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EXECUTIVE SUMMARY

As part of the environmental regulatory framework to minimize risk to receptors, chemical parameter
concentrations in soil or water exceeding regulatory guidelines, which can be attributed to industrial
activities at the site, require remediation and/or monitoring. This is complicated by the fact that various
parameters are naturally elevated in Alberta, with concentrations that exceed the generic (Tier 1) Soil
and Groundwater Remediation guidelines. Where this occurs, environmental professionals must prove
to the satisfaction of the applicable regulatory body that the elevated concentrations are of natural
origin and not the result of industrial activities to avoid unnecessary remediation activities. This
challenge is faced in environmental management of industrial sites while active and at end of life, and
when responding to unintentional releases during product handling or transportation.

Salinity and certain metals are the most common naturally elevated parameters in Alberta. If salt and
metal parameters are naturally elevated compared with Tier 1 guidelines, environmental professionals
can mistake these naturally elevated concentrations for contamination, followed by unnecessary
monitoring and remediation efforts. The challenge of proving, where applicable, that elevated
parameter concentrations are of natural origin, has been identified by industry and practitioners as a
root cause of cost uncertainty, multi-year timelines, reaching regulatory closure, and in some cases,
requirements for unnecessary and unsustainable monitoring and remediation efforts.

Industry, government, and environmental consultants have identified a need for more effective
identification of background salt and metals concentrations. There is currently no publicly available
resource that maps or predicts background concentrations of these parameters for Alberta. The Alberta
Background Soil Quality System (ABSQS) project was initiated by InnoTech Alberta (InnoTech), the
Alberta Upstream Petroleum Research Fund (AUPRF) managed by the Petroleum Technology Alliance of
Canada (PTAC), and the Clean Resources Innovation Network (CRIN) to address this gap. The overall
objective of the ABSQS is to develop a database of background metals and salinity parameters in Alberta
to decrease the cost and time required to identify and remediate contaminated sites. The ABSQS is
intended to be used as a resource to assist industry and government in environmental management of
sites that are actually contaminated.

The soil quality parameters (salinity and metals) analysis workflow derived to identify background data
records provided stable and replicable results. Based on background metals fingerprints identified in the
cleaned dataset, 18,513 data records of the 23,224 salinity data records in the master dataset were
identified as being representative of background. The predictive soil mapping accuracy was greater for
subsoil predictions compared to topsoil and all subsequent polygons were created using the subsoil
prediction results due to the higher accuracy. Only a small percentage of the polygons had soil
observation data present within the polygon, with approximately 5% of polygons having direct salinity
data, and 2% having metals data. Therefore, most polygons had data extrapolated from the polygons
with observations data based on the distribution of probabilities for the electrical conductivity (EC) and
sodium adsorption ratio (SAR) class predictions. Prediction certainty was inversely related to salinity,
with areas of higher salinity having more uncertainty.

The next phase in this project will be to execute a field sampling program to fill in the data gaps
identified during this phase of the project, and to complete further testing and validation of the model.
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1.0 BACKGROUND

The following background information on the research project, titled Background Metals and Salinity
Database and Analysis Tool, was previously described by Shelby-James and Fuellbrandt (2022).

11 PREAMBLE

Where land has been used for industrial purposes, effective and sustainable ecological restoration and
return to productive use are key objectives for responsible land stewardship. As part of the
environmental regulatory framework to minimize risk to receptors, chemical parameter concentrations
in soil or water exceeding regulatory guidelines, which can be attributed to industrial activities at the
site, require remediation or monitoring. This is complicated by the fact that various parameters are
naturally elevated in Alberta, with concentrations that exceed the generic Alberta Tier 1 Soil and
Groundwater Remediation Guidelines (Tier 1) (Alberta Environment and Parks, 2022). Where this occurs,
environmental professionals must prove to the satisfaction of the applicable regulatory body that the
elevated concentrations are natural and not the result of industrial activities.

The challenge of proving, where applicable, that elevated parameter concentrations are of natural
origin, has been identified by industry and practitioners as a root cause of cost uncertainty, multi-year
timelines, reaching regulatory closure, and in some cases, unnecessary and unsustainable monitoring
and remediation efforts. The challenge is faced in environmental management of industrial sites while
active and at end of life, and when responding to unintentional releases during product handling or
transportation. Many of the backlog of legacy oil and gas well sites and associated facilities in Alberta
are stalled or are being repeatedly monitored for this reason.

Salinity and certain metals are the most common naturally elevated parameters in Alberta. If salt and
metal parameters are naturally elevated compared with Tier 1 guidelines, environmental professionals
can mistake these naturally elevated concentrations for contamination, followed by unnecessary
monitoring and remediation efforts. Key members of the Petroleum Technology Alliance Canada
(PTAC)’s Alberta Upstream Petroleum Research Fund (AUPRF), environmental consultants, and
regulators have identified a need for more effective identification of background salt and metals
concentrations as one of their highest priorities.

