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EXECUTIVE SUMMARY  

This document presents a comprehensive analysis of the use of remote sensing tools for 

environmental monitoring and the certification of well sites. The study addresses the need for 

advanced methodologies in the reclamation of padded sites, which are complex due to their 

construction in sensitive areas. Traditionally, the environmental monitoring of such sites is both 

time-consuming and potentially disruptive. This project aimed to leverage remote sensing 

technologies to enhance the efficiency and accuracy of monitoring these environments, thereby 

supporting better decision-making processes in land use and reclamation certification. 

We describe a multi-staged approach, starting with the collection and analysis of extensive 

datasets from well databases, company records, environmental reports, and remote sensing 

data. Five tasks were identified to achieve our goals:  

Task 1 - Integration of Remote Sensing Data with In Situ Data 

Task 2- Verification and Assessment of Sustainability of Forests Developing on Pads 

Task 3 - Development of Digital Remote Sensing Tools to Detect Impacts Caused by Pads 

on Peatlands 

Task 4 - Differentiation of Bogs and Fens and Associated Well Sites 

Task 5 - Development And Improvement of Existing Remote Sensing Tools for Non-Padded 

Well Sites in The Green Zone 

The research utilized a combination of airborne and spaceborne datasets to identify padded sites 

across Alberta. Advanced machine learning algorithms were trained using a dataset of identified 

padded and unpadded sites to classify new sites based on remote sensing data. The methodology 

emphasized the integration of these tools into a decision framework that can systematically be 

used to complement existing evaluation and monitoring methods to assess the status of 

reclamation efforts. 

We highlight the capabilities of remote sensing tools in detecting and classifying padded sites 

with considerable accuracy including their importance in reducing the ecological footprint of 

monitoring activities by minimizing ground disturbances during data collection. However, we 

acknowledge the challenges in the current remote sensing approach, such as the need for larger 

training datasets and the potential benefits of incorporating additional predictor variables and 

alternative classification algorithms. 

We demonstrate the effectiveness of remote sensing tools in enhancing the reclamation 

certification process for well sites in general. These tools not only improve the speed and reduce 

the costs associated with environmental monitoring but also increase the reliability of the data 

collected, thus facilitating more informed decision-making. Finally, we recommend the continued 
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development and integration of these technologies into standard monitoring practices, 

suggesting that they hold significant promise for widespread application in environmental 

monitoring and site reclamation across various industries. 

 

 

  



 

 
PTAC Report 20-RRRC-13 [iv]  
 

TABLE OF CONTENTS  

DISCLAIMER....................................................................................................................................... i 

CITATION ........................................................................................................................................... i 

ACKNOWLEDGEMENTS ..................................................................................................................... i 

EXECUTIVE SUMMARY ..................................................................................................................... ii 

TABLE OF CONTENTS...................................................................................................................... IV 

LIST OF FIGURES .............................................................................................................................. vi 

ACRONYMS ................................................................................................................................... viii 

1.0 BACKGROUND ..................................................................................................................... 1 

1.1 PROJECT OVERVIEW ..................................................................................................... 1 
1.2 TASK 1 - INTEGRATION OF REMOTE SENSING DATA WITH IN SITU DATA .................................... 1 
1.3 TASK 2 - VERIFICATION AND ASSESSMENT OF SUSTAINABILITY OF FORESTS DEVELOPING ON PADS .. 1 
1.4 TASK 3 - DEVELOPMENT OF DIGITAL REMOTE SENSING TOOLS TO DETECT IMPACTS CAUSED BY PADS 

ON PEATLANDS ......................................................................................................................... 2 
1.5 TASK 4 - DIFFERENTIATION OF BOGS AND FENS AND ASSOCIATED WELL SITES ............................ 2 
1.6 TASK 5 - DEVELOPMENT AND IMPROVEMENT OF EXISTING REMOTE SENSING TOOLS FOR NON-
PADDED WELL SITES IN THE GREEN ZONE ....................................................................................... 2 

2.0 DATA ................................................................................................................................... 3 

2.1 TASK 1 DATA............................................................................................................... 3 
 In situ Field Data .......................................................................................... 3 

2.2 TASK 2 DATA............................................................................................................... 3 
 LiDAR............................................................................................................ 3 
 Optical Imagery ........................................................................................... 5 

2.3 TASK 3 DATA............................................................................................................... 5 
 Optical Imagery ........................................................................................... 5 
 Site Locations ............................................................................................... 5 

2.4 TASK 4 DATA............................................................................................................... 5 
 Optical Imagery ........................................................................................... 5 
 SAR Data ...................................................................................................... 5 
 Wetland Data ............................................................................................... 6 

2.5 TASK 5 DATA............................................................................................................... 6 
 LiDAR Imagery ............................................................................................. 6 
 Optical Imagery ........................................................................................... 6 

3.0 METHODOLOGY .................................................................................................................. 6 

3.1  TASK 1  ...................................................................................................................... 6 
3.2 TASK 2 ....................................................................................................................... 6 

 Site Selection ............................................................................................... 7 



 

 
PTAC Report 20-RRRC-13 [v]  
 

 Trend Extraction .......................................................................................... 9 
3.3 TASK 3 ....................................................................................................................... 9 

 Site Selection ............................................................................................. 10 
 Wetness and Vegetation Index Sampling .................................................. 14 

3.4 TASK 4 ..................................................................................................................... 14 
 Study Area and Training Data .................................................................... 14 
 Multi-temporal Imagery ............................................................................ 16 
 Classification and Bog/Tamarack mapping ............................................... 16 

3.5 TASK 5 ..................................................................................................................... 16 
 LiDAR Processing ....................................................................................... 17 
 Disturbance Detection using Time-Series Data ......................................... 19 

4.0 RESULTS............................................................................................................................. 19 

4.1 TASK 1 ..................................................................................................................... 19 
4.2 TASK 2 ..................................................................................................................... 21 

 Tools .......................................................................................................... 21 
 Outputs ...................................................................................................... 21 

4.3 TASK 3 ..................................................................................................................... 25 
 Tools .......................................................................................................... 25 
 Outputs ...................................................................................................... 25 

4.4 TASK 4 ..................................................................................................................... 29 
 Tools .......................................................................................................... 29 
 Outputs ...................................................................................................... 29 

4.5 TASK 5 ..................................................................................................................... 31 
 Tools .......................................................................................................... 32 
 Outputs ...................................................................................................... 32 

5.0 DISCUSSION ....................................................................................................................... 33 

5.1 TASK 1 ..................................................................................................................... 33 
5.2 TASK 2 ..................................................................................................................... 34 
5.3 TASK 3 ..................................................................................................................... 35 
5.4 TASK 4 ..................................................................................................................... 35 
5.5 TASK 5 ..................................................................................................................... 36 

6.0 CONCLUSIONS ................................................................................................................... 37 

7.0 RECOMMENDATIONS ....................................................................................................... 38 

7.1 TASK 1 ..................................................................................................................... 38 
7.2 TASK 2 ..................................................................................................................... 38 
7.3 TASK 3 ..................................................................................................................... 38 
7.4 TASK 4 ..................................................................................................................... 39 
7.5 TASK 5 ..................................................................................................................... 39 

8.0 APPLICATION ..................................................................................................................... 39 

9.0 REFERENCES ...................................................................................................................... 40 



 

