).

Anthropogenic sources of Se in soil include coal ash from coal plants, irrigation water sourced from seleniferous soils, and wastewaters from industrial processes (CCREM, 1987; US EPA, 2018). Se environmental impacts have been associated with drilling waste from oil and gas activities and copper refining. According to the CCME (2009), copper refining was a primary contributor to Se production and a source of environmental impact. Global markets for Se include the glass industry, chemical and pigments, metallurgy, and electronics (George, 2003).

2.2 SELENIUM FORMS IN ENVIRONMENT

Se properties, such as mobility, uptake, metabolism, bioavailability and toxicity depend on its chemical form in environment (Martens, 2003; Mayland *et al.*,1989). Se can exist in four oxidation states such as -2 (hydrogen selenide and metallic selenides), 0 (elemental selenium), +4 (selenite), and +6 (selenate). Hydrogen selenide (H₂Se) is thermodynamically unstable in aquatic solutions, whereas elemental Se is very stable and highly water insoluble (Martens, 2003). In soil and water, dissolved organic Se is mainly present as selenate (SeO₄) and selenite (SeO₃), and frequently both species are simultaneously encountered. The SeO₄/SeO₃ ratio in water correlates with pH and redox potential, with a greater ratio under oxidizing conditions and a lower ratio under reducing conditions (Adriano, 1986).

Between the two forms, a greater proportion of the SeO4 mass in soil will be water soluble,

representing a relatively greater potential for plant uptake and exposure. Metal-SeO₄ complexes or minerals have high solubilities in aerobic soils and are unlikely to form (Elrashidi *et al.*, 1987), suggesting SeO₄ in oxygenated environments will be uncomplexed and more readily available for uptake into plants. SeO₄ is soluble under a relatively wide range of pH conditions. For example, in alluvia soils with a pH of 5.5 to 9, no adsorption was observed (Neal and Sposito, 1989).

Under near neutral and lower pH conditions (\leq 7), SeO₃ has a greater tendency to adsorb onto aluminum and iron oxides, clay minerals, and calcite (Geering *et al.*, 1968; Carey and Allaway, 1969; Martens, 2003). Maximum SeO₃ adsorption onto various clay minerals (including montmorillonite) occurs in the pH range of 3 to 5 (Goldberg and Gaubig, 1988). This reduces the potential for exposure to plants (and animals consuming plants) as the Se mass is less accessible. Metal-SeO₃ complexes have high solubilities under alkaline conditions – as a result, metal-SeO₃ complexation is not a mechanism for reducing plant bioavailable concentrations at these pH levels. This is one rationale for why greater Se exposure may occur at alkali sloughs that frequently have pH values > 8, as relatively large pools of SeO₃ bound to soil are released and made available for uptake into plants and secondary consumers.

A third important form of Se in the environment is organic Se. In a study with various soils derived from different parent rocks (shale, granite, sandstone, serpentinite, limestone, volcanic ash, rhyolite, andesite, andesitic tuff, gabbro), approximately 42% on average of the total mass of Se was bound to several forms of organic material (fulvic acids, low molecular weight organic molecules, and humic acids; Yamada *et al.*, 1998). For the soluble mass of Se, approximately 51% was bound to organic material. Soluble organically bound Se is plant bioavailable, and uptake rates may exceed SeO₃ and SeO₄ uptake, based on a study with canola and wheat (Kikkert and Berkelaar, 2013).

2.3 BACKGROUND SELENIUM IN ALBERTA SOILS

Se was one of 30 trace elements surveyed in Alberta agricultural soils under the Soil Quality Monitoring Program (CCME, 2009). The survey was performed in 2002 to provide a benchmark database, and total selenium levels ranged from 0.1 to 2.3 mg/kg within the depth interval of 0 to 0.3 m (Penny, 2004).

2.4 SELENIUM TOXICITY AND DEFICIENCY

As an element, Se was first identified in 1817 by the Swedish chemist Jacob Berzeluis. The earliest record of Se poisoned livestock occurred in the 13th century, when Marco Polo described a necrotic equine hoof disease in China. Marco Polo stated that merchants "...*cannot venture among the mountains with any beasts of burden, on account on poisonous plant growing there, which, if eaten by them, has the effect of causing the hoofs of the animals to drop off.*" (Reilly, 1996). Symptoms, resembling chronic selenosis, were further described in Colombia during 1560 and in Mexico over 200 years ago (Rosenfeld and Beath, 2013). In the United States, the acute and chronic poisoning of livestock exposed to naturally accumulated Se in plant tissue, described

as 'alkali disease', was reported in 1860 by the US Army near South Dakota, and since 1919, it was a recognised poisoning in Wyoming (Rosenfeld and Beath, 2013). In the early 1930's, it was first published that the toxic agent associated with 'alkali disease' may be Se in vegetation (Rosenfeld and Beath, 2013). Se was associated primarily with its poisonous qualities until 1957, when the German chemists Schwarz and Foltz presented the evidence that Se is essential for animal life, protecting against necrotic liver degradation (Schwarz and Foltz, 1957).

Se has been referred to as a 'double-edged sword' element (Brozmanová *et al.*, 2010) and an 'essential toxin' (Lenz and Lens, 2009), due to the narrow range between the dietary deficiency and toxicity. The daily requirements is 0.05 to 0.1 mg/kg to prevent Se deficiency, and at a 20-fold higher dose above deficiency levels, animals can suffer Se toxicity if dietary levels exceed 2 to 15 mg/kg (Mayland *et al.*, 1989; Ruyle, 1993).

Se deficiency in animals affects appetite, growth, fertility, and muscle strength (WHO, 2003; Fordyce, 2013). It may also lead to 'white muscle disease', a complex condition causing degeneration and apoptosis of muscles in animals (Fordyce, 2013). Penny (2004) stated that Se-deficient agricultural areas of Alberta are more common than Se toxic soils, and some areas of Se toxic soils have been associated with cases of 'white muscle disease' in livestock.

Under natural conditions, chronic Se toxicity is more common than acute toxicity since animals tend to avoid the consumption of generally unpalatable Se accumulator plants (Fordyce, 2013). Chronic toxicity in livestock may occur in the form of 'alkali disease' after long-term ingestion of typical forage plants containing 5 to 40 mg/kg, and it is characterized by emaciation, hoof loss, bone erosion, and other symptoms (Ruyle, 1993; Fordyce, 2013). In addition to alkali disease, high concentrations of Se have been shown cause congenital malformations and reproductive problems in rats, dogs, pigs and cattle (Fordyce, 2013, WHO, 2003). Se can also be directly toxic to plants, with toxic symptoms including chlorosis, black spots, and reduced yield (Efroymson *et al.*, 1997; Hartikainen *et al.*, 2000; Mikkelsen *et al.*, 1987).

Whether Se is beneficial to higher plants is still under debate (CCME, 2009; Terry *et al.*, 2000). Some researchers suggest Se can increase the tolerance of plants to UV-induced oxidative stress, delay senescence, promote the growth of ageing seedlings, and provide protection from pathogens and herbivores (Hartikainen *et al.*; 2000; Kuznetsov *et al.*, 2003, Germ *et al.* 2007; Quinn *et al.*, 2010; Wu *et al.*, 2016). Kuznetsov *et al.* (2003) demonstrated that Se regulates the water status of plants under drought conditions. Hartikainen *et al.* (2000) reported that at low concentrations, Se acted as an anti-oxidant, increasing the ryegrass yield. Wu *et al.* (2016) investigated the beneficial role of Se in protecting oilseed rape from cadmium (Cd) and lead (Pb) toxicity and noted that the medium application of Se (5,10, and 15 mg/kg) had a positive effect on growth while decreasing the oxidative damage caused by Cd and Pb.

2.5 SELENIUM UPTAKE BY PLANTS AND ANIMALS AND SULPHATE INTERACTIONS

The physiologic response of plants to Se varies greatly between the species (Rosenfeld and

Beath, 2013; Shrift, 1969; Brown and Shrift, 1982; Banuelos and Shrale, 1989; Wu *et al.*,1994, White *et al.*; 2007; Degenhardt *et al.*, 2016). According to their ability to accumulate Se, plants have been divided into several groups. Plants which cannot grow on seleniferous soils, are considered non-accumulators (White, 2015; USDA, 2016). Se-accumulator plants may contain up to 20 to 40 ppm Se in their dry tissue when grown under natural conditions (Rosenfeld and Beath, 2013; Shrift, 1969; Brown and Shrift, 1982). These plants typically like to grow in seleniferous soils, but they do not have specific requirement for it (USDA, 2016). Some plants can accumulate up to 1,000 to 15,000 mg/kg of Se in dry matter, and they are defined as hyperaccumulators (White, 2015; Feist and Parker, 2001). Some of these plants found in Se rich areas may require Se for growth (USDA, 2016).

Selenium can bioaccumulate in aquatic food webs and terrestrial organisms (Lemly, 1997; deBruyn and Chapman, 2007; CCME, 2009). Soil invertebrates can accumulate selenium to concentrations several times higher than concentrations in soil (Wu, 2004, CCME, 2009). Se level was reported increasing from soil to plants, from plants to grasshoppers, and from grasshoppers to mantis (Wu, 2004; CCME, 2009). Se concentrations increase within food webs and may pose risks to tertiary consumers (such as wildlife) (Woodbury *et al.*, 1999).

Few recent studies have investigated the adverse effects and bioavailability of SeO₄ and SeO₃ for soil organisms, and the toxicological dataset is considered very limited (Stolfa *et al.*, 2017). The toxicity of SeO₃ is higher in invertebrates living in aquatic environments, whereas SeO₄ is typically more toxic in terrestrial environments (Somogyi *et al.*, 2007). Fisher and Koszorus (1992) studied the effects of SeO₃ on *E. fetida* and found that sodium SeO₃ concentrations up to 50 mg/kg in soil caused no mortality, but reduced the juvenile production and mass gain of juveniles. Somogyi *et al.* (2007; 2012) compared SeO₄ and SeO₃ toxicity to potworms (*E.albidus*) and found SeO₄ was approximately 4-fold more toxic than SeO₃.

Se uptake by plants differs between SeO₃ and SeO₄. SeO₄ is taken up by plant roots via sulphate transporters (Terry *et al.*, 2000; White *et al.*, 2004; Sors *et al.*, 2005; Stolfa *et al.*, 2017). For SeO₃, earlier studies suggested passive diffusion (Shrift and Ulrich, 1969; Brown and Shrift, 1982), however, more recent work has demonstrated uptake via phosphate transporters (Li *et al.*, 2008; Zhang *et al.*, 2013). SeO₄ is translocated and tends to accumulate in leaves (shoots) following root contact, whereas SeO₃ is retained in the roots and does not tend to translocate at the same level as SeO₄ (Cartes *et al.*, 2011; Longchamp *et al.*, 2015).

Gupta *et al.* (1993) compared the Se concentration in barley grain after sodium SeO₄, calcium SeO₃, and sodium SeO₃ soil treatment, and found that Se rates of 10 and 40 g/ha of sodium SeO₄ raised the grain Se level to 234 ug/kg and 959 ug/kg, respectively. In contrast, the addition of sodium SeO₃ or calcium SeO₃ at the same rate did not cause any significant difference in the grain Se level compared to the control group (29 ug/kg). Ali *et al.* (2018) noted that at the same rate of Se application, Se availability was higher in wheat grown in SeO₄ treated soils than that in SeO₃ treated soils. Kinetic studies conducted by de Souza *et al.* (1998) on Indian mustard revealed that SeO₄ plant uptake was 2-fold faster than that of SeO₃.

2.6 EFFECTS OF SULPHATE ON SELENIUM TOXICITY

Se uptake in plants as SeO₄, follows the same metabolic pathway as sulphate (Terry *et al.*, 2000; White *et al.*, 2004; Sors *et al.*, 2005; Huang *et al.*, 2007; Stolfa *et al.*, 2017). Several studies have reported that sulphate reduces Se uptake by plants (Bell *et al.*, 1992; Mikkelsen and Wan, 1990; White *et al.*, 2004; Mackowiak and Amacher, 2008), although few studies have examined the effects of sulphate co-exposure on selenium toxicity in soil.

Gissel-Nielsen (1973) found that increasing sulphate concentrations in soil significantly decreased the uptake of SeO_4 by red clover and barley, whereas, SeO_3 uptake was affected to a lesser degree. Mikkelsen *et al.* (1988) found that Se accumulation by alfalfa grown in Se 1 mg/L solution was reduced from 948 mg/kg to 6 mg/kg in presence of sulphate. When sulphate-induced salinity increased from 0 to 6 dS/m, the authors noted that Se phytotoxicity was ameliorated.

The interaction between sulphate and Se toxicity in plants requires more research given the relatively large areas of seleniferous soils in Alberta and other provinces where concentrations of Se can be found at concentrations above regulatory guidelines. These areas are frequently colocated with areas of elevated sulphate, and the interplay and resulting potential for Se-induced toxicity to livestock and wildlife is likely complex. Elevated bioavailable Se at levels that may be toxic to livestock and wildlife may also be found in some alkali slough areas. Understanding this interaction is also of importance for anthopogenically derived exceedences of regulatory Se soil quality guidelines, where elevated sulphate concentrations are simultaneously observed.

2.7 SELENIUM GUIDELINE LEVELS

The current soil Se guideline in Canada and Alberta is 1 mg/kg. The guideline is variable amongst other provinces of Canada (Table 2.1). The limiting pathway is ecological direct soil contact (receptors of concern being microbes, invertebrates, and plants). The current guideline of 1.0 mg/kg has several limitations. First, the regional database of naturally occurring soil concentrations suggests Se may range up to 2.3 mg/kg in Alberta and 4.3 mg/kg for several provinces, which is greater than the Tier 1 guideline (CCME, 2009, Penny, 2004). This suggests widespread areas of soil dependent biota may be under naturally induce Se toxicity. Second, the guideline was developed based on two studies using the most toxic form of selenium in soil (SeO₄; Carlson *et al.* 1991; Singh and Singh, 1979), whereas typical environmental measurements of Se (via acid digestion as part of a metals analytical package) will simultaneously also measure SeO₃ and organic forms of Se that may be associated with lower toxic potency. Third, the SeO₄ based guideline of 1 mg/kg may be overprotective if there is amelioration due to elevated sulphate concentrations in soil. Areas with elevated soil sulphate concentrations are wide-spread across Alberta and other provinces in the Western Canadian Sedimentary Basin.

Jurisdiction	Description Soil Guidelines (mg/kg)		Reference	
	Canadian Soil Quality Guidelines for the	1.0	Agr/R/P	
Canada	Protection of Environmental and Human Health	2.9	C/I	CCME, 2009
British Columbia	Generic Numeric Soil Standards for Contaminated Sites	1.0	Agr/R/P/C/I	BCMOE, 2017
Ontario	Conoric Site Condition Standards	1.2	Agr	
Ontano	Generic Site Condition Standards	1.5	R/P/C/I	UNIVIOL, 2011
Alborto	Alberta Tier 1 Soil and Groundwater	1.0	Agr/R/P	AED 2016
Alberta	Remediation Guidelines	2.9	C/I	AEP, 2016

Notes:

Agr: agricultural land use; R: residential land use; P: parkland land use; C: commercial land use; I: industrial land use

3 METHODOLOGY

The following sections present the approach and methods used to develop soil toxicity data for soil dependent biota under varying sulphate co-exposure levels.

3.1 TOXICITY TESTING

Toxicity testing work herein was based on SeO_4 as it has the greatest potential to induce toxicity to soil invertebrates and plants amongst the various Se species encountered in a soil matrix, due in part to its solubility under neutral pH conditions – this helps to ensure that potential toxicity was evaluated in a manner that excluded binding with soil during the experiment and a loss of bioavailable Se dose. Literature data indicates that SeO₄ uptake into, and toxicity towards, plants is higher than SeO₃. Use of SeO₄ toxicity data would ensure that any guidelines derived from this work would be adequately protective of SeO₃ exposures.