To prove that concentrations of one or more parameters are naturally elevated, background samples
must be collected, often requiring a second mobilization of equipment and resources once site data has
been received from a laboratory. This has significant cost and timeline implications, not only for
mobilization but also for obtaining permission for offsite sample collection and permitting. Liability
estimates for some industrial sites are also inflated due to the inability to confirm elevated background
concentrations.

Fortunately, soils have been analyzed, characterized, and mapped in Alberta for a variety of purposes
including regulatory reporting and site evaluation, land use evaluation, local and regional land use
planning, site-specific project planning, environmental impact assessments, global inventory modelling
and soil classification (in agricultural regions). Considerable baseline soil information has been collected
at point locations to support development of conservation and construction plans or pre-disturbance
assessments, conservation and reclamation business plans, environmental impact assessments, detailed
site assessments, and Phase 2 environmental site assessments. Although these data, which consist of
both field observations and measurements and laboratory analyzed samples, were collected for specific
purposes, in general, the information was collected using standard methods prescribed by the
government. If georeferenced, the data has tremendous value and could be integrated into a



comprehensive database. This could then be leveraged with predictive mapping technologies to create
relevant spatial predictions of soil variables, such as background soil salinity and elemental
concentrations.

1.2 OBIJECTIVE

InnoTech Alberta Inc (InnoTech), Statvis Analytics Inc. (Statvis), and the University of Saskatchewan are
developing the Alberta Background Soil Quality System collaboratively with EnvirometriX B.V.
(EnvirometriX) using a phased approach as shown in Error! Reference source not found.. Phasing the
project allows stakeholders to provide valuable feedback that was incorporated into the design of
subsequent phases. The overall objective of the Alberta Background Soil Quality System (ABSQS) is to
develop a database of background metals and salinity parameters in Alberta to decrease the cost and
time required to identify and remediate contaminated sites. The ABSQS is intended to be used as a
resource tool to assist industry and government in environmental management of sites that are actually
contaminated.

The project used a phased approach with the following key activities :

Phase 1 — Geodatabase Development & Preparation of Covariate Data Layers for Phase 2

Task 0: Stakeholder Project Kick-Off Task 1: Database Development & Data Task 2: Data Preparation, Analysis, Technical
Workshop Acquisition Engagement and Reporting

Phase 2 — Evaluation and Selection of Predictive Mapping Approach

Task 1 — Develop Predictive Mapping Model Task 2 — Engage Stakeholders and Refine I
& Initial Qutputs System Based on User Feedback Refine Web Application
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Phase 3 — Extrapolation, Expansion and Field Validation Planning

Task 1 — Identify Areas with High Uncertainty ~ Task 2 — Expand Spatial Models to Provincial

to Target Additional Data Acquisition Scale, Field Validation Planning Task 3- System Distribution

Figure 1. Project phases and tasks for the Alberta Background Soil Quality System project.



1.3 BENEFITS

It is anticipated that this project would lead to significant benefits for multiple stakeholders such as
industry (e.g., conventional oil and gas, oil sands mining and in situ); municipal, provincial, and federal
governments; Indigenous communities; and collectively for Albertans as described in Error! Reference
source not found..

Table 1. Stakeholder benefits from the Alberta Background Soil Quality System.

Stakeholder Benefit
Industry and Avoid replication of data collection, reducing costs and increasing certainty.
practitioners Ability to provide empirical evidence of background concentrations and natural
variability.
More accurate (and lower) liability estimates by excluding naturally elevated
parameters.

Increased ability to focus resources on managing actual risk to receptors.

Reduced liability by moving stalled sites to regulatory closure.

Reduced time for reclamation certification.

Government Reduced review times of environmental reports with elevated salinity and/or metals
and regulators |in background.

Increased number of reclamation certificates being issued, decreasing the number of
inactive wells in alignment with current policy goals

Increased consistency in data presentation.

Background maps for the entire province for use in land use planning.

Collective Provision of open data available to extrapolate for multiple uses.
benefits for Less disturbance and disruption of the natural environment due to assessment and
Albertans remediation of uncontaminated soils with naturally elevated salinity or metals.

Increased number of industrial sites being cleaned up, decreasing risk to the orphan
well association and pressure on the economy due to bankruptcy induced by excess
liability.

1.4 ScoPE

A Technical Steering Committee (TSC) was established and comprised of regulators, industry,
environmental practitioners, academia, and the project team. TSC members served in a voluntary
technical advisory capacity to ensure the project:

e isinclusive by including relevant stakeholders in workshops and consultations,
e aligns with regulatory requirements and expectations,
o deliverables directly meet users’ specific data needs, and
e creates open and accessible data outputs.
This report summarizes the completed Phase 3 activities and results that were partially funded by PTAC.