 
PTAC Report 20-RRRC-13 [vi]  
 

 

LIST OF FIGURES  

Figure 1. The yellow polygon shows the LiDAR coverage provided by Innotech. .......................... 4 
Figure 2. Location of the 20 study sites (yellow circles) used to for developing the forest 

sustainability assessment tools. ............................................................................. 8 
Figure 3. Access roads (red polygons) used in Task 3 for assessing impacts on peatlands. ......... 11 
Figure 4. An example of the automated sampling point creation is shown in this example. The 

input access roads have a sampling pair of points created at regular intervals and 
offsets for each feature. ....................................................................................... 13 

Figure 5. Overview of the subset area and training sites used to test the classification tools. 
Using a smaller subset area greatly simplifies the collection of additional land 
cover classes and the mosaicking of Sentinel-2 imagery. .................................... 15 

Figure 6 This figure shows the Bare Earth DEM (left), the Full Feature DEM (centre), and the 
derived (FFDEM - BEDEM) Canopy Heigh Model (right). The study site polygon is 
shown in red and the buffered area around the site is shown in yellow. ............ 17 

Figure 7. Resampling of LiDAR data at 0.5 m resolution (blue) and the LiDAR resampled to 5 m 
resolution (green), where each pixel is greater than 2 m in height. .................... 18 

Figure 8. Locations of tamarack forest derived from Vertex field data. ...................................... 20 
Figure 9. Report layout of results from the LiDAR-derived sustainability tool. For each site 

processed, we present three pieces of information: the forest polygons extracted 
from the 5 m resolution LiDAR data overlain on 50 cm reference imagery, shown 
in the top frame; the 10 m Sentinel-2 NDVI pixel-based trend map, shown in the 
bottom frame; and at left is a graph of the NDVI trend for each polygon which is 
the median value of all pixels within. ................................................................... 23 

Figure 10. This figure is another example of the output from the forest sustainability tool, 
where the results are a more complex in that we have five detected forest areas.
............................................................................................................................... 24 

Figure 11. Example 1 from Task 3 output. The top frame shows the assessed access road, the 
greyscale NDVI image from input year (2021), and the classified sampling points 
along the road. There are four consecutive points that indicate potential impact. 
In the bottom frame, we can see a wetland area, indicated by the purple arrows, 
that is the cause for these lower values. .............................................................. 27 

Figure 12. Example 2 from Task 3 output. In this example, we can see that several points along 
the southern side of the feature are classified as potential impacts. The optical 
imagery in the bottom frame, from the year prior to the assessed year, shows 
clear evidence of ponding water. Not all ponds are detected by the sampling 
pairs, see bottom frame, and there are two probably reasons for this: first is that 
wetness conditions may have been different between the year of assessment 
(2021) compared to the optical image (2020), and second, an increase of 1 pixel 
in the offset distance would have resulted in a positive detection. .................... 28 

Figure 13. Classification output showing tamarack forest areas detected by the multi-sensor, 
multi-date supervised classification. .................................................................... 30 



 

 
PTAC Report 20-RRRC-13 [vii]  
 

Figure 14. Map of tamarack forest classified using our methods, bogs as mapped by the AMWI, 
and bog/tamarack overlap areas. We can see that there are several large areas 
of overlap which could indicate potential misclassification of bogs. ................... 31 

Figure 15. (A) Sample output of the CHM calculated using from LiDAR at native resolution of 
0.5m. (B) Resulting forested areas extracted using a minimum height threshold 
of 2 m. ................................................................................................................... 32 

Figure 16. This figure shows the variability of NDVI throughout a dense time series for a 100 m 
by 100 m test polygon. The green line shows the annual observed NDVI 
calculated for the entire polygon. The orange line represents the values based on 
our implementation of a smoothing algorithm designed to remove atmospheric 
and other noise. .................................................................................................... 33 

 

  



 

 
PTAC Report 20-RRRC-13 [viii]  
 

ACRONYMS  

ABMI Alberta Biodiversity Monitoring Institute 

AI Artificial Intelligence 

BEDEM Bare Earth Digital Elevation Model 

CHM Canopy Height Model 

DEP Derived Ecosite Phase 

DEM Digital Elevation Model 

DIDs Alberta Digital Integrated Dispositions 

EO Earth Observation 

FFEDM Full Feature Digital Elevation Model 

GEE Google Earth Engine 

LiDAR Light Detection and Ranging 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

ReMoTo Reclamation Monitoring Toolbox 

SAR Synthetic Aperture Radar 

 

 



 

 
PTAC Report 20-RRRC-13 [1]  
 

1.0 BACKGROUND  

1.1 PROJECT OVERVIEW 

The main goal of this project was to test, validate, and develop digital tools to monitor terrestrial 

and aquatic environments impacted by oil and gas operations. This was achieved by developing 

automated cutting-edge Machine Learning (ML) and Artificial Intelligence (AI) tools to process 

and analyse large volumes of remotely-sensed spaceborne optical and Synthetic Aperture RADAR 

(SAR) data quickly and efficiently. These tools allow us to optimize the way environmental 

monitoring is currently conducted through improvements provided by the use and analysis of 

Earth Observation (EO) imagery and related spatial data.  

In contrast to conventional field-based monitoring campaigns, remote sensing analysis of EO 

imagery can reduce damage to crops and other vegetation because there is no direct contact 

with the surface, and can thus also reduce the spread of diseases, pathogens, and weeds. The 

tools developed in this project showcase the ability of EO data and remote sensing techniques to 

address environmental monitoring of reclamation efforts.  

We identified five specific tasks that enable us to achieve our goals, as follows: 

1.2 TASK 1 - INTEGRATION OF REMOTE SENSING DATA WITH IN SITU DATA  

Remote sensing data and in situ data were combined to ensure efficient monitoring of terrestrial 

and wetland environments impacted by oil and gas operations. Remote sensing data provide 

proxy measurements of key site characteristics, such as vegetation cover, plant health, presence 

of bare area, pad characteristics, and pooling water, etc. In situ observations usually deliver very 

accurate measurements related to soils, vegetation condition, species composition, ponding 

water, and local topography. The integration of satellite-based EO data with in situ data can 

reduce uncertainty and improve the reliability of remote sensing terrestrial and wetland 

datasets. 

1.3 TASK 2 - VERIFICATION AND ASSESSMENT OF SUSTAINABILITY OF FORESTS DEVELOPING ON PADS  

We explored the ability of existing Light Detection and Ranging (LiDAR) data to identify small, 

discontinuous areas of forest cover on the padded sites through available canopy height metrics. 

Time-series of optical data were analyzed in a field data-based ecological recovery model to 

determine the trajectory of vegetation metrics over those areas that the LiDAR data identify as 

forested. The combination of these two datasets allowed us to determine whether the forested 

areas are sustainable, stagnant, or in decline. 
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1.4 TASK 3 - DEVELOPMENT OF DIGITAL REMOTE SENSING TOOLS TO DETECT IMPACTS CAUSED BY PADS ON 

PEATLANDS 

We developed tools that exploit remote sensing techniques to assess the environmental impacts 

of pads on peatlands. The main advantage of remote sensing is that it provides a wide coverage 

of areas of interest and high temporal resolution at lower cost when compared to traditional 

field-based data collection. In addition, we automated image processing and quickly derived 

terrestrial datasets that can be used to monitor various site characteristics. We explored the 

potential of ML/AI algorithms to detect significant environmental impacts caused by pads. 