Experimental studies first commenced by EEI, and published by Prediger (2012), were for alfalfa (*M. sativa*) grown on artificial soils as part of a range finding study to determine levels of Se induced toxicity under various sulphate concentrations. Additional toxicity studies were carried out in the lab of Alberta Innovates (AI), under the guidance of EEI, and funding as well as oversight was provided by the Petroelum Technology Alliance Canada (PTAC) and Alberta Environment and Parks (AEP). Raw laboratory results are provided in Turner *et al.*, 2014, Degenhardt *et al.*, 2016; and, Degenhardt *et al.*, 2017) The toxicity testing work involved six plant and two invertebrate species. According to CCME (2006), coarse-grained and fine-grained soils should be considered separately, and guidelines developed for each soil type (CCME, 2006). EEI provided AI with natural coarse and fine textured soils, collected near Vulcan, AB. Dose-response data from artificial soil was not included in the final statistics and derivation of guidelines, to avoid potential interference with natural conditions of the representative soils from Alberta.

Six plant species were used for the trial as recommended by EC (2007) protocols. Plants were

selected following discussions with AEP for relevance, and included alfalfa (*M. sativa*), barley (*H. vulgare*), carrot (*D. carota*), cucumber (*C. sativus*), northern wheatgrass (*E. lanceolatus*), and red fescue (*F. rubra*). The two invertebrate species were earthworms (*E. andrei*) and springtails (*F. candida*), which are he most common species used in soil ecotoxicology work in Canada.

3.2 QUALITY ASSURANCE

For quality assurance purposes, Se and sulphate (SO₄) soil concentrations were validated analytically by Exova laboratories (Exova) for each unique combination of treatment (Appendix I). In addition, the dose-response data from 2014 to 2017 studies were statistically verified for integrity by t-tests to eliminate potential statistical 'noise' or inconsistency from combination of several data sets. T-tests compared Se control data sets between different experiments and assisted in identifying experimental outlier exclusions (Appendix G).

3.3 ENDPOINT CALCULATION

The dose-response analysis was conducted using US EPA Benchmark Dose Software (BMDS), Version 2.7.0.4, which assesses goodness of fit for the dose-response curves by determining p-values for four different tests. Based on p-values and visual assessment (goodness of fit) for the control sulfate group, the Hill Model was selected. The Hill model, a preferred model in BMDS, is a sigmoidal dose-response curve consistent with receptor-mediated responses, and it is often used for the best representation of the data (US EPA, 2016).

The Hill Model was used to calculate the Se soil effective concentration (in mg/kg) causing a 25% adverse effect (EC_{25}) to the germination, root/shoot mass and length for the plants, and live adult and juvenile number/mass for invertebrates. An effective concentration of 25% is the preferred approach in Canada for determining unacceptable risk to the ecological soil contact pathway (CCME, 2006). The BMDS curves and calculated EC_{25} values are shown in Appendices B-F.

3.4 SPECIES SENSITIVITY DISTRIBUTION

Conversion of the dose-response data from toxicity tests in 2014-2017 to the ecological soil guidelines was done with the Species Sensitivity Distribution (SSD) curve, as recommended by CCME (2006). For agricultural and residential/parkland lands, CCME (2006) recommends the use of calculated EC_{25} values rather than no observed effect level (NOEC), lowest observed effect level (LOEC), and EC_{50} values to reduce uncertainty in guideline derivation and applying uncertainty factors. In some instances, it is necessary to use NOEC and LOEC values for guideline derivation depending on endpoint availability.

To avoid redundancy, the root and shoot length and dry biomass biological endpoints (EC₂₅, derived from BMDS) were combined as geometric mean, to yield one dry matter endpoint. In a similar way, the geometric mean for the earthworm biomass and juvenile numbers was utilized as a single endpoint characterizing reproduction. This calculation resulted in one dry matter endpoint and one germination endpoint for each plant species as well as one adult mortality and

one reproduction endpoint for each invertebrate species. Thus, the final SSD curve was built on sixteen endpoints for eight species, for every unique combination of the soil type and sulphate treatment. The soil type included coarse and fine loamy sand soils collected by EEI near Vulcan, AB, but not artificial soils, and the final guidelines were built on 2014 to 2017 toxicity tests. The EC_{25} from 2015 SO₄ control data set and 2014 experiment were combined as geometric mean to eliminate potential redundancy in control SO₄ data.

3.5 BEST MODEL FIT

The goodness of fit of the species sensitivity distribution curves and model results were evaluated with the MathWave Technologies EasyFit software, Version 5.6. The data points from statistical analysis of 2014 to 2017 toxicity experiments were processed by EasyFit, and probability distributions that best fit the data were was ranked according to the goodness of fit from 1 to 40 by Anderson-Darling tests. Anderson-Darling test ranking was preferred over Kolmogorov-Smirnov tests (Aldenberg *et al.*, 2002) for the better sensitivity to the tails of distribution, and therefore, better working with potential outliers. The models with the highest rank (i.e., 1 or 2) were applied to derive the final guidelines.

3.6 PLANT UPTAKE AND TISSUE CONCENTRATIONS

Upon completion of the 2015 to 2017 experiments, plant tissues and soil samples collected by AI were submitted to EEI. EEI evaluated tissue weights and select samples with sufficient yield (dry weight > 0.5 g) for submission to Exova to determine Se and SO₄ (as sulfur) content in plants. Soil samples were submitted to Exova for Se concentration analysis by two methods: strong acid extractable Se and saturated paste Se. These analytical data were used to evaluate bioconcentration potential and assess relationships between toxicity and plant tissue concentrations for Se and SO₄.

4 EXPERIMENTAL STUDIES SUMMARY (2012 TO 2017)

This section describes methodology, materials, and observation results of toxicity testing designed by EEI (2012-2017) and conducted by Prediger (2012), Turner *et al.* (2014), and Degenhardt *et al.* (2016, 2017), resulting in the following experimental studies:

- Selenium (Selenate) Toxicity to *Medicago sativa* and the Hormetic Effect of Sulphate (Prediger, 2012);
- Phase 1 (2013-2014) Development of EcoContact Soil Selenium Guideline (Turner *et al.*, 2014);
- Phase 2 (2015-2016) Development of EcoContact Soil Selenium Guideline (Degenhardt *et al.*, 2016),
- Phase 3 (2016-2017) Development of EcoContact Soil Selenium Guideline: Toxicity Testing Using Soil Invertebrates (Degenhardt *et al.*, 2017)

4.1 SE TOXICITY TO ALFALFA (2012 TESTING)

4.1.1 Study Design

The research methodology generally followed Environment Canada's Biological Test Method: Test of Measuring Emergence and Growth of Terrestrial Plants Exposed to Contaminants in Soil (EC, 2007). The test involved spiking artificial soil with eight different concentrations of sodium selenate, seeding *M. sativa* (alfalfa), conducting a 26 to 31 day growth test, and measuring root and shoot length and weight of the plants. Artificial soil and spiking was completed at Lakeland College in Vermilion, Alberta, and the growth tests were carried out in the growth chambers at Al in Vegreville, Alberta.

Soils were spiked with SO₄ in the form of magnesium sulphate (MgSO₄•7H₂O) at dry weight concentrations of 0 (no SO₄ added), 500, 1,500, and 3,000 mg/kg. Each of the four SO₄-spiked soils were spiked with Se in the form of sodium selenate (Na₂SeO₄) at dry weight concentrations of 0 (no Se added for a negative control), 0.5, 0.75, 1.0, 1.25, 2.0, 5.0, and 15.0 mg/kg, resulting in 32 different combinations of SO₄ and Se in the spiked artificial soils (four SO₄ concentrations by eight Se concentrations).

A composite sample of artificial soil was submitted to Exova in Edmonton, Alberta. Salinity analysis indicated the initial SO₄ concentration of 176 mg/kg. SO₄ concentrations as 500, 1 500, and 3, 000 mg/kg were identified based on the concentration of sulphate the artificial soil was spiked with. Assuming 176 mg/kg of SO₄ in background, all four SO₄ concentrations may be estimated as 176 mg/kg, 676 mg/kg, 1,676 mg/kg, and 3,176 mg/kg. The soil texture (hydrometer method) indicated the soil was a sandy loam, based on Agriculture Canada (1983), with a 73.6% sand content, a 10.4% silt content and a 16.0% clay content, which may be considered coarse soil (Prediger, 2012).

Approximately 500 g of hydrated soil was added to each growth vessel and the vessels were seeded with ten seeds of *M. sativa var. Algonquin. M. sativa* was selected for testing based on approved species in the Environment Canada methodology (EC, 2007). The seeds were certified and sourced from commercial suppliers across Canada (Prediger, 2012).

4.1.2 OBSERVATION

The biological endpoints included root and shoot mass and length. Results indicated that effective concentrations to cause a 25% adverse effect (EC_{25}) in control SO₄ ranged from 0.11 to 0.49 mg/kg. The addition of SO₄ reduced SeO₄ toxicity to alfalfa by more than 136-fold, depending on endpoint and SO₄ concentration (Prediger, 2012). In control SO₄ concentration of 176 mg/kg, the 15 mg/kg of Se caused 100% plant mortality (Figure 4.1). Comparatively, when soils were spiked with SO₄ at concentrations of 500, 1,500, or 3 000 mg/kg, the 15 mg/kg Se treatment appeared to cause little difference from the negative controls.

Figure 4.1. Photographs of Growth Vessels

Source: Prediger 2012

Se (as selenate) concentrations for each vessel are listed along top of photograph. Note the 0% survival at 15 mg/kg Se concentration in control SO₄ vessel (background SO₄ of 176 mg/kg).

4.2 SE TOXICITY TO PLANTS (2014 TESTING)

4.2.1 STUDY DESIGN

The study consisted of spiking field-collected soils with varying concentrations of Se (SeO₄ valence form Se⁶⁺), counting the germinated plants, sowing test species, and measuring root/shoot lengths and dry biomass following Environment Canada (EC, 2007) methodology (Turner *et al.*, 2014).

Coarse and fine textured loamy soils were collected by EEI from an agricultural field near Vulcan, AB. Soils were dried, homogenized and saturated at 20% moisture. Plant species selection and Se concentrations levels were finalized upon discussions between EEI and AEP. AEP suggested the use of common monocot and dicot agricultural species and some common garden species due to their sensitivity to Se (Banuelos and Schrale, 1989). A total of six plant species were selected for the trial (Table 4.1), all recommended by EC (2007).

Seeds were planted in coarse and fine substrates, and spiked with 10 mg/kg of SO₄ (coarse soils) and 12 mg/kg of SO₄ (fine soils). Se treatment consisted of 0.35 (control), 0.85, 1.35, 2.35, 5.35, and 15.35 mg/kg dry weight concentrations for coarse soils, and 0.65 (control), 1.15, 1.65, 2.65, 5.65, and 15.65 mg/kg dry weight concentrations for fine soils. Experiment lasted for 14-21 days in compliance with EC (2007). Five seeds were sown for northern wheatgrass, red fescue, barley, cucumber, and ten seeds were sown for alfalfa and carrot. Each treatment, including control, had six replicates. Testing vessels with seeds were set to grow in controlled environment chambers at 21/15 degree Celsius (°C), day/night temperature with 16 hrs photoperiod (Turner *et al.*, 2014).

Specie	es Name	Plant Se Accumulator	Type of energies	
Scientific Common		Туре	Type of species	
Daucus carota	Garden carrot	Non-accumulator	Dicot	
Elymus lanceolatus	Elymus lanceolatus Northern wheatgrass		Monocot	
Medicago sativa Alfalfa		Potential accumulator*	Dicot	
Festuca rubra	Creeping red fescue	Potential accumulator*	Monocot	
Hordeum vulgare	Barley	Non-accumulator	Monocot	
Cucumis sativus	Cucumber	Non-accumulator	Dicot	

 Table 4.1. Plant Species Selected for Toxicity Testing

**M.sativa* and *R.fescue* are considered potentially Se accumulator species (Turner *et al.*, 2014)

4.2.2 OBSERVATION

The biological endpoints included root and shoot mass and length, and germination percent. Seedlings responded differently to treatment levels between species and soil texture. An increased concentration of Se typically correlated with a decreased number of surviving individuals and decreased biomass for species by the end of the test. The effect of high Se levels (15.35 mg/kg in coarse-textured soils, and 15.65 mg/kg in fine-textured soils) was universally detrimental to plant growth and survival during the study period (Turner *et al.*, 2014; Figure 4.2 to 4.3).

Source: Turner et al., 2014

Barley pots are shown on an upper photo; bottom photo represents alfalfa.

The numbers in the diagram refer to the Se concentrations with 0.35 and 0.65 (mg/kg) in control coarse-textured and fine-textured soils, respectively.

Figure 4.3. Negative Se Effect on Red Fescue and Northern Wheatgrass

Root/shoot - Red fescue in coarse soil

Root/shoot - Red fescue in fine soil

Root/shoot – Northern wheatgrass in coarse soil

Source: Turner et al., 2014 Units: mg/kg; R – replicate, C- concentration

Root/shoot – Northern wheatgrass in fine soil

4.3 SE TOXICITY TO PLANTS (2015 TO 2016 TESTING)

4.3.1 STUDY DESIGN

Coarse and fine textured soils were collected by EEI near Vulcan, AB. Soils were dried, homogenized, and saturated at 20% moisture following Environment Canada protocol (EC, 2007). The mass of Na₂SO₄ required to reach the targeted Se levels was calculated and weighed using an analytical scale. It was then dissolved in 250 mL of distilled water and mixed in with the soil until it reached a homogeneous, crumbly consistency with clumps approximately 3-5 mm in diameter. To achieve the targeted SO₄ levels while maintaining Ca:Na ratios within 10–20 and Ca:Mg ratios within 2.5–5, a combination of CaSO₄, MgSO₄ and and Na₂SO₄ were used. The quantity of CaSO₄, MgSO₄, and Na₂SO₄ required to reach targeted SO₄ levels were calculated and weighed using an analytical scale. It was then dissolved in 500 mL of distilled water and mixed in with the soil until it reached a homogeneous, crumbly consistency with clumps approximately 3-5 mm in guantity of CaSO₄, MgSO₄, and Na₂SO₄ required to reach targeted SO₄ levels were calculated and weighed using an analytical scale. It was then dissolved in 500 mL of distilled water and mixed in with the soil until it reached a homogeneous, crumbly consistency with clumps approximately 3-5 mm in diameter (Degenhardt *et al.*, 2016).

Plant selection and Se concentrations levels were finalized after discussions between EEI and Alberta Environment and Parks (AEP). The same six species, as in 2014 (Section 3.2, Table 3.1) were chosen: alfalfa, barley, carrot, cucumber, northern wheatgrass, and red fescue. Prior to the start of the study, seeds from a recognized supplier were obtained and tested for seedling emergence as per EC (2007) to ensure seeds of each species had 80% or higher emergence.

Five seeds (barley, cucumber) or ten seeds (alfalfa, northern wheatgrass, red fescue and carrot) were planted into coarse, fine or artificial soil; each soil had 16 treatments (four levels of Se and four levels of SO₄), and each treatment was replicated four times (Degenhardt *et al.*, 2016). The test was terminated after 14 days of exposure for barley and cucumber, and after 21 days of exposure for alfalfa, carrot, northern wheatgrass and red fescue, following EC (2007) protocol.

Testing vessels with seeds were set to grow in a greenhouse at 24/15°C, day/night temperature and 18 hrs photoperiod. Approximately 500 mL weight equivalent of soil was used in each pot. Pots were 1 L polypropylene food containers with lids. All pots were labelled, seeds chosen and sown individually and then watered in accordance with Environment Canada's contaminated soils test. Lids were placed on pots for the first seven days or until plant leaves reached the lids. Watering was done when necessary, about every three days. Visual assessments were recorded on the condition of the emerged plants on a weekly basis, with attention to delayed emergence, impaired development, necrosis, defoliation, desiccation, malformation, mottling, staining, wilting, discoloration, or chlorosis (Degenhardt *et al.*, 2016).

The targeted concentrations for Se and SO₄ were determined based on the results from Phase 1 (2013-2014) PTAC funded Development of EcoContact Soil Se Guideline project (Turner *et al.*, 2015). Composite soil samples from each of 16 treatments were submitted to Exova (Edmonton, AB) for analysis. Targeted and actual concentrations (coarse and fine soils) are summarized in Table 4.2.