2.0 DATA

Soil salinity and metals data was compiled, harmonized, and cleaned into a geodatabase for analysis and
use in predictive mapping platforms. Locations of data records used in the project are shown in Figure 2.
Salinity parameters of interest were calcium, chloride, magnesium, potassium, sodium, sulphate,

electrical conductivity (EC), sodium adsorption ratio (SAR), and pH. These nine parameters were selected



as they are most commonly reported in laboratory salinity analytical packages. These parameters are
commonly analyzed because they have potential to affect the ability of the soil to support plants and soil
microbes as well as soil structure. They are also the most relevant parameters for complying with
regulatory obligations and separating multiple salinity sources in Alberta.

Metals parameters of interest are antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper,
lead, mercury, molybdenum, nickel, selenium, thallium, uranium, vanadium, and zinc. These

16 parameters were chosen for their potential to cause an adverse effect on human health and the
environment, and because data records provided had sufficient reporting and detection of these metals
for valid statistical analysis.

Prototype Area
D Boundary

°  Soil Sample Data Points

125 250 500 Kilometers
L T T el

Figure 2. Full dataset and pilot area (labelled Prototype Area Boundary) data record sites.
2.1 METHODOLOGY

To ensure creation of a high-quality dataset that reliable conclusions could be drawn from, datasets
were collected and then prepared, explored, and analysed according to the methods described below.
Multiple workflows were tested, and the workflow that proved the most effective for separating data
records with anthropogenic influence from data records representative of background conditions was
selected.



2.1.1 DATA COMPILATION

Data providers were engaged to request data and ensure data received was formatted correctly. The
identity of data providers and details about the quantity and types of data provided are confidential
under data sharing agreements. In several instances there were formatting issues or missing metadata
(e.g., UTM zones, units, or analytical methods). To resolve these issues, we engaged with the data
provider, and the dataset was either re-exported to correct the issue or information was provided so
that the issue could be manually corrected.

2.1.2 DATA HARMONIZATION

Data were harmonized by combining multiple smaller datasets into one master dataset. Columns were
matched based on parameters and metadata values and combined to create a master dataset for the
project. The master dataset included 224,902 salinity data records from 5,887 unique locations and
23,224 metals data records from 1,911 unique locations. Many data records provided only had legal site
description (LSD) for location information. When this was the case, multiple samples often had the same
LSD and therefore have the same coordinates in the database. This is the reason for the comparatively
lower number of sampling locations versus the number of data records.

2.1.3 DATA CLEANING

The master dataset was cleaned to remove records that would impede statistical analysis. In this case,
cleaning refers to removing a record from the dataset used to define the ideal background pattern
(referred to as a fingerprint). It is important to note that these data records were only removed from the
dataset during the development of background fingerprints. Once these were defined, all data records
were returned to the dataset to be classified as either representative of background or showing signs of
anthropogenic influence.

Salinity records were cleaned (i.e., removed from the decision-making process) based on the following
criteria:

e Samples with missing values.

e Samples with non-detect values of one or more cation/anion.

e Samples with cation/anion balance > 25%.

e Samples > 95th percentile of one or more cation/anion, SAR, or EC.

Metals records were cleaned (i.e., removed from the decision-making process) based on the following
criteria:

e Samples with missing values.

o Samples with non-detect values of select metals parameters. Metals parameters were selected
based on potential for causing adverse effects and sufficient detectability in the dataset for
reliable statistical analysis.

e Samples with one or exceedance of an Alberta Tier 1 soil remediation guideline.

e High and low outliers.

After removal of these samples, 74,943 salinity and 13,333 metals data records remained.



2.1.4 ADDITIONAL STEPS FOR SALINITY DATASET

The initial step in chemometric data analysis® was to apply the same workflow that was used for the
pilot area. In the pilot area, a limit of 100 mg/kg chloride was used when identifying background
fingerprints for diagnostic use in the master dataset. This limit came from a heuristic defined in the
Subsoil Salinity Tool manual which states that background chloride concentrations “...vary between
different regions and soil types but are generally below 100 mg/kg...” (Equilibrium Environmental, 2020).

Due to the size of the provincial-scale salinity dataset, more granularity was required to identify samples
with patterns indicative of anthropogenic impact as large magnitude differences can hinder statistical
analysis. Range normalization was applied to address this. Data was then analyzed using both principal
component analysis (PCA) and uniform manifold approximation and projection (UMAP). UMAP was
found to be superior in identifying unique fingerprints in the dataset that could then be further explored
and determined to be background or representative of anthropogenic impact. Initial UMAP analysis
identified a data node that was distinctly different from the rest of the data cluster as shown in Figure 3.
After further analysis, the distinct data node was dominated by sodium chloride and determined to be
indicative of anthropogenic influence. This data node was removed from the dataset for further analysis.