1.5 TASK 4 - DIFFERENTIATION OF BOGS AND FENS AND ASSOCIATED WELL SITES  

Using a combination of spaceborne SAR and optical data, we explored ML/AI algorithms to 

reliably separate bog peatlands from fen peatlands. This distinction can be important when 

deciding to remove or leave a padded site in place as its impacts may vary based on the type of 

wetland in which it is located. 

1.6 TASK 5 - DEVELOPMENT AND IMPROVEMENT OF EXISTING REMOTE SENSING TOOLS FOR NON-PADDED WELL 

SITES IN THE GREEN ZONE 

We developed and improved our existing tools that exploit remote sensing techniques to assess 

the environmental impacts of non-padded well sites in the Green Zone. Time-series of 

hydrological and vegetation data were extracted from optical and SAR data and were analyzed 

using breakpoint detection algorithms in an ecological disturbance recovery model to detect 

disturbances and assess long term recovery trends on non-padded well sites. 
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2.0 DATA  

2.1 TASK 1 DATA 

 In situ Field Data 

For our goal of integrating in situ field data with remote sensing analysis, we used three different 

sources of in situ field data that contained records of a specific forest cover type, i.e., tamarack, 

and its location: 

• Two separate research programs previously conducted by Vertex for both PTAC and 

Pathways Alliance where detailed wetland classification and vegetation inventory data 

had been collected between 2021 and 2023. 

• Detailed site assessment data from previous field work from control points where 

wetlands were classified adjacent to reclaimed oil and gas well sites. 

2.2 TASK 2 DATA 

 LiDAR 

LiDAR imagery was supplied by Innotech Alberta and data were collected in 2022 (Figure 1). The 

data have a horizontal spatial resolution of 1 m and a vertical accuracy of 0.2 m and were 

provided as Bare Earth Digital Elevation Models (BEDEM) and Full Feature DEM (FFDEM) files in 

ASCII file format. The point cloud data and hillshade files were provided along with the DEMs, 

but not used in this project. The data were delivered in 1 km x 1 km tiles. 
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Figure 1. The yellow polygon shows the LiDAR coverage provided by Innotech. 
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 Optical Imagery 

Sentinel-2 satellite imagery, supplied by the Copernicus Open Access Hub (European Space 

Agency, 2022) and accessed via the Google Earth Engine (GEE) platform as 13 optical bands in 

the visible, near infrared, and short-wave infrared part of the electromagnetic spectrum. The 

imagery has wavelength-dependent spatial resolution of 10 m, 20 m, and 60 m, that can be used 

to measure several different characteristics of land cover, such as vegetation or moisture 

content. Sentinel-2 data were used for this project because (a) they are free and open data, (b) 

have a high revisit time (5 d), which increases the likelihood of acquiring cloud-free scenes, and 

(c) their spatial resolution is the finest of all freely-available alternatives like Landsat data (30 m). 

For this task, we used a time-series of annual best-available-pixel composites from Sentinel 

imagery between 2017 and 2023.  

2.3 TASK 3 DATA 

 Optical Imagery 

Sentinel-2 satellite imagery detailed in Task 2 (Section 2.2.2) were used for this task. We 

prioritized a single-date 2022 image as the primary data source to allow for meaningful 

comparisons of along-track landscape conditions. 

 Site Locations 

For the site locations for this task, we selected a set of 106 padded well sites identified in our 

previous PTAC project (Caron et al., 2022) around Lesser Slave Lake, Alberta. We delineated the 

access roads for those sites using a combination of Google Earth high spatial resolution imagery 

and the disposition shapefile data obtained from the Alberta Digital Integrated Dispositions 

(DIDs) dataset (Alberta Energy Regulator, 2023).  

2.4 TASK 4 DATA 

 Optical Imagery 

For this task, we used the cloud-based Sentinel-2 image archive and chose a two-date image pair 

from the same year to classify tamarack-bearing wetlands. The fall image was acquired on 

October 09, 2023, and the summer image is from August 20th.  

 SAR Data 

Sentinel-1 calibrated, ortho-corrected imagery collected on October 15, 2023, was used as an 

additional layer for surface texture information. These data have a resolution of 5 m x 20 m and 

were collected using a dual polarization. The data are made available by the Copernicus Open 

Access Hub (European Space Agency, 2022) and accessed via the GEE. 



 

 
PTAC Report 20-RRRC-13 [6]  
 

 Wetland Data 

Wetland data obtained from the Alberta Biodiversity Monitoring Institute (ABMI) Wetland 

Inventory (Alberta Biodiversity Monitoring Institute, 2021) were used to extract a set of wetland 

polygons that is classified using the training data and optical imagery. These polygons are the 

overlap points between bog or fen wetlands and the tamarack training data. 

 

2.5 TASK 5 DATA 

 LiDAR Imagery 

The first component of this task was to extend our existing tools to unpadded sites and involved 

adapting our LiDAR processing tools for detecting forested areas on unpadded sites. We used the 

LiDAR data described in section 2.2.1 to develop this tool. 

 Optical Imagery 

The second component of this task uses the Sentinel archive described in 2.2.2.  

 

3.0 METHODOLOGY  

3.1  TASK 1  

The Vertex field data records described in Section 2.1.1 were used to establish a starting point of 

known tamarack forest locations. A visual interpretation of high-resolution imagery available in 

GEE and in ESRI GIS mapping software was used to create a training data point that represents 

an approximately 10 m2 of homogeneous tamarack forest. Care was taken to minimize the 

inclusion of other land cover types that presented different spectral signatures. These points 

were collected as a shapefile and were integrated into a larger training dataset, described in Task 

4, that were used to classify optical and SAR imagery. 

3.2 TASK 2 

To assess the sustainability of forests developing on padded sites, we developed an algorithm to 

determine the vegetation greenness trends of detected forests to describe whether those treed 

areas are showing trends of increasing, stable, or decreasing greenness. We then compared the 

observed greenness to surrounding undisturbed treed areas. The output of this tool is a series of 

polygons outlining forested land cover at each site and trend statistics for those forested areas.  

To accomplish this and as part of Task 5, Vertex’s existing remote sensing Reclamation 

Monitoring Tool (ReMoTo) platform takes an input list of study sites and corresponding LiDAR 

imagery and extracts areas where canopy cover is greater than a specified threshold. It then 

exports those areas as polygons and leverages cloud computing and available remote sensing 
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imagery to calculate vegetation greenness metrics over multiple years. These annual measures 

of vegetation are then analysed to determine the trends of the forest cover polygons and 

produce polygon and pixel-level forest trend information. This set of LiDAR tools is applicable to 

both padded and unpadded sites in the Green Zone. 

 Site Selection 

The LiDAR coverage we received from Innotech was further east than originally planned for at 

the outset of the project and did not cover our 2023 field sites that were intended for use as part 

of Task 1. Given this, we selected 20 study sites (Figure 2) from our previous PTAC project (Caron 

et al., 2022) that identified padded well sites, and which were within the footprint of the available 

LiDAR inventory. These sites have a range of tree cover from 0% to approximately 30% that is 

visible in high spatial resolution imagery. For each study site, three offsite recovery target points 

were collected to represent undisturbed forest vegetation conditions to which the recovery of 

the onsite forest conditions were compared. 
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Figure 2. Location of the 20 study sites (yellow circles) used to for developing the forest sustainability 

assessment tools. 
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 Trend Extraction 

Using the newly created forest polygon file from Task 5 that corresponds to trees over 2 m in 

height, the next step in our processing chain was to create a time-series image stack that can 

provide the trend of vegetation for each forest polygon. With the forest polygon files uploaded 

to our ReMoTo platform, we can access both the optical image archives and leverage the power 

of cloud computing to perform the trend analysis. 