Sample ID*	Sample ID* Targeted Se, mg/kg Actual Se, mg/kg		Targeted SO ₄ , mg/kg	Actual SO₄, mg/kg				
		Coarse soils						
	C	Control SO ₄ treatment	**					
Se0-S0	e0-S0 No spiking 0.3			21.9				
Se1-S0	1.15	0.9	No opiking	36.6				
Se2-S0	2.65	2.4	NO SPIKING	40.5				
Se3-S0	5.65	6.2		63.6				
	Low-level SO₄ treatment							
Se0-S1	No spiking	0.3	500	894				
Se1-S1	1.15	0.9	500	858				
Se2-S1	2.65	2.5	500	927				
Se3-S1	5.65	5.4	500	840				
	N	lid-level SO4 treatme	nt					
Se0-S2	No spiking	0.4	1,000	1,095				
Se1-S2	1.15	0.9	1,000	1,101				
Se2-S2	2.65	2.8	1,000	981				
Se3-S2	5.65	5.4	1,000	1,140				
	<u> </u>	igh-level SO ₄ treatme	nt					
Se0-S3	No spiking	0.3	1,500	1,242				
Se1-S3	1.15	1.1	1,500	1,314				
Se2-S3	2.65	2.8	1,500	1,371				
Se3-S3	5.65	5.9	1,500	1,356				
		Fine soils						
		Control SO ₄ treatmen	t					
Se0-S0	No spiking	0.6		19.8				
Se1-S0	1.40	1.3	No spiking	67.8				
Se2-S0	2.95	3.2	No spiking	96				
Se3-S0	5.95	6.5		33.3				
	L	ow-level SO ₄ treatme	nt					
Se0-S1	No spiking	0.6	500	981				
Se1-S1	1.40	1.4	500	897				
Se2-S1	2.95	3.5	500	933				
Se3-S1	5.95	8.4	500	1,038				
	Ν	lid-level SO4 treatmer	nt					
Se0-S2	No spiking	0.6	1,000	1,260				
Se1-S2	1.40	1.5	1,000	1,137				
Se2-S2 2.95		3.1	1,000	1,227				
Se3-S2	5.95	9.5	1,000	1,236				
	Η	igh-level SO4 treatme	nt					
Se0-S3	No spiking	0.7	1,500	1,407				
Se1-S3	1.40	1.4	1,500	1,515				
Se2-S3	2.95	3.2	1,500	1,452				
Se3-S3	Se3-S3 5.95 7.8		1,500	1,551				

Table 4.2.	2015 Targeted and	Actual Concentration	s for Se and SO ₄
------------	-------------------	----------------------	------------------------------

*In sample ID, Se indicates selenium, where Se0 = control, Se1 is low, Se2 = mid, and Se3 = high Se concentration, and S indicates SO4, where S0 = control, S1 = low, S2 = mid, and S3 = high SO4 concentration

**Concentrations are grouped by SO₄ treatment for benchmark dose-response analysis, discussed in Section 4.

In January 2017, upon discussion with EEI, additional treatments with a lower SO₄ concentration (targeted SO₄ = 500 mg/kg) at four different Se levels were added. This additional experiment chemistry results are summarized in Table 4.3.

Sample ID*	Targeted Se, mg/kg	Actual Se, mg/kg	Targeted SO₄, mg/kg	Actual SO₄, mg/kg
		Coarse soils		
Se0	No spiking	0.4	500	681
Se1	1.0	0.9	500	672
Se2	2.5	2.9	500	732
Se3	5.0	5.8	500	651
		Fine soils		
Se0	No spiking	0.8	500	714
Se1	1.0	1.1	500	624
Se2	2.5	2.9	500	702
Se3	5.0	5.8	500	666

Table 4.3. 2017	' Targeted and	actual conce	entrations for	[•] Se and SO₄
-----------------	----------------	--------------	----------------	-------------------------

*In sample ID, Se indicates selenium, where Se0 = control, Se1 is low, Se2 = mid, and Se3 = high Se concentration. Note that targeted SO4 level is the same for all group in 2017 additional experiment.

4.3.2 OBSERVATION

The toxicity of Se was most evident in the coarse textured soil. The root biomass for all species in coarse soil (except cucumber at low selenium concentration) substantially decreased with increasing selenium without SO₄. Barley and northern wheatgrass had the greatest increase in root weight when SO₄ was added. SO₄ effect on root biomass was most evident in coarse soils at low SO₄ level (average 880 mg/kg) for most species.

For all species, significant reduction in shoot length was observed in Se3 (high dose) treatment without SO₄, and for alfalfa and northern wheatgrass the same effect was observed under Se2 (mid-dose) treatment. Cucumber and fescue responded positively (through increase in shoot weight) to low levels of Se. Overall, SO₄ addition had a positive or neutral effect on the shoot length in all Se spiked treatments. The greatest increase in shoot length with SO₄ was observed in grass species (barley, northern wheatgrass, and red fescue).

Similar to shoot length effects, shoot weight decrease was observed in higher Se concentration without any SO₄ addition. However, the high SO₄ treatments (Se control), also significantly reduced shoot weight in fescue, alfalfa and northern wheatgrass. The higher EC associated with higher SO₄ may have also adversely affected the growth of those species. The antagonistic effect of SO₄ and Se was most evident at SO₄-low (880 mg/kg) treatments for most species (Degenhardt *et al.*, 2016).

In fine soil, the root biomass response to Se was inconsistent amongst the species. Higher root length was observed in four species (barley, carrot, cucumber and red fescue), at low and medium

Se concentration. The lowest root length within SO_4 -control group was observed at the highest Se concentration, for all species, except cucumber. With added SO_4 , an increased root length was most evident in alfalfa and barley. Overall, the toxic effect of Se on root length in fine soils was most evident at the highest Se concentration (Se3) for all species except cucumber, and the antagonistic effect of Se and SO_4 was also most evident at that concentration.

Reduction in shoot biomass was observed in all species with increased Se level without SO₄. Shoot length and weight were significantly reduced under Se3 and SO₄-control treatments. The addition of SO₄ (at all three levels) substantially increased shoot length and weight for all species at the highest Se concentration (Se3). The antagonistic effect of Se and SO₄ was evident in all species with similar response across the species tested (Degenhardt *et al.*, 2016).

4.4 SE TOXICITY TO INVERTEBRATES (2016 TO 2017 TESTING)

This study extended toxicity testing to assess the reproduction and survival of two standard soil invertebrate species under various Se and SO₄ concentrations in fine and coarse textured soils. A number of standardized biological test methods have been established for measuring toxicity of samples of contaminated or potentially contaminated soil using specified terrestrial test organisms (EC, 2004 and 2014). *Folsomia candida* (springtails) and *Eisenia andrei* (earthworms) were selected as the standard invertebrate test organisms for this project (Degenhardt *et al.*, 2017).

Biological endpoints for springtails test included the mean number of surviving adults (first generation) and live progeny after 28 days in each treatment. Endpoints for earthworms test included mean number of surviving adults (first generation) after 28 days and mean number of live juveniles, and their mean dry weight after 56 days in each treatment.

4.4.1 STUDY DESIGN

Breeding stocks of *E. andrei* and *F. candida* were obtained from the Method Development and Applications Unit, Science and Technology Branch, of Environment Canada (Ottawa, Ontario) on August 17, 2016. The organisms used in this toxicity test were derived from the same population (Degenhardt *et al.*, 2017).

Preparation and maintenance of synchronized cultures of *F.candida* were completed following Environment Canada's Biological Test Method Test for Measuring Survival and Reproduction of Springtails Exposed to Contaminants in Soil. Age synchronization was performed following the standard operating procedure (SOP) for Springtail Age-Synchronization (SOP No. 15/20/1.4/S), developed by the Soil Toxicology Laboratory at Environment Canada. Culturing, acclimation and maintenance of *E. andrei* was completed by following the Earthworm Culture Maintenance protocol (SOP No. 15.12/2.4/S 15.12/2.4/S) (Degenhardt *et al.*, 2017).

Coarse and fine soils were provided by EEI and prepared for test using the same method as

discussed in Section 4.3. Baseline physicochemical properties were determined prior to spiking the soils to the targeted Se (in the form of sodium selenate Na₂SeO₄) and SO₄ levels. The mass of Na₂SeO₄ required to reach the targeted Se levels was calculated from baseline soil properties, and the required amount was then weighed using an analytical scale. To achieve the targeted SO₄ concentrations, a combination of CaSO₄, MgSO₄ and Na₂SO₄ were used. The quantities of CaSO₄, MgSO₄ and Na₂SO₄ and Na₂SO₄ required to reach the targeted SO₄ levels were calculated based on the baseline soil properties; the required amount was then weighed using an analytical scale, and mixed in their dry form prior to being gradually rehydrated with de-ionized water. Soil was mixed until it reached a homogeneous, crumbly consistency with clumps approximately 3-5 mm in diameter (Degenhardt *et al.*, 2017).

Test soils were spiked with five different treatment levels of Se (Se0 (<1ppm), Se1 (2 ppm), Se2 (5 ppm), Se3 (10 ppm) and Se4 (20 ppm). For each Se treatment level, the soil was also spiked with four different SO₄ concentrations. Targeted concentrations of Se and SO₄ were determined based on results from Phase 1 and 2 (2013-2015) PTAC funded Development of EcoContact Soil Se Guideline project (Degenhardt *et al.*, 2016; Turner *et al.*, 2014; Section 4.2 and 4.3). A negative control test with artificial soil was included in this study to ensure toxicity tests were done in a consistent, standardized approach.

Composite soil samples from each of 20 treatments were submitted to Exova (Edmonton, AB) for analysis. Targeted and actual concentrations (coarse and fine soils), grouped by SO₄ treatment for dose-response analysis, are summarized in Table 4.4.

In January 2017, upon discussion with EEI, additional treatments with a lower SO₄ concentration (targeted SO₄ = 500 mg/kg) at four different Se levels (Se0 (<1ppm), Se1 (1 ppm), Se2 (2.5 ppm), Se3 (5 ppm)) were added in conjunction with plant toxicity work. This additional experiment soil chemistry results were shown in Table 4.3, Section 4.3.

Sample ID*	Sample ID* Targeted Se, Actual Se, mg/kg		Targeted SO ₄ ,	Actual SO ₄ ,		
	ing/kg	Coarse soils	ing/kg	iiig/kg		
	C	Control SO₄ treatment	**			
Se0-S0	No spiking			45.3		
Se1-S0	2	2.3		27.6		
Se2-S0	5	13	No spiking	25.2		
Se3-S0	10	7.1	No Spiking	20.2		
Se4-S0	20	12.3		47 1		
004 00						
Se0-S1	No spiking		500	870		
Se1-S1		2.2	500	780		
Se2-S1	5	4.6	500	840		
So3-S1	10	8.1	500	870		
So4-S1	20	20.5	500	7/1		
064-01	20	lid lovel SO, treatmo	000	741		
Se0 S2	IV No opiking		1 000	027		
Se0-52		0.3	1,000	007		
Sel-32	2	2.1	1,000	1,000		
Sez-Sz	10	3.7	1,000	015		
Se3-52	10	0.9	1,000	910		
364-32	ZU	igh lovel SO, treatme	1,000	043		
Se0 52			1 500	1.077		
Seu-53		<0.3	1,500	1,077		
Se1-S3		2.1	1,500	1,188		
Se2-S3	5	5.6	1,500	1,161		
Se3-S3	10	8.0	1,500	1,230		
564-53	20	18.8	1,500	1,071		
		Fine solis				
0.0.00	(Control SO ₄ treatmen	t	50.7		
Se0-S0	No spiking	0.6		50.7		
Se1-S0	2	2.7		93.6		
Se2-S0	5	5.5	No spiking	110.7		
Se3-S0	10	10.9		100.2		
Se4-S0	20	30.6		99.3		
	L	ow-level SO4 treatme	nt			
Se0-S1	No spiking	0.7	500	984		
Se1-S1	2	4.5	500	921		
Se2-S1	5	8.0	500	870		
Se3-S1	10	1/./	500	882		
Se4-S1	20	26.8	500	939		
	N	lid-level SO ₄ treatmer	nt			
Se0-S2	No spiking	0.6	1,000	1,080		
Se1-S2	2	3.3	1,000	1,206		
Se2-S2	5	5.4	1,000	1,089		
Se3-S2	10	14.8	1,000	1,119		
Se4-S2	20	24.9	1,000	1,215		
	H	igh-level SO4 treatme	nt	1		
Se0-S3	No spiking	0.7	1,500	1,482		
Se1-S3	2	3.0	1,500	1,377		
Se2-S3	5	7.7	1,500	1,470		
Se3-S3	10	13.6	1,500	1,404		
Se4-S3	20	31.2	1,500	1,410		

Table 4.4. Targeted and actual concentrations for Se and SO₄ for coarse and fine soils

4.4.2 OBSERVATION: SPRINGTAILS

Results for *F. candida* were considered valid based on passing the following criterion:

- The percent survival of adults in the negative control soil (Se0-S0) and the artificial soil were greater than 80% (or >8 live adults per test vessel).
- The mean reproduction rate for the adults in the negative control soil was greater than 100 progeny per test vessel.

Mean number of live adults and live progeny produced after 28 days differed significantly (p<0.05) among treatments in the coarse textured soil. Treatments Se0-S0, Se0-S1, Se1-S2 and Se3-S1 had significantly more live adults surviving after 28 days, while Se4-S0 had the fewest. While not statistically significant, more live progeny were observed in treatments with elevated Se and SO₄ concentrations compared to treatments with elevated Se concentration and no SO₄ (Degenhardt *et al.*, 2017).

Similar to coarse textured soil results, there were substantial differences (p<0.1) among treatments in mean number of live adults and mean number of live progenies produced after 28 days in fine textured soils. Treatment Se0-S0 and Se4-S3 had substantially more live adults surviving after 28 days, while Se3-S0 and Se4-S0 had the lowest adult survival rates. While not statistically significant for all treatments, survival rates for adults and live progeny production are greater in treatments with elevated Se and SO₄ concentrations compared to those treatments with elevated Se concentrations alone. The average surviving adults and progeny across all treatments in the fine textured soil were less than those in the coarse textured soil (Degenhardt *et al.*, 2017).

4.4.3 OBSERVATION: EARTHWORMS

Results for *E. andrei* were considered valid based on passing the following criterion:

- Survival of adults in the negative control soil (Se0-S0) was greater than 90%;
- Mean reproduction rate for adults in the negative control soil was > 3 live juveniles per test vessel; and,
- Average dry weight of individual live juveniles in the negative control soil was > 2 mg.

There were significant differences (p<0.05) among treatments in the average live adults after 28 days and average live juveniles after 56 days in the coarse textured soils. Nine treatments had 100% adult survival rate after 28 days: Se0-S1, Se0-S3, Se1-S3, Se2-S1, Se2-S3, Se3-S2, Se4-S1, Se4-S2 and Se4-S3, while Se4-S0 had no adults survived after 28 days. On average, Se0-S0 had the highest number of juveniles produced per treatment (8.6 live juveniles per vessel) followed by Se0-S1 (6.7 live juveniles per vessel) and Se0-S2 (4.7 live juveniles per vessel). Despite high adult survival rates, 13 out of 20 treatments had very low reproduction rates (\leq 1 live juvenile per vessel). Although not statistically significant, results from Se1 treatments showed that the addition of SO₄ had effect on reproduction rates, suggesting a reduction in Se toxicity to *E. andrei* (Degenhardt *et al.*, 2017).

Similar to the results in the coarse textured soils, there were significant differences (p<0.05) among treatments in the average live adults after 28 days and average live juveniles after 56 days. Eighteen out of twenty treatments had greater than 80% adult survival after 28 days. Only Se4-S0 and Se4-S2 treatments had adult survival rates less than 80% after 28 days. Similar to the coarse textured soils, the highest number of live juveniles was in Se0-S0 treatment (6.1 live juveniles per vessel), followed by Se0-S1 (2.2 live juveniles per vessel). Most treatments (16 out of 20) had very low reproduction rates (\leq 1 live juvenile per vessel). While not statistically significant, results from Se1, Se2 and Se3 treatments had higher reproduction rates with the addition of SO₄, suggesting a reduced toxicity of Se for *E. andrei* with a higher SO₄ concentration (Degenhardt *et al.*, 2017).