Figure 3. Initial UMAP data model with distinct data node outlined in red.

Re-analysis of the dataset after exclusion of the anthropogenic data node showed no distinct or
separate nodes of data as shown in Figure 4. This is what would be expected from diffuse sources
associated with natural background.

After these additional data analysis steps were completed for the salinity dataset, the workflow
developed in Phase 1 of the ABSQS was applied.

1 Chemometrics is the science of relating measurements made on a chemical system (including dynamic

chemical processes) to the state of the system via application of mathematical or statistical algorithms.



2.2 DATA EXPLORATION AND DIMENSIONALITY REDUCTION

Hierarchical cluster analysis (HCA) was used alongside traditional statistical techniques (correlation plots
and summary statistics for various subsets of the data) to identify clusters of data records representative
of anthropogenic and non-anthropogenic (i.e., background) patterns. Clustering in general is a method
of statistical analysis that clusters data records in such a way that they are more like other data records
within the same cluster than they are to data records in other clusters. HCA is used to find discrete
clusters with varying degrees of similarity (or dissimilarity) in a dataset. HCA builds a hierarchy of
clusters and displays them on a dendrogram. A dendrogram is a tree-structured graph that shows the
relationship between data records based on the length of the line connecting them. Shorter lines
represent a closer relationship while longer lines indicate a larger difference between data records
(Figure 5). As distance from individual data records increases, the dendrogram lines become longer

Figure 4. UMAP data model after removal of sodium chloride node showing diffuse patterns consistent
with background.
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Figure 5. Example HCA dendrogram with bisecting lines to show various levels of granularity.

showing more dissimilarity between data records. In the example shown in Figure 5 three lines were
drawn bisecting the dendrogram, labeled y1, y2, and y3 respectively, that show three options for
clustering granularity. Line y1 splits the dataset into 10 clusters, y2 splits the dataset into seven clusters
and y3 splits the dataset into four clusters. As the number of clusters increases, the relationships
between individual data records in a cluster become more granular and specific. For example, line y1
provides so much granularity that several of the clusters have only one data record in them. The goal of
exploring the ABSQS salinity dataset using HCA was to provide enough granularity that data records
showing anthropogenic impacts could be separated from clusters representative of background
conditions. To achieve this, boundary conditions for an ideal background dataset had to be defined.

2.3 IDENTIFYING BACKGROUND PATTERNS

An HCA dendrogram was completed for the ideal salinity and metals background datasets that also
included a heat map of parameters. The dendrogram was explored at varying degrees of granularity to
determine where relationships between parameters changed meaningfully. An example of a meaningful
difference between clusters would be where data records in one cluster were dominated by a strong
correlation between certain parameters while data records in an adjacent cluster were dominated by a
strong correlation between different parameters. HCA dendrograms for the reduced background
datasets for metals and salinity are provided in Figures 6 and 7, respectively.



Electrical_Gonductivity
Na %
Mg %

st
TID

s aﬂﬂ“ﬁ ﬁ‘_* m 'lr“*iw i“‘i{ﬁ"“ﬂ.ﬂ'lﬂﬂ ni* T L

Figure 6. HCA dendrogram for background salinity dataset. The box to the left of the dendrogram is a
histogram of the dataset showing the majority of samples were low concentration.
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Figure 7. HCA dendrogram for background metals dataset.

24 APPLYING BACKGROUND PATTERNS TO THE FULL DATASET

Boundary conditions were defined for each background cluster in the ideal background dataset.
Boundary conditions were defined using the minimum and maximum percent contribution of each
parameter in a background cluster. To be designated as belonging to a background cluster, a data record
had to have measured values of all salinity or metals parameters within the minimum and maximum
boundary conditions set for a particular cluster. The master dataset was compared to these boundary
conditions and records that did not fit into one or more background clusters were removed from the
final dataset as they were considered to show anthropogenic influence. Boundary conditions for each
parameter are shown in the results section.

25 PREDICTIVE SOIL MAPPING

The predictive soil mapping (PSM) objectives were assessed (Figure 8). However, due to limitations of
the data the regression model results were not sufficient for decision making as the R? values were less
than 0.4. Two main reasons are likely responsible for the low performance:

e Coordinates: The absence of coordinates for borehole locations led to a significant reduction in
data. This caused data aggregation to have a coarser spatial resolution.

e Spatial Resolution: The transition to a coarser spatial resolution decreased the ability to detect
salinity. Saline features often manifest at finer scales than the training data resolution after

aggregating.