ReMoTo creates a time-series image stack used to determine vegetation trends, in one of two 

ways, specified at the beginning of the processing chain. It can either create a stack between two 

specified ranges or it can dynamically adjust the length of the time-series. The Sentinel-2 optical 

data used in this task have a relatively short archive with consistent coverage beginning in 2017. 

The test sites in this task were all disturbed prior to this date, so data between 2017 and 2023 

were used for calculating the trend. Alternately, if using a longer image archive like Landsat, and 

if each polygon for a project site had a known date of disturbance, we could add a “disturbed 

date” attribute to our forested area polygons that could be used with the Landsat image archive. 

This allows ReMoTo to create a site-specific time-series for any disturbed date occurring between 

1984 and present day. 

With a specified time-series date range input into ReMoTo, the algorithm then calculates a 

commonly used vegetation index called the Normalized Difference Vegetation Index (NDVI), 

which is a measure of vegetation greenness. The Sentinel-2 optical image archive for our study 

area contains seven years of data, from 2017 to 2023. NDVI results were derived annually for 

every available image within the growing season of that particular year and stacked. The 

algorithm then searches through this list of available NDVI values at each pixel location and writes 

out the highest NDVI value found into a new image. This new image is a composite image of the 

annual best-available-pixel measure of vegetation greenness.  

Each of these annual best-pixel images are then stacked into a final time-series dataset for 

analysis. The final step in the process estimates vegetation recovery trend within the derived 

forested areas on site by performing a pixel-wise linear regression analysis using a least-square 

algorithm. The output is a raster image with a trend value for each pixel in the forest polygons. 

3.3 TASK 3 

In Task 3, our goal was to assess impacts of padded sites on peatlands using EO data. In addition 

to the padded well sites impacting peatland, the access roads associated with those sites also 

have potentially measurable impacts on the peatland areas that they pass through. To augment 

our existing ReMoTo tools that determine whether a well site is padded or unpadded, we 

developed a new set of tools that assesses the wetness and vegetation conditions along an access 

road (or any other type of linear feature) and compares the conditions along one side of the road 

to those on the other side. If the access road is impacting the peatland, there is potentially a 
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measurable change in the wetness conditions where water ponding can be detected, or 

significant vegetation change can be mapped. 

The tools developed for this task require an input set of linear features. From this set of features, 

ReMoTo creates a set of sampling points, it calculates wetness and vegetation metrics for each 

linear feature and samples the wetness and vegetation values incrementally along the linear 

features. The output is a set of sampling points in shapefile format that are classified into two 

categories, one for potential impacts, and one for no impact.  

 Site Selection 

We created a set of test features from the padded sites we mapped in our previous PTAC project 

(Caron, et al., 2022). A set of 106 padded sites around Lesser Slave Lake were identified, and the 

associated access roads were mapped using a combination of high spatial resolution imagery and 

the DIDs layer (Figure 3). 
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Figure 3. Access roads (red polygons) used in Task 3 for assessing impacts on peatlands. 
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The roads varied in length from between 50 m and 5 km and pass through variable peatland and 

non-peatland landscapes, with approximately 81 km in cumulative length. Using this set of roads, 

ReMoTo then created a set of sampling points at specified intervals along the road, and at 

specified offsets on either side of the road. The interval and offset are dependent on the spatial 

resolution of the imagery being used to calculate wetness and vegetation metrics. A short-offset 

distance between the sampling locations and the road or linear feature was used to increase the 

likelihood of detecting disturbance-related changes. For this task, using Sentinel-2 optical 

imagery with a spatial resolution of 10 m, we created sampling points at 50 m intervals along the 

linear features, and at 15 m offsets left and right of the feature (Figure 4) resulting in 3,120 total 

sampling locations. ReMoTo created a unique sample ID for every point, and the pairs of points 

at each interval are also uniquely identifiable so that left and right pairwise comparisons can be 

made.  
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Figure 4. An example of the automated sampling point creation is shown in this example. The input 

access roads have a sampling pair of points created at regular intervals and offsets for each feature. 
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 Wetness and Vegetation Index Sampling 

Next, the tool extracts an image from the cloud-based Sentinel archive using a target year 

specified at the outset of the process. Each sampling point has a wetness metric (Normalized 

Difference Wetness Index (NDWI)) and a vegetation metric (NDVI) calculated and stored as an 

attribute. At each interval along the road, the left and right pairs of sampling points are 

compared. The tool includes a variable that defines a difference tolerance, as a percentage, 

between the pair of sampling points - if this tolerance is exceeded, the lower of the two values is 

flagged as a potential impact to be investigated. The final output of the tool is a set of classified 

sampling points that highlights any areas of significant wetness or vegetation discrepancy.  

3.4 TASK 4 

We explored ML/AI algorithms to improve the separability of bogs from fens at a finer scale than 

is generally available with coarse spatial resolution wetland datasets such as the one created by 

the ABMI or the Derived Ecosite Phase (DEP)Training Data from the Government of Alberta.  

There is evidence to suggest that well-developed wetland tamarack forest cover mainly occurs in 

fen or swamp wetland types (Government of Alberta, 2015). Additionally, our own internal 

experience conducting field assessments suggests similar distribution and, while tamarack may 

occur in bogs as individual trees, it does not reach the density that would be observable at the 

resolution of Sentinel-2 optical imagery. Our field observations do suggest however that fens 

support larger forest stands of tamarack that may be visible using Sentinel-2 imagery. We tested 

the ability of Sentinel-2 imagery to detect the unique spectral signature that tamarack trees 

exhibit during fall senescence.  

Using multi-temporal optical and SAR data, in conjunction with the training data created in Task 

1, we created a land cover map of tamarack forest cover. The tamarack land cover map was 

assessed against the existing bog classification available in the ABMI and DEP map data to identify 

wetlands that may be misclassified as bog. Once identified, further validation using traditional 

field could be conducted to confirm the results of the analysis. 

 

 Study Area and Training Data 

In Task 1, we used the existing in situ data Vertex has acquired over numerous years of field work 

to create an initial set of tamarack training data. These data are distributed over an area greater 
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than 20,000 km2. To simplify the implementation and testing of the tool, we selected a sub-region of the 

training data of approximately 200 km2 (Figure 5). 

 

Figure 5. Overview of the subset area and training sites used to test the classification tools. Using a 

smaller subset area greatly simplifies the collection of additional land cover classes and the mosaicking 

of Sentinel-2 imagery. 
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Using the focused study area, we increased the 37 tamarack training sites with additional land 

cover classes using visual interpretation of high spatial resolution optical imagery. These 

additional land cover classes included Forest, Shrub and Grass, and Water, and contained 

between 30 and 60 training locations, depending on the class.  