The average surviving adults across all treatments were similar between the fine and coarse textured soil, while more progeny were found in the coarse textured soil treatments compared to the fine textured soil treatments. Similar to *F. candida*, *E. andrei* may favour the coarse-textured soil over the fine-textured soil due to the ease of burrowing (Degenhardt *et al.*, 2017).

5 DATA ANALYSIS AND INTERPRETATION

5.1 DOSE-RESPONSE CURVES

5.1.1 EC₂₅ CALCULATION

To estimate EC_{25} endpoints, raw data from 2014 to 2017 toxicity testing were initially grouped by species and SO₄ level, and by Se treatment within each SO₄ group. For each combination of treatment, statistical parameters were determined such as average dose-response and standard deviation between replicates. Results were subsequently used as BMDS input. Within the BMDS, the Hill model was chosen among continuous models, with an automatic adverse direction, benchmark response (BMR) type set to relative deviation, and the benchmark response factor (BMRF) set to 25, to represent a 25% adverse effect.

The continuous models deal with responses measured on numerical scales, increasing or decreasing with dose, and having a measure of variability (i.e., standard deviation). The Hill model is the preferable model in BMDS for receptor-mediated responses, as it fits sigmoidal, S-shape dose-response curves with plateau. The relationship shows a steep curve in the beginning and a saturation plateau in the end (Hill 1910), which is a classical toxicological dose response.

The equation of the Hill continuous model is:

$$\mu(X) = \gamma + \frac{\nu \times X^{n}}{k^{n} + X^{n}}$$

Where γ = intercept (control)

k = dose with half-maximal change (must be positive number)

n = power (must be a positive number ≤ 18; if n is restricted, the number must be > 1)
 v = maximum change
 (US EPA, 2016)

An adverse direction choice refers to whether adversity increases as the dose-response curve rises 'up' or falls 'down'. 'Up' or 'down' directions are suggested if the direction of adversity for the endpoint being studied is known. An 'automatic' choice means that the software chooses the adverse direction based on the shape of the dose-response curve (US EPA, 2016). To avoid the potential biases towards SO₄ treated groups, an automatic direction was selected.

The BMR type refers to the method of choice to derive the response level and included 'Rel. Dev.' (relative deviation), 'Abs. Dev.' (absolute deviation), 'St. Dev.' (standard deviation), 'Point' and 'Extra' (US EPA, 2016). The relative deviation means that response associated with BMR is calculated as background (control) estimate plus or minus the product of background estimate by BMRF, and therefore, it is based on the user-defined percentage (i.e., 25%) of the modelestimated control mean. The absolute deviation calculates the BMR as background estimate plus or minus the BMRF (US EPA, 2016), and does not reflect the percentage decline associated with a control group. The standard deviation method produces the BMR as background estimate plus or minus the product of the BMRF by the standard deviation for the control group data (US EPA, 2016), and may depend on heterogeneity within the control group. 'Point' method gives the BMRF value as a response associated with the BMR (US EPA, 2016), and would not reflect the control group performance in any case. 'Extra' means the response associated with the BMR will be the background estimate plus or minus the product of BMRF by difference between the background estimate and the model estimate of the maximum/minimum response (US EPA, 2016), and may depend on the difference between treatments, which may substantially vary between the groups. Thus, considering the EC₂₅ BMR type, the most desirable is the relative deviation:

Rel. Dev. Response = $m(0) - (BMRF \times m(0))$

where m(0) is the mean response from Se control group, and BMRF is the benchmark response factor (0.25)

Since a 25% reduction is calculated from corresponding background values, the relative deviation approach provides more conservative values compared to the absolute approach. The relative deviation considers possible control group weak and low performance, and therefore, is equally protective for the stressed and healthy plants under various field conditions.

In the current BMDS version, the distribution of continuous measures is assumed normal, with a constant (homogenous) variance or one that changes as a power function of the mean value:

 $Var(i) = \alpha[mean(i)]\rho \cdot \rho(rho) = 0$, constant variance $\cdot \rho(rho) \neq 0$, modeled variance

Constant variance should be assumed by default unless data output clearly indicates otherwise

(US EPA, 2016). A typical example of preliminary data processing from the raw data statistics to BMDS input is shown in Tables 5.1 to 5.3, followed by Figure 5.1 with the BMDS output curve and calculated EC_{25} . Table 5.2 shows an example of the raw data statistics for each unique treatment, from 2014 toxicity testing experiments, fine soils, alfalfa, and negative control (Se = 0.65 mg/kg, SO₄ = 12 mg/kg). The model input required the dose, the number of replicates, the mean response (per dose group), and the standard deviation for the modeling purposes. Alfalfa experiments were based on ten seeds per pot/replicate, and six replicates per treatment. The root and shoot weights were measured as total dry root and shoot mass per one pot. The root and shoot length (Table 5.1) was pre-averaged from the total number of plants per pot/replicate (maximum 10 plants). Germination percent was calculated from the total number of seedlings per pot. For the species with five seeds per pot (barley, cucumber, northern wheatgrass, and red fescue) the number of germinated seedlings was multiplied by two.

ID	Se	Root Weight	Shoot Weight	Root Length	Shoot Length	End of Test Germination
Rep #	mg/kg	g	g	mm	mm	%
R1	0.65	0.05	0.13	134.7	43.29	70
R2	0.65	0.02	0.05	239.7	42.00	40
R3	0.65	0.06	0.13	187.8	37.75	90
R4	0.65	0.02	0.06	143.7	23.71	60
R5	0.65	0.07	0.14	154.2	43.67	90
R6	0.65	0.05	0.12	167.8	38.63	80
Average	na	0.046	0.105	171.3	38.17	71.67
St. Dev.	na	0.019	0.038	38.3	7.49	19.41

Table 5.1. Se Control Endpoints by Replicate: Fine Soils, Alfalfa, SO₄ = 12 mg/kg

All replicates were averaged as shown in Table 5.1 and placed in order by increasing Se level within the same soil, species, and SO₄ treatment group. Table 5.2 is an example of an average statistics per Se treatment within fine soils, alfalfa, SO₄ control (12 mg/kg). Bold font indicates the values corresponding to Table 5.1.

Table 5.2. Se Average Endpoints by Treatment: Fine Soils, Alfalfa SO₄ = 12 mg/kg

ID	Se	Root Weight	Shoot Weight	Root Length	Shoot Length	Germination
Trt #	mg/kg	g	g	mm	mm	%
Se0	0.65	0.046	0.105	171.30	38.17	71.67
Se1	1.15	0.049	0.101	111.15	50.83	70.00
Se2	1.65	0.044	0.102	123.55	37.04	80.00
Se3	2.65	0.021	0.072	86.77	28.29	78.33
Se4	5.65	0.004	0.030	24.60	11.11	75.00
Se5	15.65	0.004	0.010	26.14	6.86	41.67

The next step includes preparation of the general input table for BMDS entry (Table 5.3). The input consists of Se doses, number of replicates averaged, mean response, and standard deviation between replicates. Table 5.3 shows an example of BMDS input for fine soils, alfalfa, SO_4 control (12 mg/kg), for shoot weight. Bold font indicates the values corresponding to Tables 5.1 to 5.2.

ID	Se Dose	Replicates	Mean Response	St. Dev
	mg/kg	n	g	g
Se0	0.65	6	0.105	0.038
Se1	1.15	6	0.101	0.032
Se2	1.65	6	0.102	0.024
Se3	2.65	6	0.072	0.017
Se4	5.65	6	0.030	0.031
Se5	15.65	6	0.010	0.015

Table 5.3. BMDS Input Table for Se Dose-Response Curve: Fine Soils, Alfalfa, SO4 = 12 mg/kg, Shoot Weight

Figure 5.1 shows the BMDS curve built with the Hill model using the values presented in Table 5.3, for alfalfa shoot weight (fine soils, $SO_4 = 12 \text{ mg/kg}$), with Se doses placed on x-axis and corresponding shoot weight values (mm) on y-axis. The specified effect (0.25 or 25%) indicates the endpoint of interest (EC₂₅), and the benchmark dose (BMD) is calculated from an intersection point on BMDS curve, with a 25% reduction in shoot weigh (g), measured on y-axis. According to the BMDS computation, the BMD, or EC₂₅ is equal to 2.5 mg/kg. BMDL value (Figure 5.1) indicates the confidence limit for BMD.

The P-values for four different tests (Figure 5.1) indicate the goodness of fit. Test 1 assesses the likelihood that responses and variances do not differ among treatments. If this test is accepted there may not be a dose-response relationship. Test 2 determines if the variances are homogeneous, and if not, the BMDS suggests to switch to the non-constant variance model. Test 3 assesses if the model fits the data, and Test 4 assesses if the variances are adequately modeled. BMDS uses a P-value of 0.1 to accept or reject models. Test 1 accepts a P-value of <0.1. If Test 2 has a P-value <0.1, a non-constant variance model should be run in the BMDS. For Test 3 and Test 4 a P-value >0.1 is desired to accept the model.

The typical dose-response curve normally takes the inverse-sigmoidal form (Rand, 1995), with BMDS-computable BMDL and BMD, and acceptance by all 4 tests. However, it was not always achievable, because of heterogeneity of the data, and the final decision of acceptance or rejection the EC_{25} values was based on the BMDS output, when computable. This approach was utilized for conservative purpose, rather than relying on an overall curve appearance or rejection/acceptance by Test 1, Test 3, and Test 4 statistical outputs (Test 2 gives an option to switch from a homogeneous model to a non-homogeneous one, and thus, an appropriate model

by Test 2 is found easily).

Figure 5.2 shows an example of BMDS curve for coarse soil, barley, germination, control SO₄, with a steep slope and computable BMD/BMDL, but non-acceptable results for Test 1. Despite P-value > 0.5 indicates that there may not be a difference between responses among the treatments (likely due to greater standard deviations; Figure 5.2), the substantially low BMDS-calculated EC₂₅ of 0.49 is accepted for conservative purpose.

Figure 5.2. BMDS Curve with no Difference between Responses: Coarse Soils, Barley, SO₄ = 10 mg/kg, Germination

When EC_{25} computations failed because of the lower effect level, a lower toxicological endpoint was selected. For example, if an EC_{25} could not be determined, lower endpoints such as the EC_{24} or EC_{10} were selected. CCME (2006) accepts the range of EC_{20} to EC_{30} in the case of an EC_{25} not being available. For conservative purpose, EEI did not use endpoints greater than EC_{25} , and

accepted endpoints from EC_{10} to EC_{24} , when EC_{25} was non-computable (Table 5.5).

Toxicological	Se, mg/kg	Species	Biological	Soil	SO ₄ Level,
Endpont	4 75	• •	Endpoint	Texture	mg/kg
	1.75	Alfalfa	Root weight	Coarse	685
	1.73	Alfalfa	Shoot length	Fine	1,481
	2.91	Barley	Root length	Fine	677
EC ₁₀	4.25	Barley	Shoot length	Fine	962
EC ₁₀	6.82	Barley	Germination	Fine	1,215
EC ₁₀	3.92	Barley	Root weight	Fine	1,481
EC ₁₀	3.33	N. Wheatgrass	Germination	Fine	1,481
EC ₁₀	0.98	Red Fescue	Root length	Fine	962
EC ₁₁	10.1	Cucumber	Shoot length	Fine	962
EC11	0.95	Earthworms	Live adults	Coarse	826
EC ₁₂	2.5	Barley	Shoot weight	Fine	1,215
EC ₁₂	1.02	Cucumber	Shoot length	Fine	1,215
EC ₁₂	1.09	N. Wheatgrass	Shoot weight	Fine	1,215
EC ₁₃	1.04	R. Fescue	Root length	Fine	962
EC ₁₄	0.64	N. Wheatgrass	Germination	Coarse	12
EC ₁₄	1.12	N. Wheatgrass	Germination	Fine	54
EC ₁₄	2.03	N. Wheatgrass	Shoot length	Coarse	685
EC ₁₅	3.44	Barley	Shoot length	Coarse	1,321
EC ₁₅	4.06	Carrot	Shoot weight	Fine	1,481
EC ₁₅	1.34	Cucumber	Germination	Coarse	1,321
EC ₁₅	1.48	Cucumber	Germination	Fine	1,481
EC ₁₅	10.2	N. Wheatgrass	Germination	Fine	962
EC ₁₅	0.5	R. Fescue	Shoot length	Coarse	1,079
EC ₁₆	2.18	N. Wheatgrass	Shoot length	Fine	677
EC ₁₆	1.15	N. Wheatgrass	Shoot weight	Fine	962
EC17	6.4	Barley	Shoot length	Coarse	1,079
EC17	1.6	N. Wheatgrass	Root length	Coarse	880
EC ₁₇	2.96	N. Wheatgrass	Root length	Fine	1,215
EC ₁₈	1.0	Alfalfa	Shoot weight	Fine	1,215
EC18	13.3	Carrot	Shoot length	Coarse	1,481
EC ₁₈	0.65	N. Wheatgrass	Shoot length	Coarse	1,079
EC19	1.8	Alfalfa	Root length	Fine	1,215
EC ₁₉	2.4	Cucumber	Shoot length	Coarse	1,321
EC ₁₉	0.54	N. Wheatgrass	Germination	Coarse	800
EC ₁₉	1.1	R. Fescue	Germination	Fine	1,481
EC ₂₀	1.28	Cucumber	Germination	Fine	677
EC ₂₀	2.91	Cucumber	Root length	Coarse	880
EC ₂₀	1.91	Cucumber	Shoot length	Coarse	880
EC ₂₀	30.64	Earthworms	Live adults	Fine	91

Table 5.5. Endpoints Less than EC ₂₅ Included in Stati	stics
---	-------

Toxicological Endpont	Se, mg/kg	Species	Biological Endpoint	Soil Texture	SO₄ Level, mg/kg
EC ₂₀	0.66	R. Fescue	Shoot weight	Coarse	1,079
EC ₂₁	1.28	Cucumber	Germination	Fine	677
EC ₂₂	4.04	Barley	Shoot weight	Fine	962
EC ₂₂	1.06	Carrot	Root length	Fine	677
EC ₂₂	2.4	Cucumber	Shoot weight	Fine	1,481
EC ₂₂	13.52	N. Wheatgrass	Shoot length	Fine	1,215
EC ₂₃	1.77	Cucumber	Germination	Coarse	880
EC ₂₃	1.42	N. Wheatgrass	Root length	Fine	1,481
EC ₂₄	1.8	Alfalfa	Root length	Fine	962
EC ₂₄	1.24	Carrot	Root length	Fine	1,481
EC ₂₄	2.04	N. Wheatgrass	Shoot length	Coarse	685
EC ₂₄	10.7	N. Wheatgrass	Shoot length	Fine	962

Table 5.5. Endpoints Less than EC ₂₅	Included in	Statistics
---	-------------	-------------------

3 out of 51 lower effect levels were observed in SO₄ control groups, whereas 48 out of 51 were observed within SO₄treated groups; EC₂₅ values become non-computable more often in SO₄ control groups; under equal probabilities, control groups have approximately 10 non-computable EC₂₅ values (five SO₄ treatment groups and 51 lower EC values), 18 lower EC values within coarse soils, and 33 lower EC values within fine soils (correlates with a generally lower toxicity in fine soils)

The lowest acceptable toxicological endpoint was an EC₁₀ value When EC₁₀ calculations failed due to lower than a 10% effect level (very little toxicity observed), a conservative assumption was made that the EC₂₅ value was equal to the highest Se dose. This is conservative in that the highest dose in these instances is associated with an EC_{<10} values instead of a EC₂₅ value. Based on the BMDS curve (Figure 4.2), corresponding T-tests (Table 4.4), and professional judgement, EC₂₅ assumed to be equal to 15.35 mg/kg of Se, the highest concentration in coarse soils in 2014 toxicity studies.

5.1.2 SO₄– SE INTERACTION

As previously mentioned, a typical dose-response curve is of sigmoidal form (sometimes called a 'S'-shaped curve). The most common way to express this curve is by plotting the percent of population effect versus dose (Rand, 1995). The y-axis shows percentage of subjects with a toxicological response and the x-axis represent the corresponding dose, often presented on a logarithmic scale if the dose range is relatively large. A second method to represent dose-response curves includes plotting the main biological response (the group performance, such as shoot weight in plants, number of juveniles in invertebrates, *etc.*) on the y-axis versus the corresponding dose on the x-axis. In this case, the typical dose-response curve resembles an inverted 'S', reflecting lower performance (such as survivability, mean plant height, *etc.*) with increased dose.