10



Additionally, the end members included too many multigroup classifications making it unsuitable for
mapping. Therefore, an alternative classification approach was undertaken as described in this section.
Metals were not mapped separately but were instead summarized for each salinity polygon.

Precise location data was not available for the soil point data, and only location data to the legal land
description was available. For that reason, data was aggregated based on a 250 m resolution, as given
the center of a legal subdivision (LSD) would be 200 m from the boundaries, with the additional 50 m to
account for potential overlap for points located on the edge of LSDs. The maximum value for electrical
conductivity (EC) and sodium adsorption ratio (SAR) within each 250 m resolution pixel was used for
model training and validation. Additionally, EC and SAR values were calculated for the topsoil layer,
defined as 0 to 0.15 metres below ground surface (m bgs), and subsoil which was defined as 0.15 to 1.5
m bgs. This data was then classed into Alberta’s salinity and sodicity rating categories of good, fair, poor,
and unsuitable (Alberta Environment, 2001). The topsoil ratings were used for the 0 to 0.15 m bgs
layer, and the subsoil ratings were used for 0.15 to 1.5 m bgs. Environmental covariate data was
retrieved using Google Earth Engine for the entirety of Alberta for predictive soil mapping. All covariates
are listed in Table 2.
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Table 2. Environmental covariates used for predictive soil mapping.

Precipitation

Service ERAS Climate
Reanalysis

Covariate Data Source Time Period Resolution

Standard deviation of ALOS1 3x3 focal smoothed | 2006 to 2011 250 m

elevation with a 21 x 21 digital elevation model

focal window

Standard deviation of ALOS1 9x9 focal smoothed | 2006 to 2011 250 m

elevation with a 21 x 21 digital elevation model

focal window

Bare soil composite Landsat 8 with 10x10 focal | May to October 2013 to 2023 250 m

imagery smoothing

Raw Bands 25™ Percentile | Landsat 8 with 10x10 focal | May to October 2013 to 2023 250 m
smoothing

Raw Bands 50 Percentile | Landsat 8 with 10x10 focal | May to October 2013 to 2023 250 m
smoothing

Raw Bands 75 Percentile | Landsat 8 with 10x10 focal | May to October 2013 to 2023 250 m
smoothing

Raw Bands 25 Percentile | Sentinel-2 with 10x10 focal | May to October 2017 to 2023 250 m
smoothing

Raw Bands 50" Percentile | Sentinel-2 with 10x10 focal | May to October 2017 to 2023 250 m
smoothing

Raw Bands 75%™ Percentile | Sentinel-2 with 10x10 focal | May to October 2017 to 2023 250 m
smoothing

Vertical Horizontal Sentinel-2 with 10x10 focal | May to October 2015 to 2023 250 m

Polarization smoothing

Median NDV/I? Landsat 8 with 10x10 focal | May to October 2013 to 2023 250 m
smoothing

Standard Deviation of Landsat 8 with 10x10 focal | May to October 2013 to 2023 250 m

NDVI smoothing

CRSI® Landsat 8 with 10x10 focal | May to October 2013 to 2023 250 m
smoothing

REIP* Sentinel-2 with 10x10 focal | May to October 2017 to 2023 250 m
smoothing

Rasterized soil AGRASID NA 250 m

classification polygons

Rasterized surficial Alberta Geological Survey NA 250 m

geology polygons Surficial Geology Polygons

Mean Annual Air Copernicus Climate Change | 1979 to 2020 250 m

Temperature Service ERAS Climate
Reanalysis

Annual Total Copernicus Climate Change | 1979 to 2020 250 m

! Advanced Land Observation Satellite
2 Normalized Difference Vegetation Index
3 Canopy Response Salinity Index

4 Red Edge Inflection Point
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For the topsoil and subsoil for EC and SAR, random forest classification models were built using the
ranger package in R (Wright & Ziegler, 2017). Each model had the following model development
process:

e Covariates that were correlated with another covariate by more than 0.95 were removed, and
only one of the covariates was kept.
e Data was split into training and validation data, with 75 percent of the data retained for training
and 25 percent for validation.
e Aninitial model was built using all the covariates after removal of the highly correlated
covariates.
e A backwards feature selection process was then used whereby incremental models were built
with the least important variable according to the model removed each time.
e The set of features that minimized out-of-bag prediction error were then selected.
e A final model was then built.
For each random forest model, case weights were set to equalize the probability that data from each
salinity and sodicity class were selected during bootstrapping of the random forest models. Class
weights were also set to internally equalize the importance of each class during model optimization. The
importance value was set to impurity and the split rule was set to extra trees. The random forest models
were also built as probability random forests to be able to predict the probability that each point
belonged to each class based on random forest tree agreements. Model performance was then
evaluated based on accuracy and kappa scores using the validation data set only.