 Multi-temporal Imagery 

These training data sites were used to classify a multi-temporal Sentinel-2 image stack. ReMoTo 

was expanded during this project to include the ability to create time-series data stacks that can 

be as simple as a two-date combination of imagery or include any number of available images 

from the online data collections. The creation of the multi-temporal image stacks runs in a cloud-

processing environment with no local data storage or processing required and has been 

developed to include calculation and stacking of derived spectral indices. The unique spectral 

signature exhibited by tamarack in the fall could potentially be confused with other land cover 

types. To mitigate this, our algorithm uses a two-date image stack of a summer-peak growing 

season image as well as a fall senescence image. Any potential areas with overlapping spectral 

signature that are persistent between the two images will have a different cumulative spectral 

response than tamarack forests where the spectral response progresses from green in the 

summer to yellow in fall.  

 Classification and Bog/Tamarack mapping 

ReMoTo requires only a few classification parameters to be set up and that we upload our 

training data to a processing folder in our cloud environment. The output of the classification is 

a full land cover map of the input training data where each pixel is assigned to a class. 

We then converted the raster output to a polygon shapefile and created a new layer that only 

contains tamarack polygons. We overlaid the map of tamarack forest areas with the existing 

ABMI bog wetland polygons to create a new dataset that shows existing bog polygons which 

contain tamarack forest cover greater than 10 m by 10 m in size and potentially misclassified as 

bogs. 

3.5 TASK 5 

Work completed for an earlier PTAC project (Caron, et al., 2022) allowed Vertex to develop a 

method to distinguish padded sites in peatland from unpadded sites, using LiDAR and optical 

imagery. Extending those tools to applications beyond padded sites involves using those LiDAR 

tools and adding the ability to create a Canopy Height Model (CHM) that allows us to extract 

forest polygons used in Task 2. Additionally, software we developed in Task 2 built time-series 

datasets for annual vegetation trend analysis. Those tools were extended during this task to 

create a dense time-series tool that uses every available image for a given date range and can 

identify disturbances that occur infrequently or have only a short observable duration, such as 

localized flooding, and which may impact long-term recovery. 
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 LiDAR Processing 

Our existing tools for LiDAR data processing within ReMoTo include the ability to search for 

relevant LiDAR tiles from a large data catalogue, extract the elevation datasets, and perform a 

ML-based classification using those data. Here, we added the ability to create and analyse canopy 

height to detect forested areas on padded and unpadded sites. 

We begin by utilizing a supplied shapefile from the LiDAR delivery that is an index of all available 

LiDAR data and where each tile is has a unique identifier. We intersected the study site polygons 

from Task 2 with this Tile ID shapefile and added it to our site list. From there, our software loops 

through each site independently and extracts both the BEDEM and FFDEM from the matching 

folder.  

Any files in the LiDAR delivery that are not in GeoTiff format are automatically converted and the 

extraction of forest begins. Our study site polygons are buffered by 100 m to create a larger 

footprint that will provide context within the surrounding landscape in the reporting stage of the 

tool. This buffered file is used to create subsets of the BE and FF imagery so we can reduce data 

processing volumes in subsequent steps.  

Next, we subtract the BE pixel value from the FF value for the chip and this results in the CHM, 

which is a raster image that represents the height of whatever cover is present in the image 

relative to the ground (Figure 6). For example, if an input FF pixel contains a value of 15 m and 

the corresponding BE value is 10 m, then the resultant CHM pixel will have a value of 5 m. 

 

 

Figure 6 This figure shows the Bare Earth DEM (left), the Full Feature DEM (centre), and the derived 

(FFDEM - BEDEM) Canopy Heigh Model (right). The study site polygon is shown in red and the buffered 

area around the site is shown in yellow. 

 

The discrepancy in the spatial resolutions of the Sentinel-2 (10 m) and LiDAR (0.5 m) datasets can 

result in several small LiDAR polygons that are each within the bounds of a single optical pixel. 

This increases processing time, complexity, and yields no practical benefit as the same trend 

information will apply to each high-resolution forest polygon. We mitigated this issue by 
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resampling the LiDAR to a more directly comparable resolution so that we can extract useful 

time-series trends from the much coarser optical data. We experimented with a series of 

resampling values ranging from 1.0 m to 5.0 m – we ended up choosing 5.0 m as having the best 

compromise between preserving LiDAR information and minimizing redundant information 

being extracted from the optical data (Figure 7). This resampling value was tailored for the 10 m 

resolution of Sentinel-2 optical imagery and would need to be adjusted for use with a different 

time-series data source such as Landsat. 

 

Figure 7. Resampling of LiDAR data at 0.5 m resolution (blue) and the LiDAR resampled to 5 m resolution 

(green), where each pixel is greater than 2 m in height. 

 

Once the data had been resampled, our final LiDAR processing step was to create a threshold 

map of all pixels that are greater than an expected minimum height for a forested area. For our 

testing purposes, we used a value of 2 m as the minimum height for the CHM as shown in the 

above figure. The green pixels show the LiDAR data resampled to 5 m resolution and they 

preserve the majority of the original 0.5 m resolution pixels, shown in blue. This resampled raster 

was then converted to a polygon for use in extracting the historical trend information for each 

pixel in the study area. At his point, we removed any polygons with an area smaller than two 

resampled pixels – 50 m2. This eliminates any polygons where no more than half of a Sentinel-2 

pixel trend information would be derived from non-forest vegetation.  
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 Disturbance Detection using Time-Series Data 

In Task 2, we developed software tools to build time-series datasets that can be used to extract 

trend information from various types of EO data. The tools create time-series datasets in two 

different ways. The first way is to create a stack of single-date images using a target date of 

acquisition. For example, if we select August 15 as a peak growing season image, it will cycle 

through all available imagery and select a cloud-free image from each year that is closest to this 

date, for all selected years. The second way, and which was implemented in Task 2, is to create 

a composite best-pixel image for analysing spectral indices. Annual vegetation growth rates vary 

year by year, so to compensate for this we calculate the NDVI value for all available images in a 

year or growing season, then choose the highest value that occurs at each pixel in that set of 

images. This value is then written to a new image that consists of the highest value in that year 

for each pixel regardless of when it occurred. This is useful for assessing vegetation health or 

growth but can also hide short-duration changes that may be of interest. 

Short-duration impacts, such as localised flooding due to a rain event, are not readily identified 

using a best-pixel time-series dataset that seeks to find a single highest available pixel value for 

a given location. To look for these short-duration impacts, we adapted the newly-developed code 

into a tool that assembles a dense time-series of all available imagery, rather than selected 

images or composites. For each year in the times-series data range that we specify, all available 

images are stacked into a single large data cube that contains dozens to hundreds of layers.  

Using every available image to create a time-series can give greater insight into localised, short-

duration events, but such data are inherently noisy due to inadequate cloud masking, data 

anomalies, haze, smoke, or other atmospheric effects that can impact data capture. To mitigate 

this noise, the process includes an option to apply a data smoothing moving-window algorithm 

based on the median value of the pixel. The output of this tool is a data plot of all spectral index 

values for the entire date range of interest. 