A lower performance with increased Se dose was observed from the 2014 toxicity experiment,

with SO₄ concentration ranging from 10 to 12 mg/kg – a similar result was observed for the SO₄ control groups in 2015 to 2017 experiments. When higher SO₄ treatments were applied during 2015 to 2017 studies, the general dose-response curve shape shifted towards a so-called 'U-shaped effect'. This term was adopted from Calabrese and Baldwin (1999) where it has been used to describe a hermetic effect. Other terms describing this type of toxicological response included biphasic, non-monotonic, bell-shaped, J-shaped, overshoot, rebound effect, bitonic, functional antagonism, preconditioning, and adaptive response (Calabrese 2008), which have a common feature: the substantial improve of the low-dosed group compared to control – in other words, under a low exposure scenario, less toxicity is observed compared to the control group. This could be the result of a nutrient effect, where the control is deficient in the nutrient, before doses increase to toxic levels.

Figure 5.3 (and Table 5.6) illustrates the 'U-shaped effect', observed in 2015 to 2017 studies. Select Se dose-response curves from control SO₄ groups (left) are compared to SO₄-treated groups (right) with the same soil type and biological endpoint. With increasing SO₄ concentrations, it is readily discernable that Se toxicity is reduced, and in some cases, higher Se levels are associated with improved plant performance. This may be due to overcoming a SO₄ induced nutritional Se deficiency at low Se doses via competitive uptake. For conservative purpose, whenever 'U-shaped effect' was observed, EC_{25} was assumed to be equal to the highest Se dose.

Figure 5.3. Dose-response Curves and SO₄ Effect

a) Coarse Soils, Barley, Root Weight

Coarse Soils, Carrot, Root Length

f) Fine Soils, Springtails, Live Adults

5.1.3 SO4 TOXICITY

To evaluate possible SO₄ toxicity interferences, SO₄ endpoints (EC₂₅) were calculated by BMDS using the same methodology as Se (Section. 4.1.1). Se control dose-response data for coarse and fine soils were arranged by SO₄ treatment and analysed using the Hill model. Red font in Table 4.6 indicates the EC₂₅ values are lower than the highest SO₄ treatment. The corresponding BMDS output data are present in Appendix F.

Red fescue shoot mass (fine soils) and juvenile earthworms (fine and coarse soils) demonstrated a toxic response at relatively lower SO_4 concentrations. This complicates the toxicological analysis within the range of Se and SO_4 doses tested, given that Se induced toxicity at high Se concentrations combined with low SO_4 concentrations, SO_4 ameliorated Se toxicity at higher SO_4 concentrations, higher Se concentrations overcome SO_4 induced low Se dose nutritional deficiency, and SO_4 may induce a distinct toxic effect at higher SO_4 concentrations.

Table 5.6. Summary of EC₂₅ (SO₄, mg/kg) by Species; Se Control Treatment

	Biological Endpoint					
Species	Root	Shoot	Root	Shoot Length	Cormination	
Species	Weight	Weight	Length	Shoot Length	Germination	
		Coars	e Soils			
Alfalfa	1,321	1,051	1,250	1,134	1,225	
Barley	1,321	1,321	1,321	1,321	1,321	
Carrot	1,236	1,321	1,234	1,217	1,321	
Cucumber	1,321	1,321	1,321	1,321	1,321	
N. Wheatgrass	1,321	1,321	1,305	1,301	1,321	
R. Fescue	1,321	1,321	1,016	1,252	1,260	
Fine Soils						
Alfalfa	1,481	1,481	1,481	1,481	1,481	
Barley	1,481	1,481	1,481	1,481	1,481	
Carrot	1,245	1,481	1,481	2185	1,588	
Cucumber	1,481	1,481	1,481	1,481	1,481	
N. Wheatgrass	1,481	1,481	1,481	1,481	1,481	
R. Fescue	1,481	661	1,481	140	1,481	

a) 2015-2017 (Plants)

b) 2016-2017 (Invertebrates)

	Biological Endpoint						
Species	Live Adults Juveniles Juvenile Weight						
Coarse Soils							
Springtails	1,145	1,145	na				
Earthworms	1,145	883	789				
Fine Soils							
Springtails	1,429	1,429	na				
Earthworms	1,429	697	309				

5.1.4 QUALITY ASSURANCE AND T-TESTS

For quality assurance purposes, the dose-response data set from Se control groups tested in 2015 and 2017, were evaluated with T-tests. T-tests compared the 2015 to 2016 negative control SO₄ treatment (36-91 mg/kg SO₄) to the 2017 low SO₄ control treatment (667-685 mg/kg) data pool. Additional T-tests compared the 2015 to 2016 negative control SO₄ group (36-91 mg/kg SO₄) to the 2015 to 2016 low SO₄ control group (826-962 mg/kg SO₄) and 2017 low SO₄ control group (667-685 mg/kg), to evaluate potential SO₄ toxicity interference.

The T-test comparison between data sets was introduced to ensure consistency of conditions between two seasons of experimental study. The 2015 experiment took place in late summer - early fall, whereas 2017 experiment was conducted during winter (Degenhardt, pers. communication), and therefore, 2017 and 2015 plants might receive different level of artificial versus natural light. The larger amount of artificial light could potentially increase the plant growth, and therefore, introduce the bias towards the low level of SO₄ treatment.

Another potential interference is that caused by SO_4 toxicity itself, and T-tests were conducted to ensure all Se control groups were consistent in their response to increased SO_4 level. In addition to T-tests, SO_4 toxicity was evaluated using the BMDS software (Section 4.1.3). Following a detailed analysis, approximately 7% and 5% of the 2015 to 2017 plant biological endpoints were excluded from the coarse and fine soil data pools, respectively. For the invertebrate dataset, 4% and 8% (coarse and fine, respectively) were excluded. The remaining dataset was considered of sufficient quality to support detailed quantitative analysis for potential guideline development support.

5.1.5 EC₂₅ SUMMARY

Table 5.7 summarizes all toxicological endpoints (EC_{25}), calculated with BMDS from 2014-2017 studies, described in Section 4.2-4.4. Light orange highlights indicate the endpoints obtained from the curves with distinct sigmoidal-shaped effect. Light grey highlights indicate the endpoints excluded from the data pool based on the quality assurance analysis (discussed in Section 5.1.4). Corresponding BMDS curves are shown in Appendices B to F.

Table 5.7. Summary of EC₂₅ (Se, mg/kg) by Species and SO₄ Treatment

	Biological Endpoint						
Species	Root Weight	Shoot Weight	Root Length	Shoot Length	Germination		
	Coarse Soils, SO ₄ = 10 mg/kg						
Alfalfa	0.6	0.7	0.7	1.5	14.3		
Barley	0.3	0.5	0.7	1.1	0.5		
Carrot	1.2	1.2	1.2	1.8	1.6		
Cucumber	1.2	2.3	1.2	1.9	1.3		
N. Wheatgrass	0.8	0.9	1.5	1.8	0.6		
R. Fescue	0.4	0.4	0.6	0.7	13.3		
Fine Soils, SO ₄ = 12 mg/kg							
Alfalfa	2.2	2.5	1.3	2.4	15.1		
Barley	2.1	2.6	2.6	4.2	15.7		
Carrot	2.1	2.3	2.8	2.5	5.6		
Cucumber	2.6	2.8	2.1	1.8	15.7		
N. Wheatgrass	1.9	1.9	2.6	2.4	15.7		
R. Fescue	2.1	2.3	2.7	2.9	16.8		

a) 2014 (Plants)

Table 5.7. Summary of EC₂₅ (Se, mg/kg) by Species and SO₄ Treatment cont...

	Biological Endpoint					
Species	Root	Shoot	Root	Shoot Length	Germination	
opecies	Weight	Weight	Length	Shoot Length	Germination	
Coarse Soils						
$SO_4 = 41 mg/kg$						
Alfalfa	0.9	1.0	0.8	1.2	1.5	
Barley	2.0	2.4	2.4	2.1	6.2	
Carrot	1.0	2.1	2.6	1.8	1.7	
Cucumber	3.9	4.2	2.6	3.6	6.2	
N. Wheatgrass	0.8	0.8	0.9	0.9	0.5	
R. Fescue	6.2	6.0	0.8	2.2	6.2	
		$SO_4 = 66$	84 mg/kg			
Alfalfa	1.8	5.8	5.8	5.8	5.8	
Barley	5.8	0.8	5.8	1.0	5.8	
Carrot	5.8	5.8	5.7	5.8	5.8	
Cucumber	0.5	0.7	0.5	5.8	0.6	
N. Wheatgrass	1.5	0.9	1.7	2.0	1.8	
R. Fescue	5.8	5.8	5.8	5.8	5.8	
		$SO_4 = 86$	80 mg/kg			
Alfalfa	0.9	0.9	0.9	1.0	1.0	
Barley	5.4	5.4	5.4	5.4	5.4	
Carrot	5.4	1.6	5.4	6.0	2.3	
Cucumber	2.9	1.6	0.9	1.9	1.8	
N. Wheatgrass	5.4	5.4	1.6	5.4	0.5	
R. Fescue	5.4	5.4	1.9	5.4	5.4	
		SO ₄ = 1,0)79 mg/kg			
Alfalfa	0.5	1.1	0.8	2.5	1.7	
Barley	5.4	5.4	5.4	6.4	5.4	
Carrot	0.5	1.4	0.8	5.5	0.5	
Cucumber	2.9	2.6	5.4	1.5	1.9	
N. Wheatgrass	0.5	0.5	0.6	5.4	0.6	
R. Fescue	5.4	0.7	5.1	5.4	0.5	
SO ₄ = 1,321 mg/kg						
Alfalfa	0.5	0.6	5.9	5.9	0.5	
Barley	5.9	5.7	2.9	3.4	5.8	
Carrot	5.9	5.9	5.9	5.9	5.9	
Cucumber	2.8	2.1	5.9	2.4	1.3	
N. Wheatgrass	5.9	5.9	5.9	5.9	0.5	
R. Fescue	5.9	5.9	5.9	5.9	5.9	

b) 2015 to 2017 (Plants)

	Fine Soils					
		$SO_4 = 5$	54 mg/kg			
Alfalfa	1.1	5.7	1.4	3.5	6.5	
Barley	6.3	2.3	3.2	3.2	6.5	
Carrot	0.8	1.1	6.2	4.3	6.5	
Cucumber	2.2	4.3	7.0	3.5	6.5	
N. Wheatgrass	1.8	1.2	2.1	2.6	1.1	
R. Fescue	1.7	3.5	4.0	4.6	8.3	
		$SO_4 = 6$	77 mg/kg			
Alfalfa	0.9	0.8	5.4	1.8	5.8	
Barley	5.8	5.8	2.9	5.8	5.8	
Carrot	5.8	5.8	1.1	5.8	5.8	
Cucumber	1.0	5.8	5.8	5.8	1.3	
N. Wheatgrass	1.0	1.2	1.5	2.2	5.8	
R. Fescue	4.3	5.8	5.8	6.2	5.9	
SO ₄ = 962 mg/kg						
Alfalfa	1.4	8.9	1.8	8.4	8.4	
Barley	18.2	4.0	9.0	4.3	11.6	
Carrot	8.4	8.4	8.4	8.4	8.4	
Cucumber	8.4	8.4	8.4	10.1	9.5	
N. Wheatgrass	8.4	1.2	8.4	10.7	10.2	
R. Fescue	8.4	8.4	1.0	8.4	9.0	
		SO4 = 1,2	215 mg/kg			
Alfalfa	9.5	1.0	1.8	9.5	9.5	
Barley	5.3	2.5	9.5	9.5	6.8	
Carrot	9.5	9.5	9.5	9.5	9.5	
Cucumber	9.5	9.5	9.6	1.0	9.5	
N. Wheatgrass	1.2	1.1	3.0	13.5	9.5	
R. Fescue	9.5	9.5	1.0	9.5	9.5	
SO ₄ = 1,481 mg/kg						
Alfalfa	1.0	1.0	0.9	1.7	7.8	
Barley	3.9	7.8	7.8	7.8	7.8	
Carrot	7.8	4.1	7.8	13.3	8.6	
Cucumber	7.8	2.4	7.8	14.6	1.5	
N. Wheatgrass	0.9	1.2	1.4	7.8	3.3	
R. Fescue	7.8	7.8	7.8	7.8	1.1	

Table 5.7. Summary of LO25 (Se, mg/kg) by Species and SO4 Treatment cont.

Table 5.7. Summary of EC₂₅ (Se, mg/kg) by Species and SO₄ Treatment cont...

	Biological Endpoints						
Species	Live Adults	Juveniles	Juvenile Weight				
	Co	arse Soils					
	SO4	= 36 <i>mg/kg</i>					
Springtails	1.2	1.8	na				
Earthworms	9.1	0.2	3.1				
	SO4	= 684 <i>m</i> g/kg					
Springtails	5.8	5.8	na				
Earthworms	5.8	5.8	5.38				
	SO4	= 826 <i>m</i> g/kg					
Springtails	15.2	2.8	na				
Earthworms	0.1	1.3	3.0				
SO ₄ = 966 mg/kg							
Springtails	15.6	18.8	na				
Earthworms	18.8	1.9	18.8				
SO ₄ = 1,145 mg/kg							
Springtails	2.9	3.3	na				
Earthworms	20.5	7.1	9.6				
Fine Soils							
	SO4	= 91 <i>m</i> g/kg					
Springtails	1.6	7.0	na				
Earthworms	30.6	1.0	1.1				
	SO4	= 677 <i>m</i> g/kg					
Springtails	5.8	5.8	na				
Earthworms	5.8	5.29	4.5				
SO ₄ = 919 mg/kg							
Springtails	16.0	13.5	na				
Earthworms	26.6	1.1	3.1				
	SO ₄ =	= 1,142 mg/kg					
Springtails	31.2	31.2	na				
Earthworms	16.2	4.0	2.8				
	SO4 =	: 1,429 mg/kg					
Springtails	26.8	26.8	na				
Earthworms	27.2	24.8	1.5				

c) 2016-2017 (Invertebrates)

5.2 PLANT BIOCONCENTRATION

Plant tissue samples with sufficient yield were analyzed for Se and sulphate (as sulphur (S)) concentrations. Alfalfa, carrot, northern wheatgrass, and red fescue did not produce enough dry mass and the main was focused on the shoot yield from barley and cucumber.

Bioconcentration factors (BCFs) were calculated for Se and S as plant-to-soil ratios, calculated from the concentration in plant tissue (ug/g) divided the corresponding concentration in soil (mg/kg). Table 5.8 provides a summary of Se and S analytical data with calculated BCF, grouped

by soil type, species endpoint, and Se treatment, in ascending SO₄ treatment order within each group.

The highest Se bioconcentration was observed within SO₄ control groups, with low to mid Se treatment (Table 5.8, red font), whereas the highest S bioconcentration (Table 5.8, blue font) was observed within negative control groups (no Se, no SO₄ added). Se concentration in plant tissues collected from Se control soils (0.3-0.8 mg/kg in soil) did not exceed 3 ug/g, while within Se-treated soils (0.9-9.5 mg/kg) it falls in the range from 19.7 to 1,115 mg/kg. The median BCF for Se from the samples with combined Se- and SO4-treatment is equal to 29 mg/kg for coarse soils, and 21 mg/kg for fine soils. Figure 5.4 represent Se BCF versus corresponding SO₄ treatment in bar charts. The Se BCF values are greater than those reported in the literature, likely due to the tissue samples being taken from very young plants where accumulation is the greatest on a mg/kg dry tissue basis.