Once the predictive models were generated, the probability random forest models were used to predict
the probability of each rating category for EC and SAR in the topsoil and subsoil. As accuracy for subsoil
EC and SAR were the highest, as there were generally lower values for EC and SAR for topsoil, the subsoil
prediction results were used to create polygons. The probability that a given pixel was classified as
having ‘good’ EC and SAR was determined. Both resulting rasters were then resampled to 20 m using
bicubic sampling to create smoother lines during vectorization.

The probabilities for each parameter was binned to intervals of 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1.
The EC and SAR subsoil probabilities were then combined to create a label for each pixel and the results
were vectorized to create polygons.

2.6 SOIL PROPERTY SUMMARIES

After generation of polygons, values for each salinity and metal parameter were determined by
calculating summary statistics based on the soil sample data within each polygon. Summary statistics
were calculated for the following depths:

e 0to0.15m bgs
e 0.15to01.5m bgs
e 1.5t03.0mbgs
e 3.0to6.0m bgs

The following summary statistics were calculated for each soil parameter (Table 3) for each depth:

e Min

e 5™ percentile
e 25" percentile
e 50 Percentile
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e 75" Percentile

e 95" percentile

o Max

e Mean

e Standard Deviation

e Standard Error of the Mean
e Number of Observations

Table 3. Soil parameters summarized for each polygon.
Type Parameters Polygons
with
Observations

Salinity | pH, Electrical Conductivity, Sodium Adsorption Ratio, Calcium (mg kg), Magnesium | 845
(mg kgh), Sodium (mg kg?), Potassium (mg kg?), Chloride (mg kg), Sulphate (mg
kg?), Potassium (meq), Magnesium (meq), Calcium (meq), Sodium (meq), Sulfate
(meq), Chloride (meq), Total Anion, Total Cation, Potassium (%), Magnesium (%),
Calcium (%), Sodium (%), Sulfate (%), Chloride (%)

Metals | Antimony (mg kg?), Arsenic (mg kg?), Beryllium (mg kg), Cadmium (mg kg), Total | 316
Chromium (mg kg'), Cobalt (mg kg'), Copper (mg kg'), Lead (mg kg*), Mercury
(mg kgl), Molybdenum (mg kg?), Nickel (mg kgl), Selenium (mg kg1), Thallium (mg
kg1), Uranium (mg kg?), Vanadium (mg kg), Zinc (mg kg™?)

2.7 SoIL PROPERTY EXTRAPOLATION

Most polygons did not have any data observations directly in the polygons; hence values were
extrapolated for most polygons. For polygons with one or more data observations the average values for
the class probabilities for EC and SAR subsoil were determined for each polygon. For each polygon
without any observations, the nearest neighbor polygon was determined using the FFN package in R
(Beygelzimer et al., 2024). Nearest neighbor was not calculated spatially, but rather the nearest
neighbor in terms of the probabilities for good, fair, poor, and unsuitable EC and SAR classes.

The values from the nearest neighbor polygon with observations were then assigned to each polygon
without observation data. An additional field was added to the database (extrap) to note if the data was
extrapolated or not. A value of N indicates the data is derived from observational data, whereas a value
of Y indicates the data is extrapolated.

2.8 UNCERTAINTY ANALYSIS

Following the soil property extrapolation, the prediction uncertainty was estimated for each polygon.
Using the average class probabilities for each polygon, the maximum probability across all classes was
determined for both EC and SAR. The maximum EC class probability and maximum SAR probability were
then averaged. Fundamentally, the probabilities are calculated based on the proportion of trees within
the random forest model that agree on the final prediction. Higher maximum probability values indicate
greater agreement amongst the decision trees within a random forest model, and therefore higher
certainty in the predictions.

Once the maximum class probability was calculated for each polygon, the resulting values were scaled
between 0 and 1 based on the minimum and maximum probabilities. This approach is also referred to as
min-max normalization. This process resulted in each polygon having a certainty score between 0 and 1,
with 0 being complete uncertainty and 1 being complete certainty.
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2.9 FIELD SAMPLING PLAN
The field sampling plan was developed with the following methodology:

1. Polygons were subset to only those with site data for both salts and metals and only polygons
that had confidence levels less than 0.5 were kept, prioritizing sampling from lower confidence
locations.

2. Polygons were then subset to only include those with an average subsoil EC and SAR value that
would be considered fair or poorer.

3. The Alberta Energy Regulator shapefile of wellsites in Alberta (Alberta Energy Regulator, 2024)
was then intersected with these polygons.

4. Thirty random Canadian Natural Resources Limited (CNRL) wellsites were then selected.

5. Buffers with a radius of 200 m and 100 m were generated around the wellsite. The difference
between the two buffers was calculated to create a ring 100 m wide and 100 m away from the
wellsite.