 

4.0 RESULTS  

4.1 TASK 1 

Using the existing field data as guide to previously known locations of tamarack cover, we 

positioned 113 training data points within larger areas of uniform tamarack forest cover using 

high spatial resolution imagery visible in Googe Earth and through available data in ESRI mapping 

software. The training data points that identify tamarack forest cover (Figure 8) that are 

approximately 10 m in diameter and represent homogeneous forest cover. 
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Figure 8. Locations of tamarack forest derived from Vertex field data. 
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4.2 TASK 2 

 Tools 

The toolset to detect and extract vegetation recovery metrics was successfully developed and 

tested using a dataset of 20 test sites and corresponding LiDAR imagery. The tools and 

functionality developed for this task include: 

• Eight new modules and functions related to LiDAR processing were developed, tested, 

and implemented. These include the ability transform LiDAR data formats, calculate 

CHMs, resample data, create threshold-based feature extraction, and export polygons of 

treed areas. 

• Four new modules were created for the creation of time-series trend data. These include 

routines that create composite images of best-available pixel indices, create image stacks, 

employ moving-average smoothing algorithms, calculate linear regression of pixel trends, 

and export spectral trajectory plots. 

 Outputs 

For every site analysed with our forest sustainability tool, we created a one-page report (Figure 

9 and Figure 10) that presents three separate areas of information. The top frame in the report 

is a map of the forest polygons we extracted from the resampled 5-m resolution LiDAR data and 

which is overlain on the available high spatial resolution imagery from ESRI. It allows us to inspect 

the accuracy of the extracted forest polygons based on available imagery, though care must be 

taken as the available imagery from ESRI is not necessarily from the same year of the LiDAR 

dataset. Each polygon of forested area is shown in a different colour, and its unique name is 

shown in the legend to the right of the frame. 

The bottom frame is a map of the 10-m Sentinel-2 satellite imagery-based NDVI trends. Each pixel 

represents the overall slope or trend of the NDVI value in that location over the entire time-

series. At the bottom right of the example is a slope legend called “Rate of Annual NDVI Change”. 

This bottom frame also includes the forest polygons for reference. In this frame, we can see the 

individual trends of each pixel and look for potential areas of concern. 

The “Spectral Trajectory Plot” is the final piece of information included and presents the NDVI 

trendline for each polygon detected at the site shown in a graph on the right. For each year in 

the time-series, we calculate the median NDVI value for the entire polygon and plot this over the 

range of years assessed. This allows us to view the annual trend over time for each forested stand 

and assess its sustainability as a unit rather than by individual pixels within. Included in this plot 

is a reference line that represents the median NDVI trends calculated from the surrounding 

reference plots located in undisturbed forest cover. 
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In the Figure 9 report, both polygons show stable or slightly increased NDVI trends, with only two 

pixels showing a slight decline in the purple polygons. Both trendline plots show very shallow 

increasing values indicating these areas are likely stable and when compared to the reference 

value averaged from the three reference sample points, the forested areas are at or above the 

reference value. 

The algorithm detected five discrete forested areas, though three of those were quite small 

(Figure 10). Those smaller forested polygons may overestimate the forest cover present based 

on the high spatial resolution optical imagery. Further investigation into the validity of these 

polygons is warranted and the minimum polygon size may need to be altered to increase polygon 

accuracy.  

Within the polygons, we see several large areas of declining NDVI trends evidenced by the light 

red pixels. These are areas of potential concern for sustainability and are further evidenced by 

the trendline graphs. While each trendline is roughly at the same value as the reference point 

average, we can see the overall trend for polygons 1 and 2 show potential decline between 2020 

and 2023. This should be interpreted with caution however, due to the very short duration of the 

time-series, but they represent areas for longer term monitoring. 
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Figure 9. Report layout of results from the LiDAR-derived sustainability tool. For each site processed, 

we present three pieces of information: the forest polygons extracted from the 5 m resolution LiDAR 

data overlain on 50 cm reference imagery, shown in the top frame; the 10 m Sentinel-2 NDVI pixel-

based trend map, shown in the bottom frame; and at left is a graph of the NDVI trend for each polygon 

which is the median value of all pixels within.  
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Figure 10. This figure is another example of the output from the forest sustainability tool, where the 

results are a more complex in that we have five detected forest areas. 
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4.3 TASK 3 

Padded linear features associated with padded well sites may impact peatlands by altering 

normal hydrological processes that can subsequently impact vegetation health and composition. 

Methods developed in this Task were designed to detect changes in vegetation and/or water 

metrics derived from remote sensing data that occur along those linear features. 

 Tools 

Several new modules were developed for image analysis that improve the creation of sampling 

points at data-driven interval and offset distances, creating spectral indices for linear feature 

sites, extracting spectral index values based on sampling pairs, and assigning those values to 

potential impact categories. 

 Outputs 

The following examples show examples of the real-world application of the tools developed here 

(Figure 11 and Figure 12). We used an interval spacing of 50 m, an offset sampling distance of 15 

m, and the difference threshold was set at 15%. In the examples shown, the top frame is the 

assessed NDVI image with sampling points categorized by NDVI value comparison. The green 

pairs (one point above and one below the access road indicates a pair, moving along the line) 

represent areas of minimal to no impact while the yellow/red pairs indicate where one sampled 

value is more than 15% lower (in red) than the other for value in that pair (in yellow). In the top 

NDVI image, the lighter grey and white areas in the greyscale image indicate denser or healthier 

green vegetation. The darker grey to black areas indicate sparse, stressed, or poor vegetation 

cover, and potentially water. The bottom frame is a reference high spatial resolution image with 

those same sampling points. The assessed image and reference image may not have been 

collected in the same year as we relied on the reference imagery supplied by ESRI in their 

mapping software.  

In the first example, four consecutive red sampling points along the top of the line, towards the 

east, indicate those locations have values lower than the corresponding locations on the 

southern side of the feature. This indicates a combination of poorer quality vegetation or 

increased water table effects in this area. The bottom frame shows the same sampling locations 

where a wetland area is evident as indicated by the purple arrows. 

The second example shows potential impacts at several locations along the southern side of the 

feature. The optical image shows evidence of water ponding in these areas. We also see that 

several pairs are classified as not having a potential impact, indicated in the bottom frame, even 

though they are near the visible ponding water. This is probably due to different wetness 

conditions present in the assessed year (2021) compared to the optical reference year (2020) and 

to the offset value used (15 m), which was quite low and just at the periphery of the ponding 
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water, as detected by the satellite. If a larger value had been specified (e.g., 25 m), the 

undetected values would likely have been classified as potential impacts. 
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Figure 11. Example 1 from Task 3 output. The top frame shows the assessed access road, the greyscale 

NDVI image from input year (2021), and the classified sampling points along the road. There are four 

consecutive points that indicate potential impact. In the bottom frame, we can see a wetland area, 

indicated by the purple arrows, that is the cause for these lower values. 
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Figure 12. Example 2 from Task 3 output. In this example, we can see that several points along the 

southern side of the feature are classified as potential impacts. The optical imagery in the bottom 

frame, from the year prior to the assessed year, shows clear evidence of ponding water. Not all ponds 

are detected by the sampling pairs, see bottom frame, and there are two probably reasons for this: first 

is that wetness conditions may have been different between the year of assessment (2021) compared 

to the optical image (2020), and second, an increase of 1 pixel in the offset distance would have resulted 

in a positive detection. 
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4.4 TASK 4 

The tools developed for this Task accomplished our goal of implementing a ML-supervised 

classification algorithm to aid in the differentiation of bogs from fens. This task also facilitated 

the implementation of Task 1, which was to incorporate in situ data with multi-sensor, multi-date 

EO data. Using training data for tamarack forests and produced from field record-guided image 

analysis, the land cover classification produced an effective classification of tamarack forest 

cover. 