Sample	Se in soil,	Se in plant	BCF for Se	S in soil,	S in plant	BCF for S
	iiig/kg	lissue, ug/g	Coarse Soil	s ing/kg	13300, ug/g	
			Alfalfa, shoot	s		
Se3	5.8	200	34	217	8,700	40
			Barley, roots	6	-,	-
Se0	0.4	2	5	227	6,700	30
	•	•	Barley, shoot	Ś		
Se0	0.4	1	3	227	4,100	18
Se0-S3	0.3	0.8	3	414	5,900	14
Se1	0.9	18	20	224	6,300	28
Se1-S1	0.3	14	47	298	6,400	21
Se1-S2	0.9	9.7	11	367	7,000	19
Se1-S3	1.1	9	8	438	6,300	14
Se2	2.9	110	38	244	13,000	53
Se2-S1	2.5	55	22	309	7,900	26
Se2-S2	2.8	37	13	327	6,900	21
Se2-S3	2.8	46	16	457	7,900	17
Se3	5.8	410	71	217	16,000	74
Se3-S1	5.4	170	31	280	10,000	36
Se3-S2	5.4	57	11	380	12,000	32
			Cucumber, sho	ots		
Se0	0.4	2	5	227	17,000	75
Se1	0.9	25	28	224	15,000	67
Se1-S1	0.9	26.5	29	286	17,700	62
Se2	2.9	110	38	244	16,000	66
Se3	5.8	260	45	217	19,000	88
Se3-S1	5.4	316	59	280	16,600	59
			Fine Soils			
	•	•	Barley, shoot	S		
Se0-S0	0.6	0.9	1.5	7	9,400	1,424
Se0	0.8	3.0	3.8	238	8,400	35
Se0-S1	0.6	0.6	1.0	327	11,100	34

 Table 5.8. BCF for Se and S with Corresponding Soil and Plant Tissue Concentrations

Sample	Se in soil,	Se in plant	BCE for So	S in soil,	S in plant	BCE for S
ID*	mg/kg	tissue, ug/g	DCF IOI SE	mg/kg	tissue, ug/g	BCF IUI 3
Se0-S2	0.6	0.9	1.5	420	11,000	26
Se0-S3	0.7	0.6	0.9	469	9,700	21
Se1-S0	1.3	250	192	23	11,000	487
Se1	1.1	20	18.2	208	10,000	48
Se1-S1	1.4	15	10.7	299	9,700	32
Se1-S2	1.5	53	35.3	379	10,000	26
Se1-S3	1.4	11	7.5	503	12,100	24
Se2	2.9	74	25.5	234	8,600	37
Se2-S1	3.5	10	2.9	311	10,000	32
Se2-S3	3.2	55	17.2	484	12,000	25
Se3	5.8	290	50.0	222	13,000	59
Se3-S2	9.5	120	12.6	412	12,000	29
Se3-S3	7.8	150	19.2	517	14,000	27
			Cucumber, sho	oots		
Se0-S0	0.6	0.4	0.7	7	8,750	1,326
Se0	0.8	3.0	3.8	238	15,000	63
Se0-S1	0.6	0.4	0.7	327	18,800	57
Se0-S2	0.6	0.4	0.7	420	20,300	48
Se0-S3**	1.7	1.1	0.7	496	18,100	36
Se1-S0**	1.3	338	260	23	5,080	225
Se1	1.1	31	28.2	208	17,000	82
Se1-S1	1.4	22	15.8	299	19,100	64
Se1-S2**	1.5	21	13.9	379	17,700	47
Se1-S3	1.4	20	14.3	503	21,800	43
Se2-S0**	3.2	1,115	348	32	9,800	306
Se2	2.9	68	23.4	234	17,000	73
Se2-S1	3.5	101	28.9	311	23,300	75
Se2-S2	3.1	86	27.6	409	20,000	49
Se3	5.8	270	46.6	222	18,000	81
Se3-S1	8.4	246	29.3	346	19,300	56
Se3-S2	9.5	249	26.2	412	19,400	47
Se3-S3	7.8	242	31.0	517	22,600	44

Table 5.8. BCF for Se and S with Corresponding Soil and Plant Tissue Concentrations

*Sample IDs are listed according to AI identification system. Se and S are for selenium and sulphate treatment, numbered from 0 to 3 by increasing concentration. Sample IDs Se0, Se1, Se2, and Se3 identify 2017 experiment, treated with different Se but single SO4 dose (684 mg/kg for coarse, and 677 mg/kg for fine soils); this low SO4 treatment falls between -S0 and -S1 (2015 experiment).

** Calculated as an average from two sample sets, submitted in 2015 (one replicate) and 2017(pooled replicates.

Note that number of bars per treatment reflect the number of samples analyzed (i.e., negative control data for barley and cucumber was not included for insufficient yield; cucumber tissues from the highest SO₄ groups, coarse soils, were less than 0.7 g, etc.)

5.3 SATURATED PASTE VS ACID EXTRACTABLE SE

To assess Se bioavailability, select soils samples were analyzed for the saturated paste. The saturated paste method was chosen for the more representative measure of the amount of Se in soils available for plants under typical field conditions (Gartley, 2011). Analytical chemistry data is shown in Table 5.9. Values bolded and in red for Se on a saturated paste basis were considered anomalous and not readily explainable given total Se concentrations.

Sample ID*	Se Total	Soil Saturation Percentage	Se, Saturated Paste	Se, Saturated Paste	Se, Total to Se, Saturated Paste Ratio				
	ma/ka	%	ma/ka	ma/L					
Coarse Soils, 2017 (Various species)**									
Se1 (Alfalfa)	0.8	42	0.50	1.18	1.6				
Se2 (Alfalfa)	2.8	47	2.01	4.27	1.4				
Se3 (Alfalfa)	6.0	44	4.72	10.80	1.3				
Se 0 (Carrot)	0.4	46	0.01	0.02	56				
Se1 (Carrot)	0.9	46	0.43	0.92	2.1				
Se2 (Carrot)	2.4	46	1.22	2.64	2.0				
Se3 (Carrot)	4	46	2.21	4.84	1.8				
Se0 (Cucumber)	0.4	46	0.03	0.07	13				
Se2 (Cucumber)	2.2	46	1.53	3.32	1.4				
Se1 (Red fescue)	0.8	44	0.54	1.22	1.5				
Se2 (Red fescue)	3.1	45	2.39	5.33	1.3				
Se3 (Red fescue)	5.3	42	2.28	5.49	2.3				
Se0 (Plants)	0.4	45	0.04	0.10	9.2				
		Coarse Soils	, 2015 (Composite	e)**					
Se1-S0	1	43	0.11	0.25	9.5				
Se1-S2	0.8	51	0.30	0.58	2.7				
Se2-S2	2.1	45	1.47	3.31	1.4				
Se2-S1	2.3	44	1.51	3.44	1.5				
Se3-S1	6.7	52	5.19	9.89	1.3				
Se3-S2	6.2	43	4.20	9.69	1.5				
		Fine Soils, 20	017 (Various speci	es)	·				
Se0 (Alfalfa)	0.6	56	0.025	0.05	24				
Se2 (Alfalfa)	2.4	53	0.655	1.23	3.7				
Se3 (Alfalfa)	3.9	57	1.310	2.29	3.0				
Se0 (Carrot)	0.8	54	0.010	0.02	80.0				
Se1 (Carrot)	1	55	0.007	0.01	149				
Se2 (Carrot)	2.3	52	0.014	0.03	164				
Se3 (Carrot)	4.9	52	0.083	0.16	59				
Se0 (Red fescue)	0.6	53	0.02	0.05	24				
Se1 (Red fescue)	1.1	63	0.33	0.52	3.4				
Se2 (Red fescue)	2.5	60	0.66	1.09	3.8				
Se3 (Red fescue)	5.4	61	2.320	3.83	2.3				
		Fine Soils,	2015 (Composite)	·				
Se1-S0	1.2	57	0.44	0.76	2.8				
Se1-S2	1.2	56	0.55	0.98	2.2				
Se2-S1	2.9	54	2.07	3.83	1.4				
Se2-S2	2.8	52	1.83	3.55	1.5				
Se3-S1	6.0	55	4.80	8.78	1.3				
Se3-S2	5.4	48	4.51	9.46	1.2				

Table 5.9. Summary of Se Saturated Paste and Acid Extractable Data

*Sample IDs are listed according to AI identification system. Se and S are for selenium and sulphate treatment, numbered from 0 to 3 by increasing concentration. Sample IDs Se0, Se1, Se2, and Se3 from 2017 experiment were treated with different Se but single SO₄ dose (684 mg/kg for coarse soils, and 677 mg/kg for fine soils); this low SO₄ treatment falls between -S0 and -S1 from 2015 experiment.

**Available soil samples received from AI were labeled originally as 'composite' for 2015 experiment, and by species in 2017, except one, which was labeled as 'plants' (presumable composite sample).

Figure 5.5 presents a regression analysis performed to assess the validity of the data and evaluate the ratio. Both regressions have in general a predictable slope. The correlation coefficient for coarse soils is greater than for the fine soils (0.7288 versus 0.6468). This difference is primarily due to several 2017 data points for carrots in fine soils that had unusually low saturated paste values given the corresonding total Se values (red highlighted values in Table 5.9). It is not clear as to why these saturate paste results different from the rest of the experiments, and it may be an effect unique to carrots. Excluding these values produced a correlation coefficient similar to that of the coarse soil analysis.

Figure 5.5. Linear Regression of Se Sat. Paste vs Se Total

6 DERIVATION OF PRELIMINARY ECOLOGICAL DIRECT SOIL CONTACT GUIDELINES

6.1 SPECIES SENSITIVITY DISTRIBUTIONS

The species sensitivity distribution (SSD) concept was proposed in the late 1970s and mid-1980s in the United States and Europe for deriving environmental soil criteria (Aldenberg *et al.*, 2002). It is currently used as a part of the weight of evidence method for ecological soil contact guidelines (CCME 2006). SSDs represent the statistical distributions of measures of species sensitivity to a tested compound or mixture, to assist in estimating concentrations expected to be safe for the majority of species of interest. The SSD curve is built on a sample of toxicity data with effect concentrations derived from acute or chronic toxicity tests and visualized as a cumulative distribution function. As a measure of toxicity, CCME (2006) recommends use of EC₂₅ effect-endpoint, if available, or the closest value (generally between 20% and 30%).

6.1.1 SE SPECIES SENSITIVITY DISTRIBUTION CURVES

The final SSD curves were based on sixteen endpoints from eight species (six plants and two invertebrates), for two soil types (coarse and fine loam soils) and varying SO₄ co-exposure levels. Geometrical means from shoot and root EC_{25} were combined into single dry mass endpoint, and for earthworms, the final juvenile EC_{25} was calculated as a geometric mean from the juvenile number EC_{25} and the juvenile dry weight EC_{25} . A summary of the final toxicological endpoints for coarse and fine soils grouped by SO₄ treatment is provided in Table 6.1. Grey highlights indicate endpoints excluded from the data set for quality assurance purpose (see Section 5.1.4). Identical values in Table 6.1 are frequently due to the highest Se dose per treatment rather than BMDS-calculated value, since the EC_{25} computations fell outside of the applied Se treatment range. In other words, under the maximum Se dose tested, no significant toxicity was observed.

The EC₂₅ presented in Table 6.1 by each SO₄ treatment were ranked, and rank percentiles were determined according to the CCME (2006) Protocol. Rank percentiles were plotted against corresponding EC₂₅ values and a typical sigmoid curve was produced. This approach is called Hazen plotting positions (HPP) where the rank percentile represents an estimation of the population affected by a particular dose. SSD curves are shown in Figure 6.1, with coarse soil (left) and fine soils (right), grouped by SO₄ treatment. HPP points are shown by blue dots, with the red dashed line indicating the 25% effect level for all of the biological endpoints. The intersection between an SSD curve and 25% line, furher evaluated by EasyFit 5.6 Professional software, provides the value that can be used to assist in deriving ecological Se guidelines.

$$j = \frac{i}{n+1}$$

where,

	,	
j	=	rank percentile
i	=	rank of the data point in the data set
n	=	total number of data points in the data set

				SO ₄ Trea	atment	
Species	Biological Endpoint	Control	Low	Mid-1	Mid-2	High
Alfalfa	Dry Mass	0.9	4.3	0.9	1.0	1.7
	Germination	4.6	5.8	1.1	1.7	0.5
Parlov	Dry Mass	1.2		5.4	5.6	5.6
Daney	Germination	1.7	5.8	5.4	5.4	5.4
Corret	Dry Mass	1.5	5.75	4.1	1.0	5.9
Carrot	Germination	1.6		2.3	1.9	5.9
Cucumbor	Dry Mass	2.4	0.6	1.7	2.8	3.0
Cucumber	Germination	2.9	0.6	1.8	1.9	1.3
	Dry Mass	1.0	1.5	2.5	0.6	1.7
N. พกะสญาสรร	Germination	0.6	1.8	0.5	0.6	0.5
P. Ecoculo	Dry Mass	1.2	5.8	4.1	3.2	5.9
R. Fescue	Germination	9.1	5.8	5.4	0.5	5.9
Springtoile	Adults	1.2	0.6	15.2	15.6	2.9
Springtalls	Juveniles	1.8	5.2	2.8	18.8	7.1
Forthwormo	Adults	9.1	5.8	1.0	18.8	20.5
Earthworms	Juveniles	0.4	4.8	2.0	5.9	5.6

Table 6.1. Se Toxicological Endpoints (EC25) Used for SSD Curvesa) Coarse Soils

Г

b) Fine Soils

		SO₄ Treatment						
Species	Biological Endpoint	Control	Low	Mid-1	Mid-2	High		
Alfalfa	Dry Mass	2.2	2.2	3.7	3.6	1.1		
Allalla	Germination	9.9		8.4	9.5	7.8		
Porlov	Dry Mass	3.2	4.6	7.3	5.9	7.2		
Dalley	Germination	10.1	5.8	11.6	6.8	7.8		
Corret	Dry Mass	2.3	2.5	8.4	9.5	4.8		
Carlot	Germination	6.1	5.8	8.4	9.5	8.6		
Cusumbar	Dry Mass	3.0	3.2	8.8	5.5	6.8		
Cucumber	Germination	10.1	1.3	9.5	9.5	1.5		
	Dry Mass	2.0	1.5	4.3	2.7	1.9		
N. Wheatylass	Germination	4.2		10.2	9.5	3.3		
	Dry Mass	2.8	5.5	5.0	5.4	7.8		
R. Fescue	Germination	11.8	5.9	9.0	9.5	1.1		
Coringtoile	Adults	1.6		16.0	31.2	26.8		
Springtails	Juveniles	1.8		13.5	31.2	26.8		
Forthwarma	Adults	30.6	5.8	26.6	16.2	27.2		
Earmworms	Juveniles	1.0	4.9	1.8	3.4	6.1		

Figure 6.1. Se SSD Curves by Hazen Plotting

The calculated toxicological endpoints ($EC_{10}-EC_{25}$ summarized in Section 5.1.5) and corresponding HPP ranks were analyzed by EasyFit 5.6 Professional software (Matwave Technologies, 2017) for the best distribution fit using probability density function, where 61 various models were compared, evaluated, and ranked by Anderson-Darling, Kolmogorov-Smirnov, or Chi-Squared statistical procedures. The Anderson-Darling rank was preferred because of the highest sensitivity towards the tails (lowest end of the tail is used to derive guideline values), and therefore, higher accuracy in prediction for the most sensitive species.

Ten best-ranked models for each SO₄ treatment group were further evaluated based on cumulative distribution functions with mathematical equations for each model. Figure 6.2 shows an example of the 'Goodness of Fit' summary for coarse soils, control SO₄ group, with the ten highest-ranked models (Anderson-Darling tests) and goodness of fit details for the Burr model (rank 1), followed by a quantile plot that can be used to evaluate the proximity of existing HPP points to the selected model (Burr in this instance).