6. Ten samples were randomly placed within this ring for each of the 30 wellsites for a total of
300 sample locations.
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3.0 RESULTS

Results for analysis of salinity and metals datasets are provided below.
3.1 SALINITY RESULTS

Statistical distributions of the nine salinity parameters analyzed (EC, SAR, pH, chloride, sulphate, sodium,
calcium, magnesium, and potassium) across all depths represented are shown in Figure 9.
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Figure 9. Statistical distributions of salinity parameters in the final background dataset. Histograms show
the number of records at a particular concentration or value. Box plots provide a visual
representation of quantiles.

Based on background fingerprints identified in the cleaned salinity dataset, 151,542 data records of the
224,902 salinity data records in the master dataset were identified as being representative of
background.
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3.2 METALS RESULTS

In the metals database, 16 metals had sufficient data records and detection rates in the dataset
provided for analysis including antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead,
mercury, molybdenum, nickel, selenium, thallium, uranium, vanadium, and zinc. Statistical distributions
of the 16 metals parameters across all depths represented are shown in Figure 10.
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Figure 10. Statistical distributions of metals parameters in the final background dataset.

Based on background metals fingerprints identified in the cleaned dataset, 18,513 data records of the
23,224 metals data records in the master dataset were identified as being representative of background.
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33 PREDICTIVE SOIL MAPPING

Accuracy results for the predictive soil mapping of topsoil are provided in Table 4, and results for subsoil
are provided in Table 5. Results are on a point by point basis based on a 75-25 train-test split. Predictive
soil mapping accuracy and Kappa values were greater for the subsoil predictions as compared to the
topsoil. All subsequent polygons were created using the subsoil prediction results due to the higher
accuracy.

Table 4. Accuracy, Kappa, and confusion matrix for topsoil electrical conductivity (EC) and sodium
adsorption ratio (SAR).

EC
Good Fair Poor Unsuitable
Good 226 55 41 4
Fair 55 49 37 5
Poor 22 37 26 8
Unsuitable 1 5 6 1
Accuracy | 0.53
Kappa | 0.22
SAR
Good Fair Poor Unsuitable
Good 289 75 25 13
Fair 35 32 6 13
Poor 16 11 9 12
Unsuitable 7 6 5 12
Accuracy | 0.60
Kappa | 0.24

Table 5. Accuracy, Kappa, and confusion matrix for subsoil electrical conductivity (EC) and sodium
adsorption ratio (SAR).

EC
Good Fair Poor Unsuitable
Good 533 70 74 2
Fair 48 45 39 0
Poor 25 25 79 3
Unsuitable 1 4 6 2
Accuracy | 0.69
Kappa | 0.38
SAR
Good Fair Poor Unsuitable
Good 493 85 39 19
Fair 78 44 22 19
Poor 23 21 16 18
Unsuitable 13 13 19 34
Accuracy | 0.61
Kappa | 0.28
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34 SoIL PROPERTY SUMMARIES

Each of the background soil properties were summarized based on the statistics discussed in the
methodology. However, it is important to note that only a small percentage of polygons had observation
data within the polygons. In total there were 16,473 polygons that resulted from the polygon creation
process. The results for EC are illustrated in Figure 11, and the results for SAR are in Figure 12.
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Figure 11. Mean electrical conductivity (EC) per polygon (dS m?).
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Figure 12. Mean sodium adsorption ratio (SAR) values per polygon.

Along with salinity data, metal data was also summarized successfully based on the observational data.
Summary data was provided for each metal parameter. For illustrative purposes, the results for
selenium are arbitrarily provided in Figure 13.
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Figure 13. Mean selenium (mg kg ) per polygon.
3.5 SOIL PROPERTY EXTRAPOLATION

Only a small percentage of the polygons had soil observation data present within the polygon. For the
salinity polygons 845 out of 16,473 total polygons have direct soil observation data. For the metals data,
316 polygons out of 16,473 total polygons have direct soil observation data (Table 3). That equals
approximately 5% of polygons having direct salinity data, and 2% having metals data. Most polygons
have data extrapolated from the polygons with observations data based on the distribution of
probabilities for the EC and SAR class predictions. Figure 14 indicates which polygons have extrapolated
salinity data, and Figure 15 indicates which polygons have extrapolated metals data.
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Figure 14. Map outlining which polygons have extrapolated salinity data. Red areas have soil observation
data within the polygon, and green areas have extrapolated data.
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Figure 15. Map outlining which polygons have extrapolated metal data. Red areas have soil observation
data within the polygon, and green areas have extrapolated data.