 Tools 

A new module was developed in this Task that implements ML-supervised classification of EO 

imagery. The module includes options for setting classification parameters that guide the 

classification tool, selection of input layers including multi-temporal optical imagery and SAR 

imagery, and export of the classified image and related accuracy metrics. 

 Outputs 

The first output of the tool is the map of tamarack forest cover (Figure 13), that shows mapped 

tamarack forest cover from the supervised classification. The classification identified just over 14 

km2 of tamarack forest cover, and the associated classification accuracy was 85%. This high 

accuracy suggests that our methodology creates a reliable map of tamarack forest. 

Using this map of tamarack, we then overlaid those forest polygons with bog polygons in the 

Alberta Merged Wetland Inventory (AMWI) dataset from ABMI (Figure 14). Of the approximately 

14 km2 tamarack forest, 3.5 km2 are within bog areas. This may have potential impact on the 

decision-making process regarding any padded sites in those areas. 
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Figure 13. Classification output showing tamarack forest areas detected by the multi-sensor, multi-date 

supervised classification. 
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Figure 14. Map of tamarack forest classified using our methods, bogs as mapped by the AMWI, and 

bog/tamarack overlap areas. We can see that there are several large areas of overlap which could 

indicate potential misclassification of bogs. 

 

4.5 TASK 5 

In this Task, our objectives were to extend our existing tools to unpadded well sites, and to 

analyse time-series vegetation information to detect disturbances and assess long-term recovery 
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trends at unpadded sites. We successfully extended our tools to unpadded sites by adapting the 

padded-site LiDAR processing software to extract forested areas over any input area, padded or 

unpadded. We were partially successful in our second objective, to analyse time-series data for 

assessing disturbance and long-term recovery trends.  

 Tools 

• LiDAR processing modules to calculate CHMs from BEDEMs and FFDEMs and to extract 

forest polygons using a threshold classification method with user-adjustable height 

parameters. 

• Creation of a dense time-series data cube of remote sensing data including the option to 

perform data smoothing to reduce signal noise. 

 

 Outputs 

Using the LiDAR tools developed in this Task, we can process large volumes of elevation data and 

extract forest polygons for a list of input locations. In the example below (Figure 15), we show a 

sample output from one of the input test locations. The image at left is the CHM derived from 

the BEDEM subtracted from the FFDEM. On the right, we can see the green polygons that 

correspond to forested areas where the vegetation canopy is greater than 2 m in height. The 

forested areas generated here were used in Task 2 to assess forest sustainability.  

 

 

Figure 15. (A) Sample output of the CHM calculated using from LiDAR at native resolution of 0.5m. (B) 

Resulting forested areas extracted using a minimum height threshold of 2 m. 
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We successfully developed software to assemble the time-series data cubes and apply a 

smoothing algorithm to minimise image noise (Figure 16). In the example below, we see the 

annual NDVI value calculated from a best-pixel analysis, represented by the green line. The black 

line represents the raw NDVI value trends and the orange line is the NDVI with a smoothing filter 

applied to reduce data noise. Time constraints prevented us from developing a disturbance 

detection algorithm to apply to the dense time- series data output. 

 

Figure 16. This figure shows the variability of NDVI throughout a dense time series for a 100 m by 100 

m test polygon. The green line shows the annual observed NDVI calculated for the entire polygon. The 

orange line represents the values based on our implementation of a smoothing algorithm designed to 

remove atmospheric and other noise. 

 

5.0 DISCUSSION  

This project was undertaken with the primary objective of developing digital tools for monitoring 

terrestrial environments impacted by oil and gas operations using EO data. Our efforts resulted 

in the development several new methods for monitoring forest sustainability, identifying 

potential hydrologic impacts related to padded linear features, and for mapping indicator species 

such as tamarack as a potential differentiator of wetland types. We also had success in extending 

our existing tools to non-padded sites and made progress in using time-series data to identify 

potential environmental disturbances. 

5.1 TASK 1 

Using our existing field-based records allowed us to create accurate training polygons for a 

specific species of interest, a task that is more difficult to accomplish using visual image 

interpretation only. We created a set of 113 Tamarack Forest polygons guided by the field data 

which were used in further EO data analysis. This incorporation of field data into a larger remote 
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sensing analysis program increases the accuracy of the input data for later analysis.  While we 

used field observations to guide training data, various other types of field data, including 

vegetation species, hydrological information, and other information can potentially be 

incorporated into the analysis algorithms developed. 

5.2 TASK 2 

Our most complex objective, from a software development viewpoint, was the implementation 

of tools to assess the sustainability of forests on developing pads. This Task involved developing 

a significant number of processing and analysis modules related to LiDAR data manipulation, 

multi-temporal optical image stacking, cloud-based processing, data extraction and trend 

analysis. It achieved its goal to establish forest cover polygons in padded sites and extract 

sustainability trends for those polygons. The analysis provided can be used in several informative 

ways, including comparing the median NDVI value for the on-pad forest stand to that of 

undisturbed adjacent forest, which is useful for estimating time-to-recovery. Within the forest 

polygons we created, the individual pixel-level trend information can highlight any areas of 

potential concern where vegetation trends are stagnant or declining, even within an overall 

healthy or positively-trending forest stand. This would allow us to identify potential barriers to 

sustainability or areas where further remediation may be desired.  

Significant time savings can be realized by using this method of forest sustainability assessment. 

Our testing dataset of 20 sites required less than a day for initial data preparation, software 

parameterization, processing time, and reporting. Extending the time required, we anticipate the 

ability to analyse hundreds of sites in only a matter of days, compared to potentially months or 

more that would be required by standard field assessments. Those traditional field assessments 

would also be challenged to provide historical vegetation change record, limiting their utility for 

assessing long-term sustainability.   

The tools we have developed are flexible in terms of the time-series data construction and for 

the EO data types included in the analysis, allowing it to adapt to longer time-series datasets or 

to assess other types of sites beyond padded sites. In addition, the LiDAR processing tools can 

also be used to detect features other than forest including low vegetation cover or exposed areas. 

The tool works as intended though we have identified several areas for further development. In 

many instances, we observed oddly shaped polygons, such as we see in the red polygon in Figure 

9.  This is an artifact caused by the footprint of the site being misaligned with the LiDAR imagery 

and may result in undisturbed forests being delineated. Another issue we encountered relates to 

the method used to extract image pixels based on irregular polygons. We tried several methods 

and each one presented different challenges regarding inclusion or exclusion of forested pixels. 