Goo	dness of Fit - Summa	ry						Goodness of Fit	- Details [hide]			
#	Distribution	Kolmog Smirn	orov	Ander Darli	son ng	Chi-Squ	ared	Burr [#2]					
#	Distribution	Statistic	Rank	Statistic	Rank	Statistic	Rank	Kolmogorov-Smir	nov				
2	Burr	0.10812	1	0.21491	1	0.12734	18	Sample Size Statistic	16 0.10812				
7	Dagum	0.12087	4	0.25	2	0.12359	13	P-Value Bank	0.98175				
16	Frechet (3P)	0.12232	5	0.25611	3	0.12575	17		- 0.2	0.1	0.05	0.02	0.01
42	Pearson 5	0.12055	3	0.2678	4	0.14057	20	u 	0.2	0.1	0.05	0.02	0.01
43	Pearson 5 (3P)	0.12609	7	0.26918	5	0.12542	16	Critical Value	0.25778	0.29472	0.32733	0.36571	0.39201
44	Pearson 6	0.12631	8	0.26953	6	0.12504	15	Reject?	No	No	No	No	No
34	Log-Logistic (3P)	0.12277	6	0.27679	7	0.15283	21	Anderson-Darling					
35	Log-Pearson 3	0.13335	9	0.28963	8	0.11287	10	Sample Size Statistic	16 0.21491				
19	Gen. Extreme Value	0.12026	2	0.29542	9	0.05207	6	Rank					
38	Lognormal (3P)	0.13934	11	0.33194	10	0.12471	14	α	0.2	0.1	0.05	0.02	0.01
			Q-Q Plot					Critical Value	1.3749	1.9286	2.5018	3.2892	3.9074
8.8								Reject?	No	No	No	No	No
8								Chi-Squared					
7.2 6.4 (1900) 0.6					/		•	Deg. of freedom Statistic P-Value Rank	1 0.12734 0.72121 18				
4.8 dutile			/					α	0.2	0.1	0.05	0.02	0.01
0 3.2								Critical Value	1.6424	2.7055	3.8415	5.4119	6.6349
2.4								Reject?	No	No	No	No	No
1.6 0.8	0.8 1.6 2.4	3.2 4	4.8 X	5.6	6.4 7	2 8	8.8						

Figure 6.2. Select Easy Fit Outputs for Coarse Soils, Control SO₄

To build a theoretical SSD curve (*e.g.*, based on the Burr model with the highest Anderson-Darling rank for the coarse soils, control SO₄; Figure 6.2), the following equation was used that represents the cumulative distribution function for the Burr model:

Cumulative Distribution Function

$$F(x) = 1 - \left(1 + \left(\frac{x}{\beta}\right)^{\alpha}\right)^{-k}$$

Where,

F(x) = Calculated HPP rank on the cumulative distribution function

 β = Burr coefficient determined by EasyFit for a particular dataset (e.g., 1.0233)

 α = Burr coefficient determined by EasyFit for a particular dataset (e.g., 3.2559)

k = Burr coefficient determined by EasyFit for a particular dataset (e.g., 0.436)

 $x = EC_{25}$ value

SSD curves (up to seven models per SO₄ group) were compared to the original HPP plot (Figure 6.3). The final SSD curve model (per group) was selected based on the best fit as summarized in Figure 6.4, with corresponding cumulative distribution functions and calculated 25% values.

6.1.2 SO₄ Species Sensitivity Distribution Curves

To understand the influence of SO₄ toxicity on the analysis, BMDS and EasyFit analyses were completed using Se control data for coarse and fine soils. Table 6.2 summarises EC_{25} values calculated using the BMDS. SO₄ toxicity was observed more frequently in coarse soils compared to fine soils and the most sensitive endpoints were earthworm juveniles in fine soils and alfalfa and red fescue in coarse soils.

Species	Biological Endpoint	Coarse Soils	Fine Soils
Alfolfo	Dry Mass	1,184	1,481
Allalla	Germination	1,225	1,481
Barlov	Dry Mass	1,321	1,481
Balley	Germination	1,321	1,481
Corret	Dry Mass	1,251	1,563
Canol	Germination	1,321	1,588
Cucumbor	Dry Mass	1,321	1,481
Cucumber	Germination	1,321	1,481
	Dry Mass	1,312	1,481
N. Wheatgrass	Germination	1,321	1,481
B. Fassue	Dry Mass	1,221	671
R. Fescue	Germination	1,260	1,481
Coringtoile	Adults	1,145	1,429
Springtails	Juveniles	1,145	1,429
Forthwarma	Adults	1,145	1,429
Earmworms	Juveniles	835	464

Table 6.2. SO₄ Toxicological Endpoints (EC₂₅) Used for SSD Curves

Figure 6.5 represents SSD model curves for SO₄, over HPP points, with approximated 25% threshold falling below the highest SO₄ treatment level in coarse soils, and close to the second mid treatment in fine soils, with higher degree of uncertainty for the fine soils. The SO₄ toxicity threshold in fine soils appears to differ substantially for plant and invertebrate species, where plants appear to be more tolerant up to the highest SO₄ soil concentrations.

Figure 6.5. SO₄ SSD Curves (Se Control)

Data are shown for SO4 toxicity towards plant and invertebrate species, plotted by the HPP position

6.2 POTENTIAL SRGS

Based on SSD model curves and 25% threshold calculations discussed in Section 6.1.1, and possible SO₄ toxicity limitations (Section 6.1.2), the proposed Se guidelines would be considered applicable to the 50 to 1,500 mg/kg of SO₄ soil concentration range, and values for 1,500 mg/kg SO₄ are expected to be conservative for higher sulphate concentrations outside of the study range. Table 6.3 summarizes the 25% thresholds calculated for each SO₄ group and Table 6.4 presents potential soil quality guidelines, taking into consideration restrictions imposed by SO₄ toxicity interference at the higher SO₄ concentrations.

Results for coarse textured soils suggest that under variable SO₄ concentrations, the existing Se guideline of 1 mg/kg may be appropriate and protective. However, of all the experiments conducted, those involving coarse soils were associated with the highest response variability, and lowest relative confidence, particularly with increasing SO₄ concentrations. It was postulated that this was due to difficulties in dosing plant roots growing in a readily drainable coarse soil with a water soluble substance (i.e., Se as selenate), given the requirement of regular water addition for plant growth. Results for fine textured soils suggest a more appropriate minimum baseline Se soil quality guideline of 2 mg/kg is appropriate. At higher SO₄ concentrations (i.e., > 1000 mg/kg), a guideline of 5 mg/kg would be more appropriate due to the amelioration of Se toxicity at higher

 SO_4 concentrations. The analysis by nature was complex, given: Se induced toxicity at high Se concentrations combined with low SO_4 concentrations; SO_4 ameliorated Se toxicity at higher SO_4 concentrations; higher Se concentrations overcome SO_4 induced low Se dose nutritional deficiency; and, SO_4 may induce a distinct toxic effect at higher SO_4 concentrations.

				•	
		Coarse soil	S		
SO₄, mg/kg	10-41	684	880	1,079	1,321
Se, mg/kg	1.1	2.4	1.5	0.9	2.1
		Fine soils			
SO₄, mg/kg	12-91	677	962	1,215	1.481
Se, mg/kg	2.1	2.8	5.9	5.3	3.0

 Table 6.3. Se Guidelines Ground Summary from SSD Modeling

Table 6.4. Se Guidelines	Proposed for	Various SO ₄	Concentrations
--------------------------	---------------------	-------------------------	----------------

Coarse soils								
SO ₄ , mg/kg	50	500	1,000	1,500				
Se, mg/kg	1.0	1.0	1.0	1.0				
		Fine soils						
SO ₄ , mg/kg	50	500	1,000	1,500				
Se, mg/kg	2.0	3.0	5.0	5.0				

Figure 6.6. Possible Se Soil Quality Guidelines as a Function of SO₄ Concentration

yellow circle indicates guideline data point that was limited by the maximum concentration of selenium used in the study – it is considered more of an artifact of dataset limitations rather than an indication that toxicity is occurring from Se that is not ameliorated by SO_4

7 DISCUSSION

7.1 GENERAL CONDITIONS

Proposed guidelines herein are based on a generally restrictive and conservative approach – the guidelines are also associated with several considerations. The most prominent considerations including Se treatment range boundaries, heterogeneity of Se mixtures within various SO_4 treatment groups, and SO_4 toxicity. The guidelines herein are not complete. Given the potential for selenium to bioconcentrate, risk to secondary receptors such as livestock and wildlife must be incorporated into the guideline derivation process, which was not part of the current scope of work.

7.2 CONSIDERATIONS

The first consideration is the range of Se dosing in the 2015 to 2017 plants experiments, which were not exceeding 5.9 mg/kg in coarse soils, and 9.5 mg/kg for fine soils. In the 2017 experiments with low SO₄ treatment groups, the highest Se concentration was equal to 5.8 mg/kg for coarse soils, which led towards using BMDS-calculated values as low as EC_{10} , when they were computable, and the assumption of a NOAEL if no computable effect was observed within the Se dose range. The approach is however conservative. This consideration had an impact on the number of functional endpoints available for SSD curve modeling. The more endpoints that are involved, the more adequately the SSD curve is built, and the better its accuracy in predicting an appropriate guideline. Using the highest Se dose by default as a NOAEL in multiple instances (due to BMDS computation failures and a conservative NOAEL being defined and used instead of an EC_{25}) resulted in several EC_{25} endpoints having the same HPP rank, resulting in one Hazen plotting position and limiting the total data pool at the higher tail of the SSD, which can have an influence on the slope of the SSD curve within the effects range.

The second consideration is due to the variability in final Se dose levels that were created in the lab by mixing SeO₄ with soil for the different SO₄ treatment groups (lab results shown in Table 4.2, Section 4.3.1). For example, for fine soils, the maximum Se concentration was equal to 9.5 mg/kg in the second mid SO₄ group (1,215 mg/kg), whereas in the high SO₄ group (1,481 mg/kg) it was equal to 7.8 mg/kg (Table 4.2; Section 4.3.1). Such difference may give an implication that the strength of the SO₄ amelioration of Se toxicity may be decreasing at higher Se doses, when the opposite may be true and the strength of SO₄ amelioration may be maintained at higher Se concentrations.

Toxicity due to increasing SO_4 concentrations was observed. In some respects, this precludes the study of ameliorating effects at SO4 levels higher than those studied herein, as the influence of this factor on the results would be more difficult to separate and control. SO_4 toxicity was observed for three SSD points, so the net total influence on the study results is considered relatively minor.

One final consideration is that a conservative approach was taken for BMDS output results

acceptance. By default, any computable values equal or less than EC_{25} and equal or greater than EC_{10} were accepted and incorporated into the final statistical pool, regardless the steepness of BMDS curve shape and the standard deviation range. This approach was chosen to avoid any bias towards higher SO₄ concentration group and to avoid subjective interpretations. In addition, it helped utililize all available toxicity data, expect those failed the quality assurance test (Section 5.1.5). The net effect was a more conservative guideline – this approach was considered appropriate given the existing data pool.

7.3 **BIOCONCENTRATION FACTORS**

In coarse soils, BCF for Se ranged from 8 to 71 in SO₄-treated group. No SO₄ control samples were available for analysis due to insufficient yield. The greatest plant tissue Se BCF values ranged from 192 to 348 in barley and cucumber shoots (dry mass, fine soils; Table 5.8, Section 5.2) associated with the lowest SO₄ control groups. Increasing SO₄ co-exposure doses reduced the corresponding maximum BCF values to 2.9 - 50. This supports the hypothesis that observed Se toxicity was related to plant tissue concentration, and furthermore that increasing SO₄ concentrations ameliorate Se toxicity via competitive uptake leading to reduced plant tissue concentrations. This observation is consistent with the results from Mikkelsen *et al.* (1988), where Se accumulation by alfalfa was reduced by 158-fold in the presence of SO₄.

The highest BCF for sulphate (as S) was observed within SO₄ control group in fine soils (225 – 1,424), gradually lowering with increased SO₄ concentration (21 – 82). The same pattern, decreasing SO₄ BCF with increasing SO₄ concentration, was observed within coarse soils (14 – 88). This is a common observation for various ions and metals where greater relative uptake on a tissue weight basis is associated with younger, compared to more mature, plants. For comparison, literature derived BCF values provided by US EPA (1996) for mature grains, fruit and vegetables are provided in Table 7.1.

			Bioconce factors	entration s (Br)	_
Selenium	Study				Geometric
grains and cereals	4	5.5 - 7.0	0.002	0.11	0.002
potatoes	2	5.5 - 6.8	0.018	0.096	0.042
leafy vegetables	7	5.5 - 7.8	0.002	0.076	0.016
legumes	4	5.5 - 6.8	0.024	0.11	0.024
root vegetables	8	5.5 - 7.6	0.004	0.096	0.022
garden fruits	8	5.5 - 6.8	0.008	0.078	0.02
sweet corn	default	ND	0.002	0.002	0.002

Table adapted from US EPA, 1996

Min and max values are given in mg Se /kg plant dry weight/ mg Se/kg soil

8 CLOSURE

Equilibrium Environmental Inc. has prepared this document for the exclusive use of Petroleum Technology Alliance Canada solely for the purpose of assisting in the decision-making process for development and/or revision of ecological contact soil selenium guidelines. Any uses which a third party makes of this document, or any reliance on decisions made based on it, are the responsibility of such third parties. Equilibrium Environmental Inc. accepts no duty or care to any other person or any liability or responsibility whatsoever, for any losses, expenses, damages, fines, penalties, or other harm that may be suffered or incurred by any other person as a result of the use of, reliance on, any decision made, or any action taken based on this document. Nothing in this document is intended to constitute or provide a legal opinion.

The data review, analysis and recommendations were limited to the experimental data that has been collected to date, and the accuracy of laboratory work and chemistry data by other parties cannot be verified and is not implied. Equilibrium Environmental Inc. believes information presented in this report is accurate but cannot guarantee or warrant its accuracy. If the study conditions or applicable standards change, or if any additional information becomes available at a future time, modifications to the findings, conclusions, and recommendations in this document may be necessary. Any questions regarding this document should be directed to Anthony Knafla at (403) 286-7706.

Sincerely,

Equilibrium Environmental Inc.

Vicky Winter, M.Env.Tox., PBiol, PAg Environmental Scientist/ Toxicologist *Literature review, data processing, analysis, interpretation, report writing, appendix generation*

Anthony L. Knafla, M.Sc., P.Biol., DABT Founder/ Risk Assessment Specialist Study design, methods, dose response approach design and methods, guideline derviation methods, writing and senior review

9 **REFERENCES**

- Abdo, K.M. 1994. NTP technical report on toxicity studies of sodium selenate and sodium selenite (CAS Nos. 13410-01-0 and 10102-18-8) administered in drinking water to F344/N rats and B6C3F1 mice. US Department of Health and Human Services, Public Health Service, National Institutes of Health.
- Aldenberg, T., Jaworska, J.S., Traas, P.T. 2002. Normal Species Sensitivity Distributions and Probabilistic Ecological Risk Assessment. *In:* Posthuma, L., Suter, G.W., and Traas, T.P. (Eds.) Species Sensitivity Distribution. CRC Press LLC. Boca Raton, U.S. 583 p.
- Ali, F., Peng, Q., Wang, D., Cui, Z., Huang, J., Fu, D., Liang, D. 2017. Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (*Triticum aestivum L.*). Environmental Science and Pollution Research, 24(9): 8315-8325.
- AEP (Alberta Environment and Parks). 2016. Alberta Tier 1 soil and groundwater remediation guidelines. Land Policy Branch, Policy and Planning Division. 197 pp.
- ASTDR (Agency for Toxic Substances and Disease Registry). 2003. Toxicological profile for selenium. U.S. Department of Health and Human Services. Public Health Service. Division of Toxicology/ Toxicology Information Branch. Atlanta, GA.
- Banuelos, G., Schrale, G. 1989. Plants that remove selenium from soils. *California Agriculture*, *43*(3): 19-20.
- Bayley, R.T. 2017. Review: selenium contamination, fate, and reactive transport in groundwater in relation to human health. *Hydrogeology Journa*,*I* 25: 1191-1217.
- Bell P.F., Parker D.R., Page, A.L. 1992. Contrasting selenate–sulfate interactions in selenium-accumulating and nonaccumulating plant species. *Soil Science Society of America Journal*, 56: 1818–1824.
- Beyer, W.N. and Cromartie, E.J. 1987. A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites. *Environmental Monitoring and Assessment*, *8*(1): 27-36.
- Brown, T.A., Shrift, A. 1982. Selenium: toxicity and tolerance in higher plants. *Biological Reviews*, *57*(1): 59-84.
- Brozmanová, J., Mániková, D., Vlčková, V., Chovanec, M. 2010. Selenium: a double-edged sword for defense and offence in cancer. *Archives of Toxicology*, *84*(12): 919-938.
- deBruyn, A.M., Chapman, P.M. 2007. Selenium toxicity to invertebrates: Will proposed thresholds for toxicity to fish and birds also protect their prey? *Environmental Science and Technology*, 41(5): 1766-1770.
- Calabrese, E.J., Baldwin, L.A. 1999. Reevaluation of the fundamental dose–Response relationship: A new database suggests that the U-shaped, rather than the sigmoidal, curve predominates. *BioScience*, *49*(9): 725-732.
- Calabrese, E.J. 2008. Hormesis: why it is important to toxicology and toxicologists. *Environmental Toxicology and Chemistry*, 27(7): 1451-1474.
- Carlson, C.L., Adriano, D.C., Dixon, P.M. 1991. Effects of soil-applied selenium on the growth and selenium content of a forage species. *Journal of Environmental Quality*, *20*(2): 363-368.
- Cartes, P., Gianfreda, L., Paredes, C., Mora, M.L. 2011. Selenium uptake and its antioxidant role in ryegrass cultivars as affected by selenite seed pelletization. *Journal of Soil Science and Plant Nutrition*, *11*(4): 1-14.