3.6 UNCERTAINTY ANALYSIS

Prediction certainty was inversely related to salinity, with areas of higher salinity having more
uncertainty. This is because as salinity increased the model would have more decision trees spreading
predictions across fair, poor, and unsuitable classes. Polygons in the good category tended to have a
high proportion of decision trees in the random forest consistently predicting good. Prediction certainty

24



results are illustrated in Figure 16. As the values were scaled between zero and one, the values indicate
the relative certainty. Values of one are the polygons with the highest certainty and values of zero have
the lowest certainty.
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Figure 16. Map of polygon salinity prediction confidence. Values of one are the polygons with the
highest certainty and values of zero have the lowest certainty.
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3.7 FIELD SAMPLING PLAN

The target polygons for salt and metal sampling in SE Alberta are illustrated in Figure 17. Wellsites with
sampling locations are illustrated by the white dots, with 10 sampling locations at each of the 30
selected wellsites. Overall, this stratified random sampling plan has 300 sample locations in total.
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Figure 17. Map illustrating target polygons in red and sample sites in white for field sampling to improve
overall model performance for both salt and metal polygons.

3.8 SYSTEM DISTRIBUTION AND COMMUNICATION PLAN

The communication and distribution will happen over time based on the results of this project. The
objective of the communication and distribution plan is to create or increase awareness about the
outcome of this project, educate the public, engage stakeholders and encourage participation and
feedback, and practitioners or their clients to be providing data on an ongoing basis to update the
database and models. The key message will be that a tool has been developed and is available to assist
industry and government in environmental management of contaminated sites. Communication
channels will be through the following:

1. Webinars and Lunch and Learn: We would discuss with the Environmental Services Association
of Alberta (ESAA) or Canadian Conservation and Land Management (CCLM) to host a webinar or
Canadian Land Reclamation Association (CLRA) for a lunch and learn. We would ask some of the
organizations to promote the event and send it out on their email list. The plan is to end up with
as many people as possible participating in the webinar or lunch and learn, and for those that
are unable to attend to have access to the video presentation and the slide deck to check out
the tool.

2. Presentations at workshops/conferences: We plan to make presentations at CLRA and the
Remediation Technologies (REMTECH) symposium to promote the availability of the tool.
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3. Webpage: A dedicated project webpage hosted at InnoTech’s website will be created with
updates and access to the tool, including reports and resources.

After the execution of the field sampling program (Phase 4) to fill in data gaps identified during the
current phase of this project, and to complete further testing and validation of the model, all of the data
will be integrated into a final predictive soil mapping model to predict updated soil property values. The
resulting spatial data will be integrated into the web platform and will be publicly available.

4.0 CONCLUSIONS

Throughout the process of collecting data from data providers several challenges were identified.
Important metadata items — including units of measure and analytical methods used — were sometimes
not provided. This lengthened the time required for the data collection phase. Collecting coordinates for
each individual data point leads to increased predictive power in analysis of patterns and trends in soil
chemistry datasets. The nine salinity parameters (pH, EC, SAR, chloride, sulphate, calcium, magnesium,
potassium, and sodium) and 16 metals parameters (antimony, arsenic, beryllium, cadmium, chromium,
cobalt, copper, lead, mercury, molybdenum, nickel, selenium, thallium, uranium, vanadium, and zinc)
chosen for the ABSQS are the most regularly reported across salinity and metals analytical packages
found in the provided datasets. The data analysis workflow developed to identify background data
records—so that impacted data records could be removed from the final ABSQS database—provided
stable and replicable results. Of the 224,902 salinity and 23,224 metals data records in the master
dataset, 151,542 salinity and 18,513 metals data records were identified as being representative of
background.

Regression modelling was not successful for predictive soil mapping due to the lack of accurate
coordinates requiring coarser spatial resolution mapping. Mapping soil classes was more successful with
subsaoil salinity class accuracy being 0.69. To ensure that eventual decisions with the mapping are based
on direct field data, the classes were used just for creating polygons. Direct field observation data was
used to summarize salinity and metal data for each polygon, with those polygons not having points
having extrapolated data. Only a small number of the total polygons had soil observation data present.
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5.0 RECOMMENDATIONS

Based on the results of the salinity data analysis, the following are recommended:

The ABSQS should be completed by continuing with Phase 4 which includes developing and
executing a field sampling program to fill in data gaps.

As a significant amount of the data provided for the ABSQS came directly from analytical
laboratories, an attempt should be made to add geospatial coordinates to the list of metadata
items included in lab databases going forward.

Future phases or similar projects should allot additional time for the data collection phase.
Although a clear template for data formatting was provided, future phases or similar projects
should provide additional guidance on data and metadata requirements (i.e., must-haves vs.
nice-to-haves).

Datasets with geospatial coordinates for individual data records should continue to be solicited
opportunistically.

The system will benefit from future incorporation of more site data over time.

Regression modelling may give useful results if coordinate data is collected with laboratory data.
All polygon data was provided accompanying this report as .gpkg files.
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