Finally, in Figure 10, we can see several small polygons that may not represent relatively large 

forest stands therefore might bias the site results.   
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5.3 TASK 3 

Padded sites and related padded linear features can impact peatlands by altering natural 

hydrological process in a negative way. In Task 3 we developed methods to assess the impact of 

padded features on peatlands. We accomplished this by developing a set of tools that allow us 

to assess a large volume of linear features for potential impacts. We created a set of access roads, 

automated the creation of sampling locations along those roads, and then identified potential 

impacts in a much faster and more widely distributed way than would be otherwise achievable 

in a traditional field campaign. The analysis tools developed detected changes in vegetation and 

wetness conditions along the input features and identified areas of potential impact for further 

investigation. This investigation includes an initial visual inspection to determine whether the 

impact is due to natural landscape variability or to human disturbance. In areas of genuine 

impact, the outputs created from our methods can be used to set up a longer-term remote 

sensing monitoring program, to plan future field work to verify results and look for root causes 

of impact, or as a planning tool to organize additional remediation efforts and allocate resources 

efficiently. As with the forest sustainability tools, they can be easily extended beyond the initial 

application. For example, we could use the tools to assess pipelines and compare the values of 

vegetation metrics on the disturbed pipeline to undisturbed vegetation along the feature. The 

sampling intervals and offsets are data- and need-driven, so we can sample as frequently or 

sparsely as is needed to accomplish the task using an array of spectral indices that can address 

wetness, soil moisture, leaf area, and other vegetation parameters. 

Some of the efficiency realised using EO data is the ability to quickly assess large areas compared 

to the time needed for a traditional field campaign. To illustrate this, our test dataset consisted 

of 81 km of access roads which were distributed over an area of nearly 20,000 km2. We processed 

these features to generate 3,120 sampling points. Using the input linear feature dataset and 

processing of historical data, we sampled this entire area and created the classified assessment 

points in less than a day. As with the forest sustainability tool created in Task 2, this is a significant 

improvement compared to a traditional field sampling program to achieve the same results.  

Using these results of impacted areas greatly enhances the ability to plan validation fieldwork, 

ground-based investigations of the root causes, or to implement mitigation strategies. The results 

can also be segregated into smaller datasets that can be continually monitored using the same 

open source imagery, or commercial imagery can leveraged to provide greater information 

without the cost of acquiring large volumes of imagery. 

 

5.4 TASK 4 

We used the in situ derived data from Task 1 to guide a supervised classification of the potential 

tamarack forests. This was implemented with a newly developed tool that builds single-date or 
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multi-date optical image data cubes, along with any desired spectral indices, and incorporates 

SAR data as required. These data were classified using a ML algorithm into various land cover 

classes that were then analysed for their ability to differentiate tamarack forests in relation to 

wetland bogs in attempt to enhance the accuracy of fen and bog differentiation. The tools and 

training data from Task 1 resulted in a high-accuracy classification (85%) of tamarack forest. 

Overlay with existing bog maps showed several areas of high tamarack forest cover. Further 

investigation into the regions identified as having significant overlap would be required to field-

validate the results of the classification. 

5.5 TASK 5 

The underlying idea behind the adaptation of existing tools to unpadded sites was to be efficient 

in the development of new capabilities. Using the LiDAR tools already completed allowed us to 

create the forested area mapping tools and expand the application of that original toolset to 

padded or unpadded sites. 

The dense time-series data analysis tools could provide valuable insight into short term impacts 

that are missed with an annual or single-date analysis of a study site or sites, though testing was 

not able to be conducted at this time. 
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6.0 CONCLUSIONS  

The project met its desired outcomes to further the application of remote sensing technologies 

to monitor the impacts of padded and unpadded sites in wetland areas. We added significant 

capacity to assess several types of impact and identify areas of concern, such as: 

• We were able to update existing tools and develop a significant number of new tools for 

monitoring forest sustainability, impacts to wetlands from padded features, and to steps 

towards improving bog and fen differentiation. 

• While the specific algorithms described here relate to four specific tasks, most of the code 

employed is modular in nature and allow these tools to be adapted for similar uses or 

entirely new ones. 

• These tools allow us to sample vast areas in very short amount of time. 

• We can also sample in areas where access is prohibited due terrain or land cover 

challenges, private land ownership, or other impediments. 

• We can now analyse hundreds of sites for different types of impact including vegetation 

health, moisture or wetness, and impacts to surrounding wetlands.  We can do this over 

tightly grouped sites in one localized area or for sites distributed over the entire province.  

Depending on the number of sites and metrics required, we can complete the analysis in 

as little as a few days, greatly enhancing the ability to plan future validation, monitoring, 

or remediation work. 

• We implemented our code base in such a way that we can readily expand the tools 

beyond their primary interests to further help understand impacts or reclamation status 

of oil and gas related development. This greatly increases their value. 
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7.0 RECOMMENDATIONS  

Further work is recommended in several areas to build upon the capacity developed in this 

project by improving various algorithms, validating results using future field work, and enhancing 

the reporting and communication methods of the resulting analysis. Below are recommendations 

as they relate to the objectives of the individual Tasks: 

7.1 TASK 1  

• Explore options for incorporating validation of the tamarack results with ongoing field 

work. 

• Continue to evaluate options for incorporating existing and planned field observations 

with remote sensing analysis. 

7.2 TASK 2 

• Continue development of reporting and communication methods to improve readability 

and reduce the time required for reporting. 

• Expand testing to higher resolution optical data that can take advantage of the higher 

resolution available in the LiDAR imagery. PlanetLabs or SPOT satellite imagery could be 

useful for the spectral or temporal resolutions, respectively. 

• Use alternative metrics for comparison of trends and target vegetation goals to indicate 

sustainability or recovery success. 

• We experimented with several methods to extract image pixels based on irregular 

polygons and each method presented challenges to inclusion or exclusion of pixels – we 

could explore alternative methods. 

7.3 TASK 3 

• Continue work on reporting and communication methods to improve readability. 

• Using established impacts, we can work on additional tools to work backwards in time to 

potentially derive the time impacts began, and thus narrowing the potential area 

requiring remedial action. 

• Expand the sampling offsets in areas of interest to include the ability to detect the 

magnitude, or distance away from the linear feature, of the impact. 

• Expand the sampling program to assess on-feature conditions compared to along-feature 

conditions. This could be useful for estimating vegetation conditions along reclaimed 

linear features such as pipelines. 
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7.4 TASK 4 

• Conduct field assessments of the areas of significant tamarack and bog overlap to assess 

the nature of the wetland area. 

• Expand the classification to an additional area were padded sites are found in bogs, based 

on our previous work in padded site identification. 

7.5 TASK 5 

• Continue development of the dense time-series tool by selecting unpadded sites that 

have potential water ponding impacts.  

• Develop detection algorithms to automatically assess sites where water ponding can be 

detected. 

 

8.0 APPLICATION  

Our target market are producers and service companies within the oil and gas industry requiring 

environmental monitoring services for any stage of well site development. Our end users will be 

predominately oil and gas firms, the Orphan Well Association, pipeline companies, and consulting 

and engineering firms. Vertex will leverage its large network of industry partners to engage with 

oil and gas companies. Vertex will connect with other users through social media, networking 

events, and by presenting at industry or governmental conferences. We further anticipate other 

consulting companies will rely on external remote sensing services because very few companies 

have dedicated remote sensing staff capable of conducting EO data analysis in a cost-effective 

manner. 

Vertex has worked in the environmental monitoring sector for oil and gas industry for over 30 

years and has intimate knowledge of the market demand. We work with small, medium, and 

large producers and all have reiterated that they are looking for ways to conduct environmental 

monitoring faster, better, and cheaper. Industry is increasingly interested in remote sensing 

technologies and the efficiencies they enable on the path to final site reclamation certification. 

We will offer these newly developed tools both as a fee-for-service in our existing portfolio, as 

well as a subscription-based service for longer-term monitoring. 
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