- Cary, E. E., and W. H. Allaway. 1969. The Stability of Different Forms of Selenium Applied to Low-Selenium Soils. *Soil Sci. Soc. Am. J.* 33:571-574.
- CCME (Canadian Council of Ministers of the Environment). 2006. A protocol for the derivation of environmental and human health soil quality guidelines. Canadian Council of Ministers of the Environment. Winnipeg, MB.
- CCME (Canadian Council of Ministers of the Environment). 2009. Canadian soil quality guidelines: selenium. Environmental and human health. Scientific supporting document. Canadian Council of Ministers of the Environment. Winnipeg, MB.
- CCREM (Canadian Council of Resource and Environment Ministers). 1987. Canadian water quality guidelines. Environmental Quality Guidelines Division, Water Quality Branch, Inland Waters Directorate. Ottawa, ON.
- Degenhardt, D., Woosaree, J., McKenzie, M., Bachman, V. 2016. Development of an ecological contact soil selenium guideline. Report prepared for Equilibrium Environmental Inc. Edmonton, AB.
- Degenhardt, D., Bachman, V., Battigelli, J. 2017. Development of an ecological contact soil selenium guideline. Phase III Toxicity testing using soil invertebrates. Report prepared for Equilibrium Environmental Inc. Edmonton, AB.
- Dunn, C.E. 1990. Lithogeochemistry study of the Cretaceous in Central Saskatchewan preliminary report. Saskatchewan Geological Survey, 90-4.
- Efroymson, R.A., Will. M.E., Suter II, G.W. 1997. Toxicological benchmarks for contaminants of potential concern for effects on soil and litter invertebrates and heterothrophic process: 1997 revision. Prepared for the Oak Ridge Laboratory. November.
- Elrashidi, M.A., Adriano, D.C., Workman, S.M., Lindsay, W.L. 1987. Chemical equilibria of selenium in soils: a theoretical development. Soil Science. 144. https://journals.lww.com/soilsci/Fulltext/1987/08000/CHEMICAL_EQUILIBRIA_OF_SELENIUM_I N_SOILS__A.8.aspx
- EC (Environment Canada). 2004. Biological test method: tests for toxicity of contaminated soil to earthworms (*Eisenia andrei, Eisenia fetida,* or *Lumbricus terrestris*). Report EPS 1/RM/43 June 2004 (with June 2007 amendments). Method Development and Application Section, Environmental Technology Centre, Environment Canada. Ottawa, ON.
- EC (Environment Canada). 2014. Biological test method: test for measuring survival and reproduction of springtails exposed to contaminants in soil. Report EPS 1/RM/47 second edition – February 2014. Science and Technology Branch, Environment Canada. Ottawa, ON.
- EC (Environment Canada). 2005. Biological test method: test for measuring emergence and growth of terrestrial plants exposed to contaminants in soil. Report EPS 1/RM/45 February 2005 (with June 2007 amendments). Method Development and Application Section, Environmental Technology Centre, Environment Canada. Ottawa, ON.
- Feist, L.J., Parker, D.R. 2001. Ecotypic variation in selenium accumulation among populations of *Stanleya pinnata*. *New Phytologist*, *149*(1): 61-69.
- Fischer, E., Koszorus, L. 1992. Sublethal effects, accumulation capacities and elimination rates of As, Hg and Se in the manure worm, *Eisenia fetida* (*Oligochaeta, Lumbricidae*). *Pedobiologia*, *36*(3): 172-178.

- Fordyce, F.M. 2013. Selenium deficiency and toxicity in the environment. In *Essentials of medical geology* (pp. 375-416). Springer, Dordrecht.
- Gartley, K.L. 2011. Recommended methods for measuring soluble salts in soils. *Recommended Soil Testing Procedures for the Northeastern United States. Northeastern Regional Publication*, 493: 1864-1872.
- Geering, H. R., E. E. Cary, L. H. P. Jones, and W. H. Allaway. 1968. Solubility and Redox Criteria for the Possible Forms of Selenium in Soils. *Soil Sci. Soc. Am. J.* 32:35-40.
- George, M.W. 2003. Selenium and tellurium. *Metals and Minerals: US Geological Survey Minerals* Yearbook. United States Geological Survey.
- Germ, M., Stibilj, V., Kreft, I. 2007. Metabolic importance of selenium for plants. *The European Journal of Plant Science and Biotechnology*, *1*(1): 91-97.
- Gissel-Nielsen, G. 1973. Uptake and distribution of added selenite and selenate by barley and red clover as influenced by sulphur. *Journal of the Science of Food and Agriculture*, *24*(6): 649-655.
- Gupta, M., Gupta, S. 2017. An overview of selenium uptake, metabolism, and toxicity in plants. *Frontiers in Plant Science, 7*: 1-14.
- Hartikainen, H., Xue, T., Piironen, V. 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. *Plant and Soil*, 225(1-2): 193-200.
- Hawkesford, M.J. 2000. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. *Journal of Experimental Botany*, *51*(342): 131-138.
- Hill, A.V., 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. *Proceedings of the Physiological Society, January 22, 1910*: iv-vii.
- Huang, Y.Z., Hu, Y., Liu, Y.X. 2007. Interactions between sulfur and selenium uptake by corn in solution culture. *Journal of Plant Nutrition*, *31*(1): 43-54.
- Knafla, A., Prediger, T. 2013. Selenium: an example of how sedimentary basin soil chemistry can alter environmental risks of a metalloid. Exova Environmental Seminar 2013, Calgary, AB.
- Kirkkert, J. and E. Berkelaar. 2013. Plant uptake and translocation of inorganic and organic forms of selenium. *Arch Environ Contam Toxicol*. 65(3): 458-65
- Kuznetsov, Vas.V., Kholodova, V.P., Kuznetsov, Vi.V., Yagodin, B.A. 2003. Selenium regulates the water status of plants exposed to drought. In: *Doklady biological sciences, 390*(1-6): 266-268. Kluwer Academic Publishers-Plenum Publishers.
- Lemly, A.D. 1997. Environmental implications of excessive selenium: a review. *Biomedical and Environmental Sciences*, 10: 415.435.
- Lenz, M., Lens, P.N. 2009. The essential toxin: the changing perception of selenium in environmental sciences. *Science of the Total Environment, 407*: 3620–3633.
- Li, H.F., McGrath, S.P., Zhao, F.J. 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. *New Phytologist*, *178*(1): 92-102.
- Longcamp M., Castrec-Rouelle, M., Biron, P., Bariac, T. 2015. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenite. *Food Chemistry*, *182*: 128-135.
- Mackowiak, C.L., Amacher, M.C. 2008. Soil sulfur amendments suppress selenium uptake by alfalfa and western wheatgrass. *Journal of Environmental Quality*, *37*(3): 772-779.
- Martens, D.A. 2003. Selenium. *In:* Stewart, B.A., Howell, T.A. (Eds.) Encyclopedia of Water Science. New York, U.S. 2003. Pp. 840-843.

- Mathwave Technologies. 2017. EasyFit 5.6 distribution fitting software (Professional edition). Mathwave Data Analysis and Simulation.
- Mayland, H.F., James, L.F., Panter, K.E., Sonderegger, J.L. 1989. Selenium in seleniferous environments. *Selenium in Agriculture and the Environment*, 15-50.
- Mikkeisen, R.L., Haghnia, G.H., Page, A.L., 1987. Effects of pH and selenium oxidation state on the selenium accumulation and yield of alfalfa. *Journal of Plant Nutrition*, *10*(8): 937-950.
- Mikkelsen, R.L., Page, A.L., Haghnia, G.H. 1988. Effect of salinity and its composition on the accumulation of selenium by alfalfa. *Plant and Soil*, *107*(1): 63-67.
- Mikkelsen, R.L., Wan, H.F. 1990. The effect of selenium on sulfur uptake by barley and rice. *Plant and Soil*, *121*(1):151-153.
- Neal, R. H., and G. Sposito. 1989. Selenate Adsorption on Alluvial Soils. Soil Sci. Soc. Am. J. 53:70-74.
- NRC (National Research Council). 1983. Selenium in Nutrition: Revised Edition. National Academy Press. Washington, DC.
- Ogle, R.S., Maier, K.J., Kiffney, P., Williams, M.J., Brasher, A., Melton, L.A., Knight, A.W. 1988. Bioaccumulation of selenium in aquatic ecosystems. *Lake and Reservoir Management*, *4*(2): 165-173.
- Parker, D.R., Page, A.L., Bell, P.F. 1992. Contrasting selenate-sulfate interactions in seleniumaccumulating and nonaccumulating plant species. *Soil Science Society of America Journal*, *56*(6): 1818-1824.
- Penny, D. 2004. The micronutrient and trace element status of forty-three soil quality benchmark sites in Alberta. Report prepared for the AESE (Alberta Environmentally Sustainable Agriculture) Soil Quality Monitoring.
- Prediger, T., Knafla, A., Cook, N. 2012. Soil selenium toxicity to *Medicago sativa* and the hormetic effect of sulphate. Report for PTAC. Calgary, AB.
- Quinn, C.F., Freeman, J.L., Reynolds, R.J., Cappa, J.J., Fakra, S.C., Marcus, M.A., Lindblom, S.D., Quinn, E.K., Bennett, L.E. and Pilon-Smits, E.A. 2010. Selenium hyperaccumulation offers protection from cell disruptor herbivores. *BMC Ecology*, *10* (1): 19.
- Rand, G.M. 1995. Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment. 2nd Ed. Washington, U.S.
- Reilly, C. 1996. Selenium in food and health. Springer Science Technology & Business Media. New York. 338 p.
- Rosenfeld, I., Beath, O.A. 2013. Selenium: geobotany, biochemistry, toxicity and nutrition. Academic Press, New York.
- Ruyle, G.B. 1993. Poisonous plants on Arizona rangelands. In: Rangeland Management: Arizona Ranchers' Management Guide. R.Gum, G. Ruyle, R. Rice (Eds.) Pp.5-8.
- Schwarz, K., Foltz, C.M. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. *Journal of the American Chemical Society*, *79*(12): 3292-3293.
- Shrift, A., 1969. Aspects of selenium metabolism in higher plants. *Annual Review of Plant Physiology*, 20(1): 475-494.
- Shrift, A., Ulrich, J.M., 1969. Transport of selenate and selenite into Astragalus roots. *Plant Physiology*, *44*(6): 893-896.

- Somogyi, Z., Kiss, I., Kádár, I., Bakonyi, G. 2007. Toxicity of selenate and selenite to the potworm Enchytraeus albidus (Annelida: Enchytraeidae): a laboratory test. *Ecotoxicology*, *16*(4): 379-384.
- Somogyi, Z., Kádár, I., Kiss, I., Juríková, T., Szekeres, L., Balla, Š., Nagy, P., Bakonyi, G. 2012. Comparative toxicity of the selenate and selenite to the potworm Enchytraeus albidus (Annelida: Enchytraeidae) under laboratory conditions. *European Journal of Soil Biology*, *50*: 159-164.
- Sors, T.G., Ellis, D.R., Na, G.N., Lahner, B., Lee, S., Leustek, T., Pickering, I.J., Salt, D.E. 2005. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. *The Plant Journal*, *42*(6): 785-797.
- de Souza, M.P., Pilon-Smits, E.A., Lytle, C.M., Hwang, S., Tai, J., Honma, T.S., Yeh, L., Terry, N. 1998. Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. *Plant Physiology*, *117*(4): 1487-1494.
- Štolfa, I., Velki, M., Vuković, R., Ečimović, S., Katanić, Z., Lončarić, Z. 2017. Effect of different forms of selenium on the plant–soil–earthworm system. *Journal of Plant Nutrition and Soil Science*, 180(2): 231-240.
- Terry, N., Zayed, A.M., De Souza, M.P., Tarun, A.S. 2000. Selenium in higher plants. *Annual Review of Plant Biology*, *51*(1): 401-432.
- Turner, T, Woosaree, J, Hiltz, M, Degenhardt, D, McKenzie, M. 2014. Development of an ecological contact soil selenium guideline. Report prepared for Equilibrium Environmental Inc. Edmonton, AB.
- US EPA (United States Environmental Protection Agency). 1996. Soil screening guidance: technical background document. 2nd Ed. Office of Emergency and Remedial Response U.S. Environmental Protection Agency. Washington, DC.
- US EPA (United States Environmental Protection Agency). 2016. Benchmark dose software (BMDS 2.6.0.1) user guide.
- US EPA (United States Environmental Protection Agency). 2017. Benchmark dose software (BMDS). Version 2.7.0.4
- US EPA (United States Environmental Protection Agency). 2018. National primary drinking water regulations. Washington, DC. Retrieved from: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
- Woodbury, P.B., McCune, D.C., Weinstein, L.H. 1999. A review of selenium uptake, transformation, and accumulation by plants with particular reference to coal fly ash landfills. *In:* Saiwan, K.S., Kumar, A.A., Keefer, R.F. (Eds) Biogeochemistry of Trace Elements in Coal and Coal Combustion Byproducts. Kluwer Academic/ Plenum Publishers, New York, 1999.
- White, P.J., Bowen, H.C., Parmaguru, P., Fritz, M., Spracklen, W.P., Spiby, R.E., Meacham, M.C., Mead, A., Harriman, M., Trueman, L.J., Smith, B.M. 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. *Journal of Experimental Botany*, *55*(404): 1927-1937.
- White, P.J., Bowen, H.C., Marshall, B., Broadley, M.R. 2007. Extraordinarily high leaf selenium to sulfur ratios define 'Se-accumulator' plants. *Annals of Botany*, *100*(1): 111-118.
- White, P.J. 2015. Selenium accumulation by plants. Annals of Botany, 117(2): 217-235.
- WHO (World Health Organization). 2003. Selenium in drinking water. Background document for development of WHO guidelines for drinking-water quality. Originally published in: Guidelines for Drinking-water Quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996.

- Wu, L., Emberg, A., Biggar, J.A. 1994. Effects of elevated selenium concentration on selenium accumulation and nitrogen fixation symbiotic activity of Melilotus indica L. *Ecotoxicology and Environmental Safety*, 27(1): 50-63.
- Wu, L. 2004. Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. *Ecotoxicology and Environmental Safety*, 57(3): 257-269.
- Wu, Z., Yin, X., Bañuelos, G.S., Lin, Z.Q., Liu, Y., Li, M., Yuan, L. 2016. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). *Frontiers in Plant Science 7*: 1875.
- Yamada, H., Kang, Y., Aso, T., Uesugi, H., Fujimura, T. and K. Yonebayashi. 1998. Chemical forms and stability of selenium in soil. *Soil Science and Plant Nutrition*, 44(3): 385-391.
- Zhao, C., Ren, J., Xue, C., Lin, E. 2005. Study of the relationship between soil selenium and plant selenium uptake. Plant and Soil 277:197-206.
- Zhang, L., Hu, B., Li, W., Che, R., Deng, K., Li, H., Yu, F., Ling, H., Li, Y., Chu, C. 2014. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. *New Phytologist*, *201*(4): 1183-1